-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdense.py
52 lines (42 loc) · 1.59 KB
/
dense.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import numpy as np
from ..activation import Linear
from .base_layer import BaseLayer
class Dense(BaseLayer):
def __init__(self,units,activation=Linear()):
self.units = units
self.activation = activation
self.zin = 0
self.zout = 0
self.output_unit = None
@property
def nparams(self):
return self.w.size + self.b.size
def plug(self,inputlayer):
assert len(inputlayer.output_shape) == 1, "Input of Dense layer must be a vector"
self.input_shape = inputlayer.output_shape[0]
self.output_shape = [self.units]
self.input_unit = inputlayer
inputlayer.output_unit = self
# Weights
self.w = np.random.randn(self.units*self.input_shape).reshape((self.input_shape,self.units))
self.b = np.random.randn(self.units) # bias
# Deriv
self.dw = np.zeros(self.units)
self.db = np.zeros(self.units)
self.delta = np.zeros(self.units)
def forward(self,X):
self.zin = self.input_unit.forward(X)
self.zout = self.activation.f(self.zin @ self.w + self.b)
return self.zout
def backprop(self,delta):
self.delta = delta @ self.w.T * self.activation.deriv(self.zin)
self.dw = delta.T @ self.zin
self.db = np.sum(delta,axis=0) # same as delta.T @ np.ones(...)
return self.delta
def get_gradients(self):
return self.dw.T,self.db
def update_weights(self,weights_diff):
''' Update weights given the update'''
uw,ub = weights_diff
self.w += uw
self.b += ub