-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathexample.py
211 lines (155 loc) · 5.8 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
'''This file contains examples of use for some algo'''
#%%
import mla
from mla import dl,mab,ensemble
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_boston,make_classification,fetch_20newsgroups,load_iris,fetch_openml,make_blobs
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.model_selection import train_test_split
#%%
############# Regression task #################
regressor = mla.DecisionTreeRegressor(max_depth=2) # Choose whatever regressor you want (need to have fit and score methods)
data = load_boston()
X = data['data']
y = data['target']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
regressor.fit(X_train,y_train)
regressor.score(X_test,y_test)
#%%
############# Binary Classification task #############
clf = mla.KNN(3)# Choose whatever classifier you want (need to have fit and score methods)
X,y = make_classification(n_samples=300)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
clf.fit(X_train,y_train)
clf.score(X_test,y_test)
#%%
############# Multilabel classification task ##########
clf = ensemble.OneVsOneClassifier(mla.PolynomialClassification) # Choose whatever regressor you want (need to have fit and score methods)
X,y = make_classification(n_classes=4,n_samples=600,n_features=10,n_informative=5)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
clf.fit(X_train,y_train)
clf.score(X_test,y_test)
#%%
############# Boolean/Counting features Classification task (Bernoulli/Multinomial Naive Bayes) #################
''' Careful, very big dataset (13000 datapoints with 130 000 features), if low memory use only a fraction of it '''
# Load dataset
X = fetch_20newsgroups()
X,y = X['data'][:2000],X['target'][:2000]
# Convert list of strings to boolean features
vectorizer = CountVectorizer()
X = vectorizer.fit_transform(X)
X = X.toarray()
# for new data to convert :
#X_new = vectorizer.transform(data_new)
X_train,X_test,y_train,y_test = train_test_split(X,y)
#%%
mnb = mla.MultinomialNaiveBayes()
mnb.fit(X_train,y_train)
mnb.score(X_test,y_test)
#%% Boolean
# Transform all non zeros to 1
X[np.where(X>1)] =1
bnb = mla.BernoulliNaiveBayes()
bnb.fit(X_train,y_train)
bnb.score(X_test,y_test)
#%%
########################### Deep learning ################
## Binary Classification
# np.random.seed(42)
X, y = make_classification(n_samples=200, n_features=5, n_classes=2, n_clusters_per_class=1)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
#%%
nn = dl.NeuralNetwork(X.shape[1:],loss=dl.loss.BinaryCrossEntropy())
nn.add(dl.Dense(10,activation=mla.dl.activation.Sigmoid()))
nn.add(dl.Dense(4,activation=mla.dl.activation.Sigmoid()))
nn.add(dl.Dense(3,activation=mla.dl.activation.Sigmoid()))
nn.add(dl.Dense(1,activation=mla.dl.activation.Sigmoid()))
#%%
nn.fit(X_train,y_train,dl.optimizer.Adam())
print('\n ------------------------ \naccuracy = ',1 - np.count_nonzero(y_test-np.where(nn.predict(X_test)>0.5,1,0).flatten())/y_test.size)
#%%
nn.summary()
#%%
nn.display()
#%% ## Regression
data = load_boston()
X = data['data']
y = data['target']
X = (X - X.min(axis=0))/X.max(axis=0)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
#%%
nn = dl.NeuralNetwork(X.shape[1:],loss=dl.loss.MAE())
nn.add(dl.Dense(10,activation=mla.dl.activation.Relu()))
nn.add(dl.Dense(4,activation=mla.dl.activation.Relu()))
nn.add(dl.Dense(1))
#%%
nn.fit(X,y,dl.optimizer.Adam(learning_rate=0.1,n_iter=30))
#%% ######### Autoencoder ############################
## Warning : Big dataset
X, y = fetch_openml('mnist_784', version=1, return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
#%%
ae = dl.AutoEncoder(X.shape[1:],loss=dl.MAE())
ae.add(dl.Dense(350))
# ae.add(dl.Dense(50))
ae.add(dl.Dense(150))
ae.add(dl.Dense(100))
ae.add(dl.Dense(20),encoding_layer=True)
#%%
ae.fit(X_train,X_train,dl.Adam(learning_rate=0.01,n_iter=200))
#%%
################# Multi Armed Bandit ##########################
arms = [mab.arms.Bernoulli(0.8),mab.arms.Exponential(2),mab.arms.Gaussian(2.4),mab.arms.Gaussian(1.5)]
bandit = mab.MAB(arms)
T = 100
ucb = mab.UCB(bandit.nbArms)
ts = mab.ThompsonSampling(bandit.nbArms)
etc = mab.ETC(bandit.nbArms,T)
## Compare the different algorithms
mab.bandit_env.RunExpes([ucb,ts,etc],bandit,N_exp=10,timeHorizon=T)
# %%
#%% ##### Gaussian Process Regressor #################""
import seaborn as sns
d = 1 #dimension
n = 500 # n samples
x = np.linspace(start=0, stop=1, num=n)
def f(x):
f = np.sin((4*np.pi)*x) + np.sin((7*np.pi)*x)
return(f)
sigma_n = 0.4
y = f(x) + np.random.normal(loc=0, scale=sigma_n, size=n)
gp = mla.GaussianProcessRegressor()
gp.fit(x.reshape(-1,1),y)
yh = gp.predict(x,n_samples=100)
# Compare true function to learned one (with noise)
for yi in yh :
sns.lineplot(x,yi,color='blue',alpha=0.2)
sns.lineplot(x,f(x),color='red',label='True Function')
sns.lineplot(x,y,color='green',label='Training Data',alpha=0.4)
plt.legend()
plt.show()
# %%
###################### Unsupervized Learning ###############
X,_ = make_blobs(600,2,centers=4)
gmm = mla.GaussianMixtureModel(4)
gmm.fit(X)
gmm.display(X) # Only available for GMMS and 2D data
#%%
################# Kernels ##############################
k = mla.kernels.RBF()
k2 = mla.kernels.RBF(l=0.2)
k3 = mla.kernels.RQK()
# Combine kernels with other kernels and other operations
new_kernel= 2**((np.exp(k+k2) / 2) * (abs(k3)** 4) )
print(new_kernel(1,2))
# Same as :
print(2**(((np.exp(k(1,2)+k2(1,2))) / 2) * abs(k3(1,2))** 4) )
# You can use most of trigonometrics/hyperbolic numpy function to call the kernel as well as exp and log
np.cosh(k)
# you can also apply custom functions :
def custom_f(a):
return a+2
new_kernel2 = k.apply_func(custom_f)
# And now you can use this new kernel in any kernel algorithm
# %%