-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFewr_markdown.Rmd
1154 lines (973 loc) · 48.9 KB
/
Fewr_markdown.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
---
title: "Financial Econometrics Coursework"
author: "Matteo Mario Di Venti"
date: "02/12/2021"
output:
html_document: default
pdf_document: default
---
```{r libraries used, include=T}
# library(ggplot2) # produce good looking graphs (qplot)
library(quantmod) # allows to easily import data directly from downloading financial data from the internet, directly
# from some open sources, including Yahoo Finance, Google Finance, and the Federal
# Reserve Economic Data (FRED) of Federal Reserve Bank of St. Louis.
library(xts)
library(readr)
library(latex2exp) # to wtie latex formulas in graphs!
#library(gridExtra) # multiple plots in one graph
library(summarytools)
library(qwraps2)
library(normtest)
library(nortest)
library(moments)
library(xtable)
library(sm)
library(astsa)
library(portes)
#library(xlsx)
# library(timeSeries)
library(forecast)
# install.packages("RColorBrewer")
library(RColorBrewer)
#library for root test
library(tseries)
# WARNING:installation of package "portes" does not work as it should, as the file has been taken out form CRAN due to compativbility issues, still we need it!
# install.packages('forecast')
#install.packages("portes_3.0.tar.gz", repos=NULL, type="source")
# library(forecast)
library(portes)
knitr::opts_chunk$set(echo = TRUE)
```
```{r directory and data}
rm(list=ls()) # clear all variables from environment/workspace
# set working directory (wd)
mydirectory <- "C:/please_insert_your_directory_here"
setwd(mydirectory)
getwd() # set and show wd
# alternatively click on "Session" --> "Set Working Directory" --> "Choose Directory"
# WARNING: be sure that all the csv files are included in the same working directory!
############################################################################
# LOAD data
# DAX index
DAX<- getSymbols("^GDAXI",from="1987-12-30", to="2020-12-30", auto.assign=FALSE)
DAX<-na.omit(DAX)
write.zoo(DAX, file="Data_DAX.csv", col.names = TRUE, row.names = FALSE)
DAXcsv <- as.xts(read.zoo("Data_DAX.csv", header = TRUE, format = "%Y-%m-%d"))
DAX <- as.xts(read.zoo("Data_DAX.csv", header = TRUE, format = "%Y-%m-%d"))
```
```{r Prices and returns, echo=TRUE}
Pt.d.all <- DAX$GDAXI.Adjusted ; names(Pt.d.all) <- "Pt.d" # Prices
pt.d.all <- log(Pt.d.all) ; names(Pt.d.all) <- "pt.d" # log -prices
# find end of month/week/year dates
last_day_of_month <- endpoints(pt.d.all, on = "months") # works on xts objects
last_day_of_week <- endpoints(pt.d.all, on = "weeks")
last_day_of_year <- endpoints(pt.d.all, on = "years")
# Compute weekly (w), monthly(m), and annual(y) log prices
pt.w.all <- pt.d.all[last_day_of_week] ; names(pt.w.all) <- "pt.w.all"
pt.m.all <- pt.d.all[last_day_of_month]; names(pt.m.all) <- "pt.m.all"
pt.y.all <- pt.d.all[last_day_of_year] ; names(pt.y.all) <- "pt.y.all"
# compute log returns # for entire history of DAX
rt.d.all <- diff(pt.d.all) ; names(rt.d.all) <- "rt.d"
rt.w.all <- diff(pt.w.all) ; names(rt.w.all) <- "rt.w"
rt.m.all <- diff(pt.m.all) ; names(rt.m.all) <- "rt.m"
rt.y.all <- diff(pt.y.all) ; names(rt.y.all) <- "rt.y"
ss_dates <- "19871230/20201230"
Pt.d <- Pt.d.all[ss_dates];
pt.d <- pt.d.all[ss_dates];
pt.w <- pt.w.all[ss_dates];
rt.d <- rt.d.all[ss_dates];
rt.w <- rt.w.all[ss_dates];
rt.m <- rt.m.all[ss_dates];
rt.y <- rt.y.all[ss_dates];
# convert prices int dataframes to produce nice plots
Pt.d.df <- cbind(index(Pt.d), data.frame(Pt.d)); names(Pt.d.df)[1] <- "date";
pt.d.df <- cbind(index(pt.d), data.frame(pt.d)); names(pt.d.df)[1] <- "date";
pt.w.df <- cbind(index(pt.w), data.frame(pt.w)); names(pt.w.df)[1] <- "date";
rt.d.df <- cbind(index(rt.d), data.frame(rt.d)); names(rt.d.df)[1] <- "date";
rt.w.df <- cbind(index(rt.w), data.frame(rt.w)); names(rt.w.df)[1] <- "date";
rt.m.df <- cbind(index(rt.m), data.frame(rt.m)); names(rt.m.df)[1] <- "date";
rt.y.df <- cbind(index(rt.y), data.frame(rt.y)); names(rt.y.df)[1] <- "date";
```
```{r plot settings}
#set up graph palette
brewer.pal(n=11, name="Spectral")
palette(brewer.pal(n=11, name="Spectral"))
#col2plot <- c("red","blue","black","green")
lwd2plot <- c(1 , 1 , 1 )
lty2plot <- c(1 , 1 , 1 )
```
```{r prices and returns plots}
#############################################################################
# PLOT: Prices, log-prices and log-returns of SP500
#############################################################################
#postscript(file="../figures/DAX_end1987_2020_Ppr.eps",width=9,height=6,horizontal = FALSE, onefile=FALSE)
#pdf(returnsplot.pdf)
#puts figures into 3 rows in 1 col shape
par(mfrow=c(3,1));
#defines graph margins
par(mar = c(5, 4, 1, 4));
# par(mgp = c(1.5, 0.5, 0))
# Daily Price
data2plot <- Pt.d.df;
plot(x = data2plot[,1], y = data2plot[,2], type = 'l', col=2 , lty = lty2plot[1], lwd = lwd2plot[1],
xlab="" , ylab=TeX('price: $P_t$'), main="", xaxt ="none") # do not diaply x and y-axes labels/ticks)
# X-Axis display
seq_sel <- endpoints(data2plot$date, on = 'years'); date_seq = data2plot$date[seq_sel]; date_lab = format(date_seq,"%b-%y")
axis(1, at = date_seq, label = date_lab, las = 1, cex.axis=1.0); abline(0,0, lty = 2)
# Daily log price
data2plot <- pt.d.df;
plot(x = data2plot[,1], y = data2plot[,2], type = 'l', col=3 , lty = lty2plot[1], lwd = lwd2plot[1],
xlab="" , ylab=TeX('log-price: $p_t$'), main="", xaxt ="none") # do not diaply x and y-axes labels/ticks)
# X-Axis display
seq_sel <- endpoints(data2plot$date, on = 'years'); date_seq = data2plot$date[seq_sel]; date_lab = format(date_seq,"%b-%y")
axis(1, at = date_seq, label = date_lab, las = 1, cex.axis=1.0)
abline(0,0, lty = 2)
#-----------------------------------------------------------------------------
# Daily log-returns
data2plot <- rt.d.df;
plot(x = data2plot[,1], y = data2plot[,2], type = 'l', col=4 , lty = lty2plot[1], lwd = lwd2plot[1],
xlab=TeX("Date") , ylab=TeX('log-return: $r_t$'), main="", xaxt ="none") # do not diaply x and y-axes labels/ticks)
# X-Axis display
seq_sel <- endpoints(data2plot$date, on = 'years'); date_seq = data2plot$date[seq_sel]; date_lab = format(date_seq,"%b-%y")
axis(1, at = date_seq, label = date_lab, las = 1, cex.axis=1.0); abline(0,0, lty = 2) # add zero line
```
```{r}
# PLOT: log-returns of SP500
#############################################################################
# Daily log-returns
data2plot <- rt.d.df;
plot(x = data2plot[,1], y = data2plot[,2], type = 'l', col=8 , lty = lty2plot[1], lwd = lwd2plot[1],
xlab="" , ylab=TeX('$r_t$'), main=TeX('daily log-return'), xaxt ="none") # do not diaply x and y-axes labels/ticks)
# X-Axis display
seq_sel <- endpoints(data2plot$date, on = 'years'); date_seq = data2plot$date[seq_sel]; date_lab = format(date_seq,"%y")
axis(1, at = date_seq, label = date_lab, las = 1, cex.axis=1.0); abline(0,0, lty = 2) # add zero line
```
```{r}
# scatterplot of log prices: p_t vs. p_{t-1}
# postscript(file="../figures/SP500_scatter_ptm1_pt.eps",width=9,height=6,horizontal = FALSE, onefile=FALSE)
plot(Lag(pt.d.df[,2]), pt.d.df[,2], col = "blue", lwd = 1, cex = 2, xlab=TeX('LAGGED daily log-price ($p_{t-1}$)') , ylab=TeX('daily log-price ($p_{t}$)'))
abline(0, 1, lty = 1, lwd = 2, col="red")
# compute autocorrelation of order 1 as sample correlation
cor(Lag(pt.d.df[,2]), pt.d.df[,2], use = "pairwise.complete.obs" )
```
```{r}
#test for stationarity with dick-fueller root test
#since by inspection of graph it has no constant linear trend it is not worth using ADF-GLS
#test for Prices
#daily log prices
ADF.d.pt<-adf.test(pt.d.df$Pt.d)
#daily prices
ADF.d.Pt<-adf.test(Pt.d.df$pt.d)
#weekly log prices
ADF.w.pt<-adf.test(pt.w.df$pt.w.all)
#monthly log prices
ADF.m.pt<-adf.test(pt.m.all$pt.m.all)
ADF.y.pt<-adf.test(pt.y.all$pt.y.all)
#test for daily returns
ADF.d.rt<- adf.test(rt.d.df$rt.d[-1])
#test for weekly returns
ADF.w.rt<- adf.test(rt.w.df$rt.w[-1])
#test for monthly returns
ADF.m.rt<- adf.test(rt.m.df$rt.m[-1])
ADF.y.rt<- adf.test(rt.y.df$rt.y[-1])
ADF<-rbind(ADF.d.Pt,ADF.d.pt,ADF.w.pt,ADF.m.pt,ADF.y.pt,ADF.d.rt,ADF.w.rt,ADF.m.rt,ADF.y.rt)
#report table
ADF<- as.data.frame(ADF[,-c(2,5,6)])
ADF <- apply(ADF,2,as.character)
ADF
#write.csv(ADF,file='ADF2.csv')
```
```{r}
#ACF
#postscript(file="../figures/SP500_ACF_pt.eps",width=9,height=6,horizontal = FALSE, onefile=FALSE)
acf(pt.d, main="Autocorrelations of the daily Prices")
```
```{r}
#----------------------------------------------
# acf of monthly prices for recent subsample: still persistent!
ss_dates_temp <- "20101231/20201231"
# Prices in subsamples
pt.m.temp <- pt.m.all[ss_dates_temp];
acf(pt.m.temp, main="Autocorrelations of the monthly Prices")
```
```{r}
# Histogram of daily prices and normal density
# daily
#postscript(file="../figures/hist_qqplot_SP500.eps",width=9,height=6,horizontal = FALSE, onefile=FALSE)
par(mfrow=c(2,4))
data2plot = rt.d.df[,2]; # daily returns
hist_OUT <- hist(data2plot, freq = FALSE, breaks = 50, col=10, xlab="", main=TeX('daily log-return'), )
norm_y <- dnorm(hist_OUT$mids, mean=mean(data2plot, na.rm=TRUE), sd=sd(data2plot, na.rm=TRUE));
lines(x=hist_OUT$mids, y=norm_y,col="red", lwd=1)
data2plot = rt.w.df[,2]; # weekly returns
hist_OUT <- hist(data2plot, freq = FALSE, breaks = 40, col=10, xlab="", main=TeX('weekly log-return'), )
norm_y <- dnorm(hist_OUT$mids, mean=mean(data2plot, na.rm=TRUE), sd=sd(data2plot, na.rm=TRUE));
lines(x=hist_OUT$mids, y=norm_y,col="red", lwd=1)
data2plot = rt.m.df[,2]; # monthly returns
hist_OUT <- hist(data2plot, freq = FALSE, breaks = 40, col=10, xlab="", main=TeX('monthly log-return'), )
norm_y <- dnorm(hist_OUT$mids, mean=mean(data2plot, na.rm=TRUE), sd=sd(data2plot, na.rm=TRUE));
lines(x=hist_OUT$mids, y=norm_y,col="red", lwd=1)
data2plot = rt.y.df[,2]; # yearly returns
hist_OUT <- hist(data2plot, freq = FALSE, breaks = 30, col=10, xlab="", main=TeX('yearly log-return'), )
norm_y <- dnorm(hist_OUT$mids, mean=mean(data2plot, na.rm=TRUE), sd=sd(data2plot, na.rm=TRUE));
lines(x=hist_OUT$mids, y=norm_y,col="red", lwd=1)
# QQ-plot vs quantiles of normal distribution
qqnorm(rt.d.df[,2], pch = 1, frame = FALSE, xlab="Normal Quantiles")
qqline(rt.d.df[,2], col = 2, lwd = 2)
qqnorm(rt.w.df[,2], pch = 1, frame = FALSE, xlab="Normal Quantiles")
qqline(rt.w.df[,2], col = 2, lwd = 2)
qqnorm(rt.m.df[,2], pch = 1, frame = FALSE, xlab="Normal Quantiles")
qqline(rt.m.df[,2], col = 2, lwd = 2)
qqnorm(rt.y.df[,2], pch = 1, frame = FALSE, xlab="Normal Quantiles")
qqline(rt.y.df[,2], col = 2, lwd = 2)
```
```{r}
# QQ-plots: daily, weekly, monthly, annual
# daily
#postscript(file="../figures/qqplot_sp500annual.eps",width=9,height=6,horizontal = FALSE, onefile=FALSE)
par(mfrow=c(2,2))
qqnorm(rt.d.df[-1,2], pch = 1, frame = FALSE, xlab="Normal Quantiles", main=TeX('daily log-return'))
qqline(rt.d.df[-1,2], col = 2, lwd = 2)
qqnorm(rt.w.df[-1,2], pch = 1, frame = FALSE, xlab="Normal Quantiles", main=TeX('weekly log-return'))
qqline(rt.w.df[-1,2], col = 2, lwd = 2)
qqnorm(rt.m.df[-1,2], pch = 1, frame = FALSE, xlab="Normal Quantiles", main=TeX('monthly log-return'))
qqline(rt.m.df[-1,2], col = 2, lwd = 2)
qqnorm(rt.y.df[-1,2], pch = 1, frame = FALSE, xlab="Normal Quantiles", main=TeX('annual log-return'))
qqline(rt.y.df[-1,2], col = 2, lwd = 2)
```
```{r}
# Kernel density of : similar to a smooth histogram!
##########################################################################################
data2plot <- rt.d.df[-1,2]; # daily returns
mean.data <- mean(data2plot, na.rm=TRUE)
sd.data <- sd(data2plot, na.rm=TRUE)
density.eval.points <- seq(from = min(data2plot), to = max(data2plot), length.out = 300)
sm.density.out <- sm.density(data2plot, h = 0.05, eval.points = density.eval.points, dispaly="none", col=1)
sm.density.out<- sm.density(data2plot, h = 0.0017, eval.points = density.eval.points, dispaly="none", col=2)
sm.density.out <- sm.density(data2plot, h = 0.0016, eval.points = density.eval.points, dispaly="none", col=3)
sm.density.out <- sm.density(data2plot, h = 0.0015, eval.points = density.eval.points, dispaly="none", col=4)
```
```{r}
# h is the 'bandwidth parameter': --> the larger the bandwidth, the smoother the histogram
sm.density.out.default <- sm.density(data2plot, eval.points = density.eval.points, dispaly="none")
# different bandwidth can produce different kernel densities.....
# R default function is:
d <- density(data2plot)
plot(d)
norm_y <- dnorm(sm.density.out$eval.points, mean=mean(data2plot, na.rm=TRUE), sd=sd(data2plot, na.rm=TRUE));
#stud_y<- dt(sm.density.out$eval.points,df=1)
lines(x=sm.density.out$eval.points, y=norm_y,col="red", lwd=2, lty=1)
```
```{r}
# Kernel density and histogram, with normal distribution on top!
##########################################################################################
##########################################################################################
# Uses 'sm' package: controls parameters of kernel smoothing
#postscript(file="../figures/hist_kern_SP500daily.eps",width=12,height=6,horizontal = FALSE, onefile=FALSE)
par(mfrow=c(1,2))
plot(x=sm.density.out$eval.points, y=sm.density.out$estimate ,xlim =c(-0.06,0.06), typ = "l", col=10, lwd = 2,
xlab = TeX('Daily returns'), ylab = TeX('Density'), main=TeX('Kernel density: daily log-return'))
norm_y <- dnorm(sm.density.out$eval.points, mean=mean(data2plot, na.rm=TRUE), sd=sd(data2plot, na.rm=TRUE));
lines(x=sm.density.out$eval.points, y=norm_y,col="red", lwd=2, lty=1)
abline(v = mean(data2plot), col="black", lwd=1, lty=2)
#legend("topleft", legend=c("Kernel desnity: data" , "Normal"),
# col=c("blue", "red"), lwd=c(2,1),lty=c(1,2))
hist_OUT <- hist(data2plot, freq = FALSE, breaks = 70, col=10, xlab = TeX('Daily returns'), main=TeX('Histogram: daily log-return'), )
norm_y <- dnorm(hist_OUT$mids, mean=mean(data2plot, na.rm=TRUE), sd=sd(data2plot, na.rm=TRUE));
lines(x=hist_OUT$mids, y=norm_y,col="red", lwd=1, lty=1)
#legend("topleft", legend=c("Histogram: data" , "Normal"), col=c("lightgreen", "red"), lwd=c(1.75,1),lty=c(1,1))
```
```{r}
##########################################################################################
# simple plot: Kernel density of annual data
data2plot <- rt.y.df[-1,2]
sm.density(data2plot)
```
```{r}
###########################################################################################
###########################################################################################
# # more advanced kernel density plot (NOT SHOWN IN THE SLIDES !!!!)
density.eval.points <- seq(from = min(data2plot), to = max(data2plot), length.out = 300)
sm.density.out <- sm.density(data2plot, h = 0.08, eval.points = density.eval.points)
plot(x=sm.density.out$eval.points, y=sm.density.out$estimate ,xlim =c(-0.5,0.5), typ = "l", col="blue", lwd = 2,
xlab = TeX('Annual returns'), ylab = TeX('Density'), main="Kernel density plot vs Normal for annual returns")
norm_y <- dnorm(sm.density.out$eval.points, mean=mean(data2plot, na.rm=TRUE), sd=sd(data2plot, na.rm=TRUE));
lines(x=sm.density.out$eval.points, y=norm_y,col="red", lwd=2, lty=2)
abline(v = mean(data2plot), col="black", lwd=1, lty=2)
points(data2plot, rep(0,length(data2plot)), pch='|')
```
```{r}
##############################################
# QQ plot of annual data
qqnorm(rt.y.df[,2], pch = 1, frame = FALSE, xlab="Normal Quantiles")
qqline(rt.y.df[,2], col = 2, lwd = 2)
```
```{r}
# SUMMARY STATISICS
######################################################################
######################################################################
# very intuitive use of individual R functions
# some summary statistics...not really the ones we want!
summary(rt.d.df[,2])
# Sample Skewness, note the difference:
skewness(rt.d.df[,2], na.rm = TRUE)
##MDV## #gives NA so need to remove NA
moments::skewness(rt.d.df[,2], na.rm= T)
# pay attention.....I have loaded the package moment, which contains a 'skewness' function
# but there are other packages with skewness functions....
# same with kurtosis!
# I prefer the skewness, kurtosis, and all other moments form the package 'moments'...
# which by default divides the summations of the estimators by 1/T ....
# Sample Kurtosis,
kurtosis(rt.d.df[,2], na.rm= T) # daily
kurtosis(rt.m.df[,2], na.rm= T) # monthly
kurtosis(rt.y.df[,2], na.rm= T) # annual -> much smaller!
####################################################
# OPTIONAL : some nicer descriptive statics. Note that Skewness and Kurtosis are computed differently from how we defined them in class!
# function form package 'summarytools'
mydata <- descr(rt.d.df[,2], style = "rmarkdown")
View(mydata)
st_options(round.digits=4)
#####goooood shit#####
# Produces latex:
summary_table(rt.d.df)
#######
print(descr(rt.m.df))
```
```{r}
# compute Normality tests and sample summary statistics
library(tseries)
#Jarque-Bera Normality tests
jarque.bera.test(rt.d.df[-1,2])
jarque.bera.test(rt.w.df[-1,2])
jarque.bera.test(rt.m.df[-1,2]) # the '-1' removes the first observation (a NA) so that NA are not an issue!
jarque.bera.test(rt.y.df[-1,2])
#################################################
#################################################
#################################################
# Produce Summary statistics for ANNUAL data only
data <- rt.y.df[-1,2]; T<-length(data)
# JB test statistics computed manually from formula in the slides:
((T/6)*(skewness(data))^2)+ (T/24*(kurtosis(data)-3)^2)
# JB test statistics computed form function: they are exactly the same...if moments package is used ot compute skenwss and kurtosis!
jb.norm.test(data)
jarque.bera.test(data)
# #perfomr JB test manually
a<-jarque.bera.test(data)$statistic
x <- data
n <- length(x) ## Number of observations
m1 <- sum(x)/n ## Mean
m2 <- sum((x-m1)^2)/n ## Used in denominator of both
m3 <- sum((x-m1)^3)/n ## For numerator of S
m4 <- sum((x-m1)^4)/n ## For numerator of K
b1 <- (m3/m2^(3/2))^2 ## S
b2 <- (m4/m2^2) ## K
STATISTIC <- n*b1/6+n*(b2-3)^2/24; STATISTIC
# p-value of JB statics: we can compute it! Computes quantile of chi^2
?pchisq
# method 1: compute area below chi2 for interval
# (-inf, STATISTICS)
one.minus.p_jb <- pchisq(STATISTIC,2);
1 - one.minus.p_jb
# method 2: compute area below chi2 for interval
# (STATISTICS, +inf)
p_jb <- pchisq(STATISTIC,2, lower.tail = F); p_jb
jarque.bera.test(rt.y.df[-1,2])
# different ways to compute skewness !!!!!
c(T,n)
c(skewness(data), m3/m2^(3/2))
c(moments::skewness(data), m3/m2^(3/2))
c(timeDate::skewness(data), m3/m2^(3/2))
# MANUAL COMPUTATION of JB TEST FOR DAILY DATA
# T.JB <- 16862
# S.JB <- -1.0017
# K.JB <- 30.1344
# JB.stat <- (T.JB/6)*(S.JB^2) + (T.JB/24)*((K.JB-3)^2)
# JB.stat
# pchisq(520114,df=2)
# DIFFERENT NORMLAITY TESTS:
jarque.bera.test(data) # Jarqu-Bera
ks.test(rt.y.df[-1,2], "pnorm") # Kolmogorov Smirnov -->
ad.test(rt.y.df[-1,2]) # Anderson Dalring test for normlaity
lillie.test(rt.y.df[-1,2]) # Lilliefors test
lillie.test(rnorm(100, mean = 5, sd = 3)) # try Lilliefors test on normally distributed data
```
```{r}
# GENERATES TABLE EXACTLY EQUAL TO THE ON IN SLIDE N. 91
#######################################################################
#######################################################################
# personalized table of summary statistics
# creates a 'list' with the data of DAX sampled at different frequencies
# a list is needed and not a matrix / dataframe as the vectors have different lengths!!!
X <-list("daily" = rt.d.df[-1,2],
"weekly" = rt.w.df[-1,2],
"montly" = rt.m.df[-1,2],
"annual" = rt.y.df[-1,2]);
# list of daily data with and without 87 crash!
#X.d.87crash.YN <-list("daily all" = rt.d.df[-1,2],
# "daily NO 87 Crash" =rt.d.all.noOct87crash.df[-1,2])
sum(is.na( rt.d.df[-1,2]))
#sum(is.na(rt.d.all.noOct87crash.df[-1,2]))
#which(is.na(rt.d.all.noOct87crash.df))
# Create function (named 'multi.fun' which computes the statics that we want on the inpit 'x')
###############################################
multi.fun <- function(x) {
c(Mean = mean(x)*100,
St.Deviation = sd(x)*100,
Diameter.C.I.Mean = qnorm(0.975)*sqrt(var(x)/length(x))*100,
Skewness=moments::skewness(x),
Kurtosis=moments::kurtosis(x),
Excess.Kurtosis=moments::kurtosis(x)-3,
Min = min(x)*100,
Quant = quantile(x, probs = 0.05)*100,
Quant = quantile(x, probs = 0.25)*100,
Median = quantile(x, probs = 0.50)*100,
Quant = quantile(x, probs = 0.75)*100,
Quant = quantile(x, probs = 0.95)*100,
Max = max(x)*100,
Jarque.Bera.stat = jarque.bera.test(x)$statistic,
Jarque.Bera.pvalue.X100 = jarque.bera.test(x)$p.value*100,
Lillie.test.stat = lillie.test(x)$statistic,
Lillie.test.pvalue.X100 = lillie.test(x)$p.value*100,
KS.test.stat=ks.test(x, "pnorm")$statistic,
KS.test.pvalue.X100 =ks.test(x, "pnorm")$p.value*100,
AD.test.stat =ad.test(x)$statistic,
AD.test.pvalue.X100 =ad.test(x)$p.value*100,
N.obs = length(x)
)}
###############################################
# GENRETAES TABLE 1 in slide 91
a <- sapply(X, multi.fun) # apply function to all elements of list X,
# PRINT TABLE 1 ON R console (you can copy-paste frm there to excel directly!)
print(a)
# and return results in a nice and tidy table
round(a, digits = 5) # show nicer-looking table!!!!!
# save TABLE on .csv file (to be opened with excel/any other editor)
write.csv(a,file='table_try.csv')
# or do copy paste form variable 'editor 'pane'
##########################################################
##########################################################
##########################################################
##########################################################
# Compute summary statistics with / without 87 crash data crash data
# Skip in class: just repetition of what has been done above, with different dataset !
#a.crash.YN <- sapply(X.d.87crash.YN, multi.fun)
#round(a.crash.YN, digits = 5) # show nicer-looking table!!!!!
##########################################################
##########################################################
# SHOWS TABLE IN LATEX, too advanced for Master students
# modify for the normal thing
n_series <- length(X); n_stats <- nrow(a)
digits_m <- rbind(4*(matrix(1,n_stats-1,n_series+1)), 0*(matrix(1,1,n_series+1)))
xtable(a, digits = digits_m)
##########################################################
##########################################################
```
```{r}
# ACF of returns: Autocorrelation function
# use 'Acf function', and not 'acf', though they are very similar
#postscript(file="../figures/SP500_ACF_rt_dwm_1953_2018.eps",width=9,height=6,horizontal = FALSE, onefile=FALSE)
par(mfrow=c(1,4))
# chnage the limit
lag.max.acf = 40; lim.y.axes = c(-0.2,0.2)
data2plot = rt.d.df[-1,2]; # daily returns
Acf(data2plot, main=TeX('Daily returns : $r_t$'), lag.max = lag.max.acf, xlab = "lag in days", ylim=lim.y.axes, xlim = c(1,40))
data2plot = rt.w.df[-1,2]; # weekly returns
Acf(data2plot, main=TeX('Weekly returns : $r_t^w$'), lag.max = lag.max.acf, xlab = "lag in weeks", ylim=lim.y.axes, xlim = c(1,40))
data2plot = rt.m.df[-1,2]; # monthly returns
Acf(data2plot, main=TeX('Monthly returns : $r_t^m$'), lag.max = lag.max.acf, xlab = "lag in months", ylim=lim.y.axes, xlim = c(1,40))
#no interesting information for yearly results andit just makes other graphs harder to present
lim.y.axes = c(-0.4,0.4)
data2plot = rt.y.df[-1,2]; # monthly returns
Acf(data2plot, main=TeX('Annual returns : $r_t^y$'), lag.max = lag.max.acf, xlab = "lag in years", ylim=lim.y.axes, xlim = c(1,33))
```
```{r}
#---------------------------------------------------------
# display ACF values on R-console: daily data
my.data <- rt.d.df[-1,2];
# my.data <- rt.m.df[-1,2];
# my.data <- rt.d.all.noOct87crash.df[-1,2]
lags.all <- seq(1,25,1);
acf(my.data, lag.max <- max(lags.all), plot = FALSE)
# Barteltt interval
1.96/sqrt(length(my.data))
#a<- acf(my.data, max.lag = 19, plot = FALSE)
#str(a)
##############################################################
##############################################################
# Box-Pierce and Ljung Box tests
# test only first lag
Box.test(my.data, lag = 1, type = c("Box-Pierce"), fitdf = 0)
Box.test(my.data, lag = 1, type = c("Ljung-Box"), fitdf = 0)
# test all first 5 lags
Box.test(my.data, lag = 5, type = c("Ljung-Box"), fitdf = 0)
Box.test(my.data, lag = 5, type = c("Box-Pierce"), fitdf = 0)
# test 20th lag
Box.test(my.data, lag = 20, type = c("Ljung-Box"), fitdf = 0)
Box.test(my.data, lag = 20, type = c("Box-Pierce"), fitdf = 0)
##############################################################
#############################################################
#to be used
# a1<- acf2(my.data, max.lag = 19) # computes ACF and PACF (used in time series) !
# Customized table with values of ACF, Box-pierce and Ljung Box statistics
my.max.lag <- 25
lags.all <- seq(1,my.max.lag,1)
my.acf <- acf(my.data, lag.max = my.max.lag, plot = FALSE)
my.acf.diameter <- qnorm(0.975)/sqrt(length(my.data))
my.acf.tstat.0 <- (my.acf$acf[-1] - 0)/sqrt(1/length(my.data))
my.LjungBox <- LjungBox(my.data, lags=lags.all)
my.BoxPierce <- BoxPierce(my.data, lags=lags.all)
crit.value.5.BP <- qchisq(0.95,lags.all)
my.table <- cbind(my.BoxPierce[,1],
my.acf$acf[-1],
my.acf.diameter,
my.acf.tstat.0,
my.BoxPierce[,2],
my.BoxPierce[,4],
my.LjungBox[,2],
my.LjungBox[,4],
crit.value.5.BP)
# change appearance to export more easily !
my.table.df <-as.data.frame(my.table)
names(my.table.df) <- c("lag","acf","acf diam.","acf test","Box-Pierce stat","BP pval","LB stat","LB pval","crit")
rownames(my.table.df) <-c()
options(scipen = 999)
a <- data.matrix(my.table.df)
round(a, digits = 3) # show nicer-looking table!!!!!
tab.2.print <- base::round(a,digits=4)
# show on screen (latex format to export in latex directly from screen!)
print(xtable(my.table.df, digits=c(0,0,3,3,3,3,3,3,3,3)), include.rownames=FALSE)
```
```{r monthly LB and BP}
#---------------------------------------------------------
# display ACF values on R-console: daily data
#my.data <- rt.d.df[-1,2];
my.data <- rt.m.df[-1,2];
# my.data <- rt.w.df[-1,2]
# my.data <- rt.y.df[-1,2]
lags.all <- seq(1,25,1);
acf(my.data, lag.max <- max(lags.all), plot = FALSE)
# Barteltt interval
1.96/sqrt(length(my.data))
#to be used
# a1<- acf2(my.data, max.lag = 19) # computes ACF and PACF (used in time series) !
# Customized table with values of ACF, Box-pierce and Ljung Box statistics
my.max.lag <- 25
lags.all <- seq(1,my.max.lag,1)
my.acf <- acf(my.data, lag.max = my.max.lag, plot = FALSE)
my.acf.diameter <- qnorm(0.975)/sqrt(length(my.data))
my.acf.tstat.0 <- (my.acf$acf[-1] - 0)/sqrt(1/length(my.data))
my.LjungBox <- LjungBox(my.data, lags=lags.all)
my.BoxPierce <- BoxPierce(my.data, lags=lags.all)
crit.value.5.BP <- qchisq(0.95,lags.all)
my.table <- cbind(my.BoxPierce[,1],
my.acf$acf[-1],
my.acf.diameter,
my.acf.tstat.0,
my.BoxPierce[,2],
my.BoxPierce[,4],
my.LjungBox[,2],
my.LjungBox[,4],
crit.value.5.BP)
# change appearance to export more easily !
my.table.df <-as.data.frame(my.table)
names(my.table.df) <- c("lag","acf","acf diam.","acf test","Box-Pierce stat","BP pval","LB stat","LB pval","crit")
rownames(my.table.df) <-c()
options(scipen = 999)
a <- data.matrix(my.table.df)
round(a, digits = 3) # show nicer-looking table!!!!!
tab.2.print <- base::round(a,digits=4)
# show on screen (latex format to export in latex directly from screen!)
print(xtable(my.table.df, digits=c(0,0,3,3,3,3,3,3,3,3)), include.rownames=FALSE)
```
```{r}
################################################################################
# Squared RETURNS: ACF
################################################################################
################################################################################
# ACF of squared returns
#postscript(file="../figures/SP500_ACF_SQUAREDrt_dwm_1953_2018.eps",width=9,height=6,horizontal = FALSE, onefile=FALSE)
par(mfrow=c(1,4))
lag.max.acf = 80; lim.y.axes = c(-0.10,0.30)
data2plot = (rt.d.df[,2])^2 ; # daily squared returns
Acf(data2plot, main=TeX('Daily squared returns : $r_t^2$'), lag.max = lag.max.acf, xlab = "lag in days", ylim=lim.y.axes)
data2plot = (rt.w.df[,2])^2; # weekly squared returns
Acf(data2plot, main=TeX('Weekly squared returns : $r_t^{w 2}$'), lag.max = lag.max.acf, xlab = "lag in weeks", ylim=lim.y.axes)
data2plot = (rt.m.df[,2])^2; # monthly squared returns
Acf(data2plot, main=TeX('Monthly squared returns : $r_t^{m 2}$'), lag.max = lag.max.acf, xlab = "lag in months", ylim=lim.y.axes)
lim.y.axes = c(-0.40,0.40)
data2plot = (rt.y.df[,2])^2; # annual squared returns
Acf(data2plot, main=TeX('Annual squared returns : $r_t^{y 2}$'), lag.max = lag.max.acf, xlab = "lag in years", ylim=lim.y.axes)
```
```{r}
##########################################################
# ACF of absolute returns
# postscript(file="../figures/SP500_ACF_ABSrt_dwm_1953_2018.eps",width=9,height=6,horizontal = FALSE, onefile=FALSE)
par(mfrow=c(1,3))
lag.max.acf = 80; lim.y.axes = c(-0.10,0.30)
data2plot = abs(rt.d.df[,2]) ; # daily abs returns
Acf(data2plot, main=TeX('Daily absolute returns : $|r_t|$'), lag.max = lag.max.acf, xlab = "lag in days", ylim=lim.y.axes)
data2plot = abs(rt.w.df[,2]); # weekly abs returns
Acf(data2plot, main=TeX('Weekly absolute returns : $|r_t^w|$'), lag.max = lag.max.acf, xlab = "lag in weeks", ylim=lim.y.axes)
data2plot = abs(rt.m.df[,2]); # monthly abs returns
Acf(data2plot, main=TeX('Monthly absolute returns : $|r_t$^m|'), lag.max = lag.max.acf, xlab = "lag in months", ylim=lim.y.axes)
##########################################################
```
```{r}
# LEVERAGE
#-----------------------------------------------------------
# CROSS-COVARINACE OF DAILY RETURNS with squared returns
# uses ccf function
# omputes the cross-correlation or cross-covariance of two univariate series.
# reading the help of the function you find:
# "The lag k value returned by ccf(x, y) estimates the correlation between x[t+k] and y[t]."
ret = (rt.d.df[-1,2]) ; # daily returns
ret2 = (rt.d.df[-1,2])^2 ; # daily SQUARED returns
ss_dates3 <- "19871230/20201230"
rt.d.subsamp3 <- rt.d.all[ss_dates3];
# Cross correaltion plot in the slides
dev.off()
#postscript(file="../figures/SP500_corr_rtmj_rt2_1988_2018.eps",width=9,height=6,horizontal = FALSE, onefile=FALSE)
par(mfrow=c(1,1))
ss_dates3 <- "19871231/20201231"
rt.d.subsamp3 <- rt.d.all[ss_dates3];
ret <- as.numeric(rt.d.subsamp3); ret2 <- ret^2
ccf(ret, ret2, lag.max = 10, type = "correlation", plot = TRUE,
main=TeX('Cross-coorrelation between daily $r_{t+j}$ and $r_t^2$ = corr($r_{t+j}$, $r_{t}^2$)'),
xlab = TeX('lag $j$ in days'), ylab=TeX('Cross-correlation'))
##########################################################
##########################################################
```
```{r, include=FALSE}
#---------------------------------------------------------
# VIX vs. sp500 returns
# daily values of VIX:
#VIX.d.all <- VIX$VIX.Adjusted ; names(VIX.d.all) <- "VIX.d"
#a <- merge(pt.d,VIX.d.all) # merge two datasets (log prices and VIX ) with different legths --> NA are kept
#b <- diff(a) # compute changes in pt and VIX conmpared to previus period
#a.df <- cbind(index(a), data.frame(a)); names(a.df)[1] <- "date";
#b.df <- cbind(index(b), data.frame(b)); names(b.df)[1] <- "date";
#a.comp <- a.df[complete.cases(a.df),] # remove all rows in which there is at least one NA -> generate balanced (complete) matrix
#b.comp <- b.df[complete.cases(b.df),]
#head(a.comp); tail(a.comp)
#head(b.comp); tail(b.comp)
```
```{r, include=FALSE}
# Level of SP500 and VIX ('a.comp' matrix)
#################################################
#postscript(file="../figures/SP500_VIX_1988_2018.eps",width=8,height=6,horizontal = FALSE, onefile=FALSE)
#par(mfrow=c(1,1))
#data2plot <- a.comp;
#plot(x = data2plot[,1], y = data2plot[,2], type ="l", ylab=TeX("SP 500 (blue)"), main=TeX('SP500 (left, blue) and VIX (right, red) indexes'),
# xlab="", xaxt ="none", col = "blue", lwd =2)
#par(new = TRUE)
#plot(x = data2plot[,1], y = data2plot[,3], type = "l", xaxt = "n", yaxt = "n",
# ylab = "", xlab = "", col = "red", lty = 1)
#axis(side = 4)
#mtext("VIX", side = 4, line = 3)
#seq_sel <- endpoints(data2plot$date, on = 'years'); date_seq = data2plot$date[seq_sel]; date_lab = format(date_seq,"%b-%y")
#axis(1, at = date_seq, label = date_lab, las = 1, cex.axis=1.0);
#dev.off()
# changes of SP500 vs change VIX
# postscript(file="../figures/SP500_corr_rt_dVIX_1988_2018.eps",width=8,height=6,horizontal = FALSE, onefile=FALSE)
#par(mfrow=c(1,1))
#data2plot <- b.comp;
#plot(x = data2plot[,2], y = data2plot[,3], xlab=TeX("SP 500 log return"), main=TeX('($VIX_t-VIX_{t-1}$) vs. $r_t$'),
# ylab="VIX Change", col = "blue", lwd =1)
#abline(lm(data2plot[,3]~data2plot[,2]), col="red", lwd=2) # regression line (y~x)
#dev.off()
#######################################################################################
```
```{r}
# cross - correlations in the different SUBSAMPLES (not in slides!)
ret2 = (rt.d.df[-1,2])^2 ; # daily squared returns
ret = (rt.d.df[-1,2]) ; # daily returns
# subsamples:
ss_dates1 <- "19900101/20181231"
ss_dates2 <- "19970101/20181231"
ss_dates3 <- "19980101/20181231" # we look at this sample: after 87 crash, till end 2018
ss_dates4 <- "20000101/20181231"
rt.d.subsamp1 <- rt.d.all[ss_dates1];
rt.d.subsamp2 <- rt.d.all[ss_dates2];
rt.d.subsamp3 <- rt.d.all[ss_dates3];
rt.d.subsamp4 <- rt.d.all[ss_dates4];
#----------------------------------------------------------------
dev.off()
par(mfrow=c(2,4))
# Cross-correlations between lagged and future return, and squared returns
# Subsamp 1
ret <- as.numeric(rt.d.subsamp1); ret2 <- ret^2
ccf(ret, ret2, lag.max = 10, type = "correlation", plot = TRUE)
# Subsamp 2
ret <- as.numeric(rt.d.subsamp2); ret2 <- ret^2
ccf(ret, ret2, lag.max = 10, type = "correlation", plot = TRUE)
# Subsamp 3
ret <- as.numeric(rt.d.subsamp3); ret2 <- ret^2
ccf(ret, ret2, lag.max = 10, type = "correlation", plot = TRUE)
# Subsamp 4
ret <- as.numeric(rt.d.subsamp3); ret2 <- ret^2
ccf(ret, ret2, lag.max = 10, type = "correlation", plot = TRUE)
#----------------------------------------------------------------
# cross-covariances
# Subsamp 1
ret <- as.numeric(rt.d.subsamp1); ret2 <- ret^2
ccf(ret, ret2, lag.max = 10, type = "covariance", plot = TRUE)
# Subsamp 2
ret <- as.numeric(rt.d.subsamp2); ret2 <- ret^2
ccf(ret, ret2, lag.max = 10, type = "covariance", plot = TRUE)
# Subsamp 3
ret <- as.numeric(rt.d.subsamp3); ret2 <- ret^2
ccf(ret, ret2, lag.max = 10, type = "covariance", plot = TRUE)
# Subsamp 4
ret <- as.numeric(rt.d.subsamp3); ret2 <- ret^2
ccf(ret, ret2, lag.max = 10, type = "covariance", plot = TRUE)
#################################################################
#################################################################
#################################################################
#################################################################
#################################################################
#################################################################
# Other manual computations to check results in the slides :
# Confidence interval
(0.9701/sqrt(16862))*qnorm(0.975)
cl = 0.0276 - (0.9701/sqrt(16862))*qnorm(0.975)
cu = 0.0276 - (0.9701/sqrt(16862))*qnorm(0.975)
ci = c(cl,cu)
stat.test = 0.0276/(0.9701/sqrt(16862))
0.009701*252
22.89/0.97
(-22.900-0.0276)/0.970
#######################################################################################
```
```{r QQplot t}
par(mfrow=c(1,4), pty="s")
nu.t <- 3;
my.data <- rt.d.df[,2];
samp.size <- length(my.data);
seq.quant <- (seq(1,samp.size,1) -0.5)/samp.size;
y.qqplot <- scale(my.data);
x.qqplot <- (1/sqrt( (nu.t/(nu.t-2))) )*qt(seq.quant,df=nu.t);
qqplot(x.qqplot, y.qqplot, main="Location scale Q-Q Plot", ylab="Sample standardized Quantiles", xlab="standardized t(3)")
abline(0,1,col="blue", lwd = 2)
nu.t <- 4;
my.data <- rt.d.df[,2];
samp.size <- length(my.data);
seq.quant <- (seq(1,samp.size,1) -0.5)/samp.size;
y.qqplot <- scale(my.data);
x.qqplot <- (1/sqrt( (nu.t/(nu.t-2))) )*qt(seq.quant,df=nu.t);
qqplot(x.qqplot, y.qqplot, main="Location scale Q-Q Plot", ylab="Sample standardized Quantiles", xlab="Standardized t(4)")
abline(0,1,col="blue", lwd = 2)
#
nu.t <- 5;
my.data <- rt.d.df[,2];
samp.size <- length(my.data);
seq.quant <- (seq(1,samp.size,1) -0.5)/samp.size;
y.qqplot <- scale(my.data);
x.qqplot <- (1/sqrt( (nu.t/(nu.t-2))) )*qt(seq.quant,df=nu.t);
qqplot(x.qqplot, y.qqplot, main="Location scale Q-Q Plot", ylab="Sample standardized Quantiles", xlab="standardized t(5)")
abline(0,1,col="blue", lwd = 2)
nu.t <- 6;
my.data <- rt.d.df[,2];
samp.size <- length(my.data);
seq.quant <- (seq(1,samp.size,1) -0.5)/samp.size;
y.qqplot <- scale(my.data);
x.qqplot <- (1/sqrt( (nu.t/(nu.t-2))) )*qt(seq.quant,df=nu.t);
qqplot(x.qqplot, y.qqplot, main="Location scale Q-Q Plot", ylab="Sample standardized Quantiles", xlab="standardized t(6)")
abline(0,1,col="blue", lwd = 2)
dev.off()
```
```{r, include=FALSE}
# ROBUSTENSS: same analysis with and without 87 crash !
# check results yourself ..... they are not in the slides still they are interesting.....
##########################################################
##########################################################
# ACF daily rtns with and without 87 crash
#par(mfrow=c(1,2))
#lag.max.acf = 80; lim.y.axes = c(-0.10,0.30)
#data2plot = rt.d.df[-1,2] ; # daily squared returns
#Acf(data2plot, main=TeX('Daily returns : $r_t$'), lag.max = lag.max.acf, xlab = "lag in days", ylim=lim.y.axes)
#data2plot = rt.d.all.noOct87crash.df[-1,2] ; # daily squared returns
#Acf(data2plot, main=TeX('Daily returns : $r_t$, NO 87 CRASH'), lag.max = lag.max.acf, xlab = "lag in days", ylim=lim.y.axes)
##########################################################
# ACF daily squared rtns with and without 87 crash
#par(mfrow=c(1,2))
#lag.max.acf = 80; lim.y.axes = c(-0.10,0.40)
#data2plot = (rt.d.df[-1,2])^2 ; # daily squared returns
#Acf(data2plot, main=TeX('Daily squared returns : $r_t^2$'), lag.max = lag.max.acf, xlab = "lag in days", ylim=lim.y.axes)
#data2plot = (rt.d.all.noOct87crash.df[-1,2])^2 ; # daily squared returns
#Acf(data2plot, main=TeX('Daily squaredvreturns : $r_t^2$, NO 87 CRASH' ), lag.max = lag.max.acf, xlab = "lag in days", ylim=lim.y.axes)
##########################################################
# ACF daily absolute rtns with and without 87 crash
# par(mfrow=c(1,2))
# lag.max.acf = 80; lim.y.axes = c(-0.10,0.40)
# data2plot = abs(rt.d.df[-1,2]) ; # daily squared returns
# Acf(data2plot, main=TeX('Daily squared returns : $|r_t|$'), lag.max = lag.max.acf, xlab = "lag in days", ylim=lim.y.axes)
# data2plot = abs(rt.d.all.noOct87crash.df[-1,2]) ; # daily squared returns
# Acf(data2plot, main=TeX('Daily squaredvreturns : $|r_t|$, NO 87 CRASH' ), lag.max = lag.max.acf, xlab = "lag in days", ylim=lim.y.axes)
#####################################################################
#####################################################################
#####################################################################
#####################################################################
```
```{r}
# ADVANCED: performs Lilliefors test figure as in slides...try to understand code by yourself !
# NOT IMPORTANT FOR THE EXAM!
#######################################################
#######################################################
# postscript(file="../figures/lillie_test_sp500annual.eps",width=12,height=6,horizontal = FALSE, onefile=FALSE)
par(mfrow=c(1,2))
# my.data <- rt.y.df[-1,2];
my.data <- rt.y.df[-1,2];
my.data.ordered <- sort(my.data);
mean.data <-mean(my.data);
sd.data <-sd(my.data);
samp.size <- length(my.data)
seq.ind <- seq(1,samp.size,1);
emp.cdf <-seq.ind/samp.size
emp.cdf.2 <-(seq.ind-1)/samp.size
theor.cdf <- pnorm(my.data.ordered,mean.data,sd.data)
# plot(y=emp.cdf, x=my.data.ordered, col="blue", lwd=1, lty=1)
# points(y=emp.cdf.2, x=my.data.ordered, col="green", lwd=1, lty=1)
plot(y=emp.cdf, x=my.data.ordered, col="blue", pch=1, lwd=1, lty=1, cex=0.5,
xlab='DAX sorted annual log returns', ylab='cdf')
points(y=theor.cdf, x=my.data.ordered, col="red", pch=0,lwd=1, lty=1, cex=0.5)
legend("topleft", legend=c("Empirical cdf" , "Normal cdf"), pch=c(1,0), col=c("blue", "red"))
KS.L.stat1 = max(abs(emp.cdf-theor.cdf))
KS.L.stat2 = max(abs(emp.cdf.2-theor.cdf))
KS.L.stat = max(c(KS.L.stat1,KS.L.stat2))
KS.L.stat1