forked from liu-ziyuan-math/SPFNO
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathex4_SP_darcy2D.py
208 lines (170 loc) · 8.04 KB
/
ex4_SP_darcy2D.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import os
from torch.utils.data import DataLoader
from timeit import default_timer
from utilities import *
from copy import deepcopy
import h5py
from scipy.io import loadmat
import fourierpack as sp
import functools
import matplotlib
from NOs_dict.models import SinNO2d as Model
device = torch.device("cuda")
data_name = 'darcy-bench'
#### fixing seeds
torch.manual_seed(0)
np.random.seed(0)
torch.cuda.manual_seed(0)
torch.backends.cudnn.deterministic = True
from utilities import get_args
import argparse
def get_args():
parser = argparse.ArgumentParser('Spectral Operator Learning', add_help=False)
parser.add_argument('--data-dict', default='data/', type=str, help='dataset folder')
parser.add_argument('--data-para', default='100.0', type=str, help='dataset parameter beta')
parser.add_argument('--epochs', default=500, type=int, help='training iterations')
parser.add_argument('--sub', default=1, type=int, help='sub-sample on the data')
parser.add_argument('--lr', default=4e-3, type=float, help='learning rate')
parser.add_argument('--bw', default=1, type=int, help='band width')
parser.add_argument('--batch-size', default=20, type=int, help='batch size')
parser.add_argument('--wd', default=-4, type=float, help='weight decay')
parser.add_argument('--step-size', default=100, type=int, help='step size for the StepLR (if used)')
parser.add_argument('--modes', default=24, type=int, help='Fourier-like modes')
parser.add_argument('--width', default=32, type=int, help='')
parser.add_argument('--triL', default=0, type=int, help='')
parser.add_argument('--suffix', default='', type=str, help='')
parser.add_argument('--sol-skipflag', default=0, type=int, help='')
return parser.parse_args()
#### parameters settings
args = get_args()
epochs = args.epochs # default 500
step_size = args.step_size # for StepLR, default 50
batch_size = args.batch_size # default 100
sub = args.sub # default 1
learning_rate = args.lr # default 1e-3
bandwidth = args.bw # default 1
modes = args.modes
triL = args.triL
suffix = args.suffix
sol_skipflag = args.sol_skipflag
width = args.width
wd = -6.0#args.wd
weight_decay = 10 ** wd #1e-4
gamma = 0.5 # for StepLR
train_size, test_size = 9000, 1000
num_workers = 0
suffix = suffix + '-plat'
beta = args.data_para
data_PATH = args.data_dict + '2D_DarcyFlow_beta' + beta + '_Train.hdf5'
file_name = 'sp-' + data_name + str(sub) + '-beta' + beta + '-modes' + str(modes) + '-width' + str(width) \
+ '-bw' + str(bandwidth)+ '-triL' + str(triL) + '-wd' + str(wd) + suffix
result_PATH = 'model/' + file_name + '.pkl'
print('data:', data_PATH)
print('result_PATH:', result_PATH)
print('batch_size', batch_size, 'learning_rate', learning_rate, 'epochs', epochs, 'bandwidth', bandwidth)
print('weight_decay', weight_decay, 'width', width, 'modes', modes, 'sub', sub, 'triL', triL)
import os
if os.path.exists(result_PATH):
print("----------Warning: pre-trained model already exists:")
print(result_PATH)
## main
## model
model = Model(3, modes, width, bandwidth, triL=triL, skip=sol_skipflag).to(device)
ntrain, ntest = train_size, test_size
raw_data = h5py.File(data_PATH, 'r')
# pad BC
raw_num, raw_x, raw_y = raw_data['nu'].shape
x_data, y_data = np.zeros([raw_num, raw_x + 2, raw_y + 2], dtype=np.float32), np.zeros(
[raw_num, raw_x, raw_y], dtype=np.float32)
x_data[..., 1:-1, 1:-1], y_data = raw_data['nu'], raw_data['tensor'][:, 0, ...]
x_train, x_test = torch.from_numpy(x_data[:train_size, ...]), torch.from_numpy(x_data[-test_size:, ...])
y_train, y_test = torch.from_numpy(y_data[:train_size, ...]), torch.from_numpy(y_data[-test_size:, ...])
_, Nx, Ny = x_train.shape
s = Nx
x_train = x_train.reshape(ntrain, s, s, 1)
x_test = x_test.reshape(ntest, s, s, 1)
grid_x = torch.linspace(0, 1, Nx, dtype=torch.float32).view(1, Nx, 1, 1)
grid_y = torch.linspace(0, 1, Ny, dtype=torch.float32).view(1, 1, Ny, 1)
grid_x[:, 1:-1, ...] = torch.tensor(raw_data['x-coordinate']).view(1, Nx-2, 1, 1)
grid_y[..., 1:-1, :] = torch.tensor(raw_data['y-coordinate']).view(1, 1, Ny-2, 1)
x_train = torch.cat([x_train.view(ntrain, Nx, Ny, 1) # , du_train
, grid_x.repeat(ntrain, 1, Ny, 1), grid_y.repeat(ntrain, Nx, 1, 1)], dim=-1).type(
torch.float32)
x_test = torch.cat([x_test.view(ntest, Nx, Ny, 1) # , du_test
, grid_x.repeat(ntest, 1, Ny, 1), grid_y.repeat(ntest, Nx, 1, 1)], dim=-1).type(
torch.float32)
train_loader = torch.utils.data.DataLoader(torch.utils.data.TensorDataset(x_train, y_train),
batch_size=batch_size,
num_workers=num_workers,
shuffle=True)
test_loader = torch.utils.data.DataLoader(torch.utils.data.TensorDataset(x_test, y_test), batch_size=batch_size,
num_workers=num_workers,
shuffle=False)
train_list, loss_list = [], []
if epochs == 0: # load model
print('model:' + result_PATH + ' loaded!')
loader = torch.load(result_PATH)
model.load_state_dict(loader['model'])
print('test_l2:', loader['loss_list'][-1])
loss_list = loader['loss_list']
print('model parameters number =', count_params(model))
# optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
from Adam import Adam
optimizer = Adam(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
# scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=step_size, gamma=gamma)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=0.5, threshold=1e-1, patience=50, verbose=True)
t1 = default_timer()
myloss = LpLoss(size_average=False)
for ep in range(epochs):
model.train()
t1 = default_timer()
train_mse = 0
train_l2 = 0
for x, y in train_loader:
x, y = x.to(device), y.to(device)
optimizer.zero_grad()
out = model(x).reshape(batch_size, s, s)[..., 1:-1, 1:-1]
mse = F.mse_loss(out.reshape(batch_size, -1), y.view(batch_size, -1), reduction='mean')
l2 = myloss(out.reshape(batch_size, -1), y.view(batch_size, -1))
l2.backward()
optimizer.step()
train_mse += mse.item()
train_l2 += l2.item()
# scheduler.step()
model.eval()
test_l2 = 0.0
with torch.no_grad():
for x, y in test_loader:
x, y = x.to(device), y.to(device)
out = model(x).reshape(batch_size, s, s)[..., 1:-1, 1:-1]
test_l2 += myloss(out.reshape(batch_size, -1), y.reshape(batch_size, -1)).item()
train_l2 /= ntrain
test_l2 /= ntest
scheduler.step(train_l2)
train_list.append(train_l2)
loss_list.append(test_l2)
t2 = default_timer()
if (ep + 1) % 100 == 0 or ep < 20:
print(ep, str(t2 - t1)[:4], optimizer.state_dict()['param_groups'][0]['lr'], \
train_mse, train_l2, test_l2)
if epochs >= 500:
torch.save({
'model': model.state_dict(), 'batch_size': batch_size, 'learning_rate': learning_rate, 'epochs': epochs,
'weight_decay': weight_decay, 'width': width, 'modes': modes, 'sub': sub,
'loss_list': loss_list, 'train_list': train_list
}, result_PATH)
exit()
j = -1
x_unif = torch.linspace(0, 1, Nx)[1:-1]
X, Y = torch.meshgrid(x_unif, x_unif)
peer_loss = LpLoss(reduction=False)
test_err = torch.tensor([], device=device)
with torch.no_grad():
for x, y in test_loader:
x, y = x.to(device), y.to(device)
out = model(x).reshape(batch_size, s, s)[..., 1:-1, 1:-1] # remove BC
test_err = torch.cat([test_err,
peer_loss(out.reshape(batch_size, -1), y.reshape(batch_size, -1))],
dim=0)
print('test_l2', test_err.sum().item() / test_size)
print('test_l2 min-max:', test_err.min().item(), test_err.max().item())