-
Notifications
You must be signed in to change notification settings - Fork 4
/
LagetXsec1.f
1223 lines (1003 loc) · 38.1 KB
/
LagetXsec1.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
c------------------------------------------------------------------------------
c
c this file is also callable from python
c
c uses aldo binary file for faster loading
c wrapper for SIMC
real*8 function LagetXsec(ev)
implicit none
include 'simulate.inc'
real*8 get_sigma_laget
real*8 e0_i, qmu2, omega, theta_cm, phi_x
real*8 p_perp2, pm, pm_par, pf, q_lab, Ep
real*8 pf_par, pf_par_cm, p_perp
real*8 beta_cm, gamma_cm, cos_phi, sin_gamma
type(event):: ev
e0_i = ev%EIN
qmu2 = ev%Q2
omega = ev%NU
q_lab = ev%Q
pf = ev%P%P
pm = ev%PM
pm_par = ev%PMPAR
Ep = ev%P%E
c calculate center of mass angles
beta_cm = q_lab/(Md + omega)
gamma_cm = 1./sqrt(1. - beta_cm**2)
p_perp2 = pm**2 - pm_par**2
p_perp = sqrt(p_perp2)
pf_par = sqrt( pf**2 - p_perp2)
pf_par_cm = gamma_cm*pf_par - gamma_cm*beta_cm*Ep
if (pf_par_cm .eq. 0.) theta_cm = pi/2.
if (pf_par_cm .gt. 0.) theta_cm = atan( p_perp/ pf_par_cm)
if (pf_par_cm .lt. 0.) theta_cm = pi + atan( p_perp/ pf_par_cm)
c calculate phi_c from the unit vectors
sin_gamma = 1. - (ev%uq%x*ev%up%x+ev%uq%y*ev%up%y+ev%uq%z*ev%up%z)**2
if (sin_gamma.lt.0) then
write(6,'(1x,''WARNING: LagetXsec: sin_gamma = '',f10.3)')
> sin_gamma, nevent
sin_gamma = 0.0
endif
sin_gamma = sqrt(sin_gamma)
cos_phi = 0.0
if (sin_gamma.ne.0) cos_phi=
> ( ev%uq%y*(ev%uq%y*ev%up%z-ev%uq%z*ev%up%y)
> - ev%uq%x*(ev%uq%z*ev%up%x-ev%uq%x*ev%up%z))
! sin_gamma = norm of uq x up
! sqrt(1.-ev%uq%z**2) = norm of uq x uk, uk unitvector of incident beam
cos_phi = cos_phi / sin_gamma / sqrt(1.-ev%uq%z**2)
if (abs(cos_phi).gt.1.) then !set to +/-1, warn if >1.d-10
cos_phi = sign(1.0,cos_phi)
if ( (abs(cos_phi)-1.) .gt. 1.d-10) write(6,*)
> 'WARNING: LagetXsect gets cos_phi = ',cos_phi
endif
phi_x = acos(cos_phi)
c call to get the cross section
c convert fm**2 to ub fir simc: factor 1e4
LagetXsec = get_sigma_laget( e0_i,qmu2,omega,theta_cm,phi_x)*1.d4
! print *, e0_i,qmu2,omega,theta_cm,phi_x, LagetXsec
return
end
c------------------------------------------------------------------------------
c
c calculate interpolated cross sections for a given
c kinematics using j.m.laget's reponse function
c
c this code has been extraced from mceep
c same as Laget_Xsec.f but one can select the calculation of FSi
c with the parametere do_fsi: = 1 yes, =0 no
c------------------------------------------------------------------------------
c
c
subroutine init_laget( datadir, do_fsi, interpol_type,
> save_data, use_binary_file)
integer n_dat_dir, do_fsi, interpol_type
integer save_data, use_binary_file
character*100 dat_dir
character*(*) datadir
logical save_grid, use_binary
common/fc__control_c/ save_grid, use_binary
integer ioutside_count
common /int_control/ioutside_count
common/fc__datdir_c/ dat_dir
common/fc__datdir_i/ n_dat_dir
real*8 xm_e,xm_p,xm_n,xm_d,xmd,spn,dpn,xme2,xmn2,xmp2,xmd2,spn2
common/fc__some_mas / dpn,xmd,spn2,xmd2,xmn2
c laget data grid
common/fc__grid_sig / sig_l,sig_t,sig_lt,sig_tt
common/fc__laget_mod/ laget_intp,laget_pwia,laget_fsi,laget_mec
real*8 sig_l(100,500,91),sig_t(100,500,91)
real*8 sig_lt(100,500,91), sig_tt(100,500,91)
data xm_e / 510.99890d-03 /, xm_p / 938.27200d+00 /,
+ xm_n / 939.56533d+00 /, xm_d / 187.56128d+01 /
c
c laget calculation selectors
c
integer laget_intp,laget_pwia,laget_fsi,laget_mec
integer error
integer i1, i2
c
c
c ------------------------------------------------------------------------
c d(e,e'p)n laget unpolarized response functions
c ------------------------------------------------------------------------
c
integer lin, log, scat_neutron, scat_proton, scat_both
integer fsi, no_fsi, mec, no_mec
parameter (lin=1)
parameter (log = 2)
parameter (scat_neutron = 0)
parameter (scat_proton = 1)
parameter (scat_both = 2)
parameter (no_fsi = 0)
parameter (fsi = 1)
parameter (no_mec = 0)
parameter (mec = 1)
* outside error counter
ioutside_count = 0
*---- particle masses and relevant combinations
xmd = xm_d
*- dimension 1 combinations
spn = xm_n + xm_p
dpn = xm_n - xm_p
*- dimension 2 combinations
xme2 = xm_e * xm_e
xmd2 = xm_d * xm_d
xmp2 = xm_p * xm_p
xmn2 = xm_n * xm_n
spn2 = spn * spn
if (save_data .eq. 1) then
save_grid = .True.
else
save_grid = .False.
endif
if (use_binary_file .eq. 1) then
use_binary = .True.
else
use_binary = .False.
endif
c make sure there is non nonsense
if (save_grid) use_binary = .False.
if (use_binary) save_grid = .False.
c
c standard configuration
c
c use log. interpolation (better)
c
laget_intp = interpol_type
laget_pwia = scat_both
laget_fsi = do_fsi
laget_mec = no_mec
c
c setup data directory name
c
call fs__nospac(datadir, i1, i2)
dat_dir = datadir(i1:i2)
n_dat_dir = len(dat_dir)
write(*,'(a)') ' start loading the data grid...'
call fs__grid_load(sig_l,sig_t,sig_lt,sig_tt, error)
if (error .ne. 0) then
write(*,'(a)') ' problem reading of data grid load !'
write(*,'(a)') ' I would not continue !'
return
endif
write(*,'(a)') ' end of data grid load !'
c
return
end
c------------------------------------------------------------------------------
c
c this file is also callable from python
c
real*8 function get_sigma_laget(e0_i,qmu2,omega,theta_cm,phi_x)
C------------------------------------------------------------------------------
c purpose:
c get (e,e'n) cross sections and polarizations
c according to choices made in subroutine phys_choice.
c
c coincidence cross sections (sigma_eep) are returned
c with the following units:
c fm^2 sr^-2 mev^-1 (bound state)
c fm^2 sr^-2 mev^-1 (mev/c)^-1 (continuum)
c note that the continuum cross section should be
c differential in the hadron momentum (not kinetic energy)
c since it is the momentum which is randomly sampled.
c the recoil factor for the continuum case is equal to
c the ejectile total energy divided by the momentum.
c division by this factor converts the cross section
c from being differential in energy (as, for example
c is the case for the deforest cc1 cross section) to
c differential in momentum.
c ---------------------------------------------------------------------
c
c
implicit none
c
c arguments
c
real*8 e0_i,qmu2,omega,theta_cm,phi_x
c
c return value
c
real*8 sigma_eep
c grid
common/fc__grid_sig / sig_l,sig_t,sig_lt,sig_tt
c
c laget grid
real*8 sig_l(100,500,91),sig_t(100,500,91)
real*8 sig_lt(100,500,91), sig_tt(100,500,91)
c
real*8 hbarc, pi
parameter (hbarc = 197.3286d0)
parameter (pi=3.14159265359d0)
c
c ------------------------------------------------------------------------
c laget unpolarized response functions (j.-m. laget)
c ------------------------------------------------------------------------
c
call fs__laget_xsec(sigma_eep,e0_i,qmu2,omega,theta_cm,phi_x,
+ sig_l,sig_t,sig_lt,sig_tt)
get_sigma_laget = sigma_eep * 1.d-4 ! ub -> fm^2
return
end
c
c------------------------------------------------------------------------------
c
subroutine fs__laget_xsec(xsec,p_bea,g_mas,g_ene,p_tgs,p_phi,
+ sig_l,sig_t,sig_lt,sig_tt)
c - - - - - - - - - - - - - - - - - - - - - - - - -
c
c author: e. voutier
c date: october 2005
c purpose: determine d(e,e'p) cross section at current kinematics
c
c - - - - - - - - - - - - - - - - - - - - - - - - -
c
c calculate the d(e,e'p) cross section for a selected kinematics from an
c input data grid via
c the interpolation procedure specified by the user via the laget_intp
c parameter (1 for linear, 2 for logarythmic in recoil momentum).
c
c - - - - - - - - - - - - - - - - - - - - - - - - -
c
c input variables :
c
c p_bea 3-momentum of the electron beam (mev/c)
c g_mas quadrimomentum transfer (mev^2)
c g_ene energy transfer (mev)
c p_tgs proton angle in the center of mass frame (rd)
c p_phi out-of-plane angle of the proton (rd)
c sig_l array of the longitudinal cross sections
c sig_t array of the transverse cross sections
c sig_lt array of the longitudinal-transverse cross sections
c sig_tt array of the transverse-transverse cross sections
c
c passed via common :
c
c laget_intp interpolation index
c
c output variables :
c
c xsec actual d(e,e'p) cross section (µb.mev-1.sr-2)
c
c - - - - - - - - - - - - - - - - - - - - - - - - -
implicit none
include 'grid_par.inc'
integer laget_ps_fail,laget_grid_fail
integer*4 laget_intp,laget_pwia,laget_fsi,laget_mec
real*8 ff__intrpol,ff__intrlog
real*8 xsec,p_bea,g_mas,g_ene,p_tgs,p_phi
real*8 sig_l(nq2,nom,nta),sig_t(nq2,nom,nta),
+ sig_lt(nq2,nom,nta),
+ sig_tt(nq2,nom,nta)
real*8 p_cms,e_cms,p_ara,p_erp,p_mom,p_ene
real*8 s_cms,w_cms,g_ama,g_abe
real*8 e_sca,p_sca,c_tet
real*8 e_bea
real*8 g_mom
real*8 xm_e,xm_p,xm_n,xm_d,xmd,spn,dpn,xme2,xmn2,xmp2,xmd2,spn2
real*8 eps,epsp,flux,jcob,sigl,sigt,siglt,sigtt
real*8 xb_min,xb_max,om_min,om_max
real*8 cfin,pi
common/fc__some_mas / dpn,xmd,spn2,xmd2,xmn2
common/fc__sigmas / sigl,sigt,siglt,sigtt
c common/fc__grid_par / nq2,nom,nta
common/fc__laget_cnt/ laget_ps_fail,laget_grid_fail
common/fc__laget_mod/ laget_intp,laget_pwia,laget_fsi,laget_mec
integer ioutside_count
common /int_control/ioutside_count
data xm_e / 510.99890d-03 /, xm_p / 938.27200d+00 /,
+ xm_n / 939.56533d+00 /, xm_d / 187.56128d+01 /
data cfin / 137.03599d+00 /
pi = dacos( -1.d+00 )
*---- particle masses and relevant combinations
xmd = xm_d
*- dimension 1 combinations
spn = xm_n + xm_p
dpn = xm_n - xm_p
*- dimension 2 combinations
xme2 = xm_e * xm_e
xmd2 = xm_d * xm_d
xmp2 = xm_p * xm_p
xmn2 = xm_n * xm_n
spn2 = spn * spn
*---- initialisations
xsec = 0.d+00
sigl = 0.d+00
sigt = 0.d+00
siglt = 0.d+00
sigtt = 0.d+00
*---- beam energy
e_bea = dsqrt( p_bea * p_bea + xme2 )
*---- phase space restriction
xb_min = e_bea * dsqrt(g_mas) +
+ p_bea*dsqrt( g_mas + 4.d+00*xme2 )
xb_min = dsqrt(g_mas) * xb_min / xm_p /
+ ( 4.d+00*p_bea*p_bea - g_mas )
xb_max = xm_d * g_mas / xm_p / ( g_mas + spn2 - xmd2 )
om_min = 0.5d+00 * g_mas / xm_p / xb_max
om_max = 0.5d+00 * g_mas / xm_p / xb_min
if( (g_ene.lt.om_min).or.(g_ene.gt.om_max) ) then
laget_ps_fail = laget_ps_fail + 1
write (6,*) 'parameres : ', xb_min, xb_max, om_min, om_max
write (6,*) 'Impossible Kinematics '
write (6,*) 'Beam Energy : ', e_bea
write (6,*) 'Q2 : ', g_mas
write (6,*) 'omega : ', g_ene
write (6,*) 'theta-p :', p_tgs
write (6,*) 'phi-p : ', p_phi
go to 1
endif
*---- kinematics of the current event
*- scattered electron
e_sca = e_bea - g_ene ! energy
p_sca = dsqrt( e_sca * e_sca - xme2 ) ! momentum
c_tet = e_bea * e_sca - xme2 - 0.5d+00 * g_mas
c_tet = c_tet / p_bea / p_sca ! polar angle
! cosinus
*- virtual photon
g_mom = dsqrt( g_mas + g_ene * g_ene ) ! momentum
*- center of mass frame
s_cms = xmd2 - g_mas + 2.d+00*xm_d*g_ene ! invariant squared
! mass
w_cms = dsqrt( s_cms ) ! invariant mass
g_ama = ( g_ene + xm_d ) / w_cms ! gamma
g_abe = g_mom / w_cms ! gamma * beta
*- knocked-out proton
p_cms = ( s_cms - spn2 ) * ( s_cms - dpn * dpn ) / s_cms
p_cms = 0.5d+00 * dsqrt( p_cms ) ! momentum in the
! cms frame
e_cms = dsqrt( p_cms * p_cms + xmp2 ) ! energy in the
! cms frame
p_ara = g_abe * e_cms + g_ama * p_cms * dcos( p_tgs )
p_erp = p_cms * dsin( p_tgs )
p_mom = dsqrt( p_ara*p_ara + p_erp*p_erp ) ! momentum in the
! lab frame
p_ene = g_ama * e_cms + g_abe * p_cms * dcos( p_tgs ) ! energy in the
! lab frame
*---- virtual photon polarization
eps = g_mom * g_mom * (1.d+00 - c_tet) / (1.d+00 + c_tet) / g_mas
eps = 1.d+00 / ( 1.d+00 + eps + eps )
epsp = dsqrt( 0.5d+00 * g_mas * eps * (1.d+00 + eps) ) / g_ene
*---- virtual photon flux
flux = 0.5d+00 * e_sca * g_mom / pi / pi / e_bea / g_mas / cfin
flux = flux / ( 1.d+00 - eps )
*---- calculation of the center of mass to the lab frame jacobian
jcob = g_ene + xm_d - ( p_ene * g_mom * p_ara / p_mom / p_mom )
jcob = w_cms * p_mom / p_cms / dabs( jcob )
*---- interpolation of the individual response functions
if( laget_intp.eq.1 ) then
*- linear interpolation in angle
sigl = ff__intrpol( sig_l,g_mas,g_ene,p_tgs)
sigt = ff__intrpol( sig_t,g_mas,g_ene,p_tgs)
siglt = ff__intrpol(sig_lt,g_mas,g_ene,p_tgs)
sigtt = ff__intrpol(sig_tt,g_mas,g_ene,p_tgs)
else
*- logarythmic interpolation in recoil momentum
sigl = ff__intrlog( sig_l,g_mas,g_ene,p_tgs)
sigt = ff__intrlog( sig_t,g_mas,g_ene,p_tgs)
siglt = ff__intrlog(sig_lt,g_mas,g_ene,p_tgs)
sigtt = ff__intrlog(sig_tt,g_mas,g_ene,p_tgs)
endif
*- safety check to protect against overflow (nan)
if((sigl.eq.0.d+00).and.(sigt.eq.0.d+00).and.(siglt.eq.0.d+00)
+ .and.(sigtt.eq.0.d+00)) then
if (ioutside_count .le. 100) then
write (6,*) 'all is zero, interpolation problem !'
endif
go to 1
endif
*---- differential cross section (µb.mev-1.sr-2)
xsec = flux * jcob
+ * (
+ sigt
+ + eps * ( sigl + sigtt * dcos(p_phi+p_phi) )
+ - epsp * siglt * dcos(p_phi)
+ )
1 return
end
c
c------------------------------------------------------------------------------
c------------------------------------------------------------------------------
c
subroutine fs__grid_load(sig_l,sig_t,sig_lt,sig_tt, error)
c - - - - - - - - - - - - - - - - - - - - - - - - -
c
c author: e. voutier
c date: october 2005
c purpose: load the partial cross section data grid
c
c - - - - - - - - - - - - - - - - - - - - - - - - -
c
c load into the common area the response functions of the d(e,e'p)
c reaction determined in
c the framework of jean-marc laget's formalism over a grid sampled
c in q2, omega and tta_p (the proton angle in the center of mass frame)
c in the range:
c
c 0.05 gev2 <= q2 <= 5.00 gev2 step = 0.05 gev2
c 0.01 gev <= omega <= 5.00 gev step = 0.01 gev
c 0 dg <= tta_p <= 180 dg step = 2 dg
c
c the physics options are specified according to the convention
c encoded in the parameters ipwia, ifsi,and imec that are part of the
c filename.
c
c 000 neutron contribution only : pwia
c 001 neutron contribution only : pwia + mec
c 010 neutron contribution only : pwia + fsi
c 011 neutron contribution only : pwia + fsi + mec
c 100 proton contribution only : pwia
c 101 proton contribution only : pwia + mec
c 110 proton contribution only : pwia + fsi
c 111 proton contribution only : pwia + fsi + mec
c 200 neutron + proton contrib. : pwia
c 201 neutron + proton contrib. : pwia + mec
c 210 neutron + proton contrib. : pwia + fsi
c 211 neutron + proton contrib. : pwia + fsi + mec
c
c the physics option parameters are passed via common :
c
c laget_pwia
c laget_fsi
c laget_mec
c
c - - - - - - - - - - - - - - - - - - - - - - - - -
c
c output variables :
c
c sig_l array of the longitudinal cross sections
c sig_t array of the transverse cross sections
c sig_lt array of the longitudinal-transverse cross sections
c sig_tt array of the transverse-transverse cross sections
c
c these photoproduction like cross sections are connected to the usual
c response functions via simple kinematic factors.
c
c - - - - - - - - - - - - - - - - - - - - - - - - -
implicit none
logical save_grid, use_binary
common/fc__control_c/ save_grid, use_binary
common/fc__datdir_c/ dat_dir
common/fc__datdir_i/ n_dat_dir
common/fc__laget_mod/ laget_intp,laget_pwia,laget_fsi,laget_mec
character*4 q2val,omval
character*1 pw,fs,mc
character*300 fname,tmpnam
character*100 dat_dir
character*50 subdir
integer error, i1, i2
integer*4 n_q2,n_om,n_ta, n_tot
integer*4 i_q2,i_om, i_count
integer*4 nchar,n_dat_dir
integer*4 laget_intp,laget_pwia,laget_fsi,laget_mec
c parameter ( n_q2 = 100 )
c parameter ( n_om = 500 )
c parameter ( n_ta = 91 )
include 'grid_par.inc'
real*8 sig_l(nq2,nom,nta), sig_t(nq2,nom,nta),
+ sig_lt(nq2,nom,nta), sig_tt(nq2,nom,nta)
real*8 q2_step,om_step,ta_step
real*8 g_mas,g_ene
real frac
common/fc__grid_deu / q2_step,om_step,ta_step
*- grid parameters
q2_step = 5.d+06 / dfloat(nq2)
om_step = 5.d+03 / dfloat(nom)
ta_step = dacos(-1.d+00) / dfloat(nta-1)
write(pw,'(i1)') laget_pwia
write(fs,'(i1)') laget_fsi
write(mc,'(i1)') laget_mec
*---- user selection of the physics grid
*- no fsi nor mec
if(laget_fsi.eq.0) then
subdir = 'deut_laget/pwia/'
*- with fsi and mec
elseif(laget_mec.eq.1) then
subdir = 'deut_laget/pful/'
*- with fsi only
else
subdir = 'deut_laget/pfsi/'
endif
write(6,*) 'interpolate data from : '//subdir
*---- load the physics selected grid
if (use_binary) then
call fs__nospac(subdir,i1, i2)
tmpnam = subdir(i1:i2)//'grid.bin'
call fs__nospac(tmpnam, i1,i2)
print *, 'using binary grid : '//tmpnam(i1:i2)
open(10, file = tmpnam(i1:i2), form = 'unformatted',
> status = 'old', err = 998)
read(10, err = 999) sig_l,sig_t,sig_lt,sig_tt
error = 0
close(10)
return
endif
n_tot = nq2 * nom
i_count = 0
do i_q2=1,nq2
g_mas = q2_step * dfloat(i_q2)
write(q2val,'(f4.2)') 1.d-06 * g_mas
do i_om=1,nom
g_ene = om_step * dfloat(i_om)
write(omval,'(i4)') idint(g_ene)
if(idint(g_ene).lt.10) then
omval = '000'//omval(4:4)
elseif(idint(g_ene).lt.100) then
omval = '00'//omval(3:4)
elseif(idint(g_ene).lt.1000) then
omval = '0'//omval(2:4)
endif
tmpnam = dat_dir(1:n_dat_dir)//'/'//subdir//
+ 'q2_'//q2val//'_om_'//omval//
+ '_'//pw//fs//mc//'.dat'
call fs__squeeze(tmpnam,fname,nchar)
call fs__read_data
+ (i_q2,i_om,sig_l,sig_t,sig_lt,sig_tt,fname, error)
if (error .ne. 0) then
return ! error loading data
endif
i_count = i_count + 1
frac = float(i_count)/n_tot*100
if (mod(frac, 5.) .lt. 1.e-5) then
print *, frac, ' % read'
endif
enddo
enddo
print *, 'save_grid = ', save_grid, ' use binary = ', use_binary
if (save_grid) then
call fs__nospac(subdir,i1, i2)
tmpnam = subdir(i1:i2)//'grid.bin'
call fs__nospac(tmpnam,i1,i2)
print *, 'saving binary data grid in : '//tmpnam(i1:i2)
open(10, file = tmpnam(i1:i2), form = 'unformatted')
write(10) sig_l,sig_t,sig_lt,sig_tt
close(10)
endif
return
998 print *, 'cannot open : '//tmpnam(i1:i2)
error = -1
return
999 print *, 'read error from: '//tmpnam(i1:i2)
error = -2
return
end
c
c-----------------------------------------------------------------------------
c-----------------------------------------------------------------------------
c
subroutine fs__read_data(ix,iy,xl,xt,xlt,xtt,fname,error)
c - - - - - - - - - - - - - - - - - - - - - - - - -
c
c author: e. voutier
c date: october 2005
c purpose: open and read a basic data file with specified name
c
c - - - - - - - - - - - - - - - - - - - - - - - - -
c
c utility tool for opening the cross section data base of jean-marc laget
c and load partial cross sections into specified arrays.
c
c - - - - - - - - - - - - - - - - - - - - - - - - -
c
c input variables :
c
c ix quadrimomentum transfer index
c iy energy transfer index
c fname data file name
c
c output variables :
c
c xl array of the longitudinal cross sections
c xt array of the transverse cross sections
c xlt array of the longitudinal-transverse cross sections
c xtt array of the transverse-transverse cross sections
c
c - - - - - - - - - - - - - - - - - - - - - - - - -
implicit none
include 'grid_par.inc'
character*(*) fname
integer*4 ix,iy,iz
integer error
real*8 xlt(nq2,nom,nta),xtt(nq2,nom,nta)
real*8 xl(nq2,nom,nta),xt(nq2,nom,nta)
open(10,file=fname,status='old',err = 998)
error = 0
do 100 iz = 1,nta
100 read(10,'(4(2x,e16.9))',err = 999)
+ xl(ix,iy,iz),xt(ix,iy,iz),xlt(ix,iy,iz),xtt(ix,iy,iz)
c 100 read(10,*,err = 999)
c + xl(ix,iy,iz),xt(ix,iy,iz),xlt(ix,iy,iz),xtt(ix,iy,iz)
c close(10)
return
998 write (6,*) ' cannot open : ', fname
error = -1
return
999 write (6,*) ' error reading : ', fname
error = -2
return
end
c
c-----------------------------------------------------------------------------
c-----------------------------------------------------------------------------
c
double precision function ff__intrpol(xdat,x,y,z)
c - - - - - - - - - - - - - - - - - - - - - - - - -
c
c author: e. voutier
c date: october 2005
c purpose: 3-dimensional linear interpolation
c
c - - - - - - - - - - - - - - - - - - - - - - - - -
c
c determine the selected partial cross section (response function) via a
c 3-dimensional linear interpolation.
c
c - - - - - - - - - - - - - - - - - - - - - - - - -
c
c input variables :
c
c xdat 3-dimensional array of cross section data
c x quadrimomentum transfer
c y energy transfer
c z proton angle in the enter of mass frame
c
c output variable :
c
c ff__intrpol interpolated value of the cross section at (x,y,z)
c
c - - - - - - - - - - - - - - - - - - - - - - - - -
implicit none
include 'grid_par.inc'
integer*4 ix1,iy1,iz1,ix2,iy2,iz2
real*8 q2_step,om_step,ta_step
real*8 xdat(nq2,nom,nta),x,y,z
real*8 s_111,s_121,s_112,s_122,s_211,s_221,s_212,s_222
real*8 ax,ay,az,axy,axz,ayz,axyz
integer ioutside_count
common /int_control/ioutside_count
common/fc__grid_deu / q2_step,om_step,ta_step
c common/fc__grid_par / nq2,nom,nta
ff__intrpol = 0.d+00
*---- lower array index
ix1 = idint( x / q2_step )
iy1 = idint( y / om_step )
iz1 = idint( z / ta_step ) + 1
*---- upper array index
ix2 = ix1 + 1
iy2 = iy1 + 1
iz2 = iz1 + 1
*- correction for grid boundaries
if(ix1.eq.nq2) ix2 = ix1
if(iy1.eq.nom) iy2 = iy1
if(iz1.eq.nta) iz2 = iz1
if( (ix1.lt.1).or.(ix2.gt.nq2).or.(iy1.lt.1).or.(iy2.gt.nom) )then
if (ioutside_count .le. 100) then
ioutside_count = ioutside_count + 1
write(6,*) ioutside_count, ' cross section grid out of range : q2, qomega', x, y
endif
ff__intrpol = 0.d0
return
endif
ax = ( x - q2_step * dfloat(ix1) ) / q2_step
ay = ( y - om_step * dfloat(iy1) ) / om_step
az = ( z - ta_step * dfloat(iz1-1) ) / ta_step
axy = ax * ay
axz = ax * az
ayz = ay * az
axyz = ax * ay * az
s_111 = xdat(ix1,iy1,iz1)
s_121 = xdat(ix1,iy2,iz1)
s_112 = xdat(ix1,iy1,iz2)
s_122 = xdat(ix1,iy2,iz2)
s_211 = xdat(ix2,iy1,iz1)
s_221 = xdat(ix2,iy2,iz1)
s_212 = xdat(ix2,iy1,iz2)
s_222 = xdat(ix2,iy2,iz2)
ff__intrpol = s_111 *
+ ( 1.d+00 - ax - ay - az + axy + axz + ayz - axyz )
+ + s_121 *
+ ( ay - axy - ayz + axyz )
+ + s_112 *
+ ( az - axz - ayz + axyz )
+ + s_122 *
+ ( ayz - axyz )
+ + s_211 *
+ ( ax - axy - axz + axyz )
+ + s_221 *
+ ( axy - axyz )
+ + s_212 *
+ ( axz - axyz )
+ + s_222 *
+ ( axyz )
return
end
c
c-----------------------------------------------------------------------------
c-----------------------------------------------------------------------------
c
double precision function ff__intrlog(xdat,x,y,z)
c - - - - - - - - - - - - - - - - - - - - - - - - -
c
c author: e. voutier
c date: october 2005
c purpose: 3-dimensional interpolation (2 linear + 1 logarythmic)
c
c - - - - - - - - - - - - - - - - - - - - - - - - -
c
c determine the selected partial cross section (response function) via a
c 3-dimensional interpolation assuming a linear interpolation in x and y,
c and a logarythmic interpolation in f(z) corresponding to the recoil
c momentum.
c
c - - - - - - - - - - - - - - - - - - - - - - - - -
c
c input variables :
c
c xdat 3-dimensional array of cross section data
c x quadrimomentum transfer
c y energy transfer
c z proton angle in the center of mass frame
c
c output variable :
c
c ff__intrlog interpolated value of the cross section at (x,y,z)
c
c - - - - - - - - - - - - - - - - - - - - - - - - -
implicit none
include 'grid_par.inc'
integer*4 ix1,iy1,iz1,ix2,iy2,iz2
real*8 q2_step,om_step,ta_step
real*8 xdat(nq2,nom,nta),x,y,z
real*8 ff__inlgcor
real*8 s_111,s_121,s_112,s_122,s_211,s_221,s_212,s_222
real*8 q2_1,q2_2,om_1,om_2,pt_1,pt_2
real*8 s_11,s_12,s_21,s_22
real*8 ax,ay,axy
common/fc__grid_deu / q2_step,om_step,ta_step
c common/fc__grid_par / nq2,nom,nta
integer ioutside_count
common /int_control/ioutside_count
ff__intrlog = 0.d+00
*---- lower array index
ix1 = idint( x / q2_step )
iy1 = idint( y / om_step )
iz1 = idint( z / ta_step ) + 1
*---- upper array index
ix2 = ix1 + 1
iy2 = iy1 + 1
iz2 = iz1 + 1
*- correction for grid boundaries
if(ix1.eq.nq2) ix2 = ix1
if(iy1.eq.nom) iy2 = iy1
if(iz1.eq.nta) iz2 = iz1
if( (ix1.lt.1).or.(ix2.gt.nq2).or.(iy1.lt.1).or.(iy2.gt.nom) )then
if (ioutside_count .le.100) then
write(6,*) ' cross section grid out of range '
endif
ff__intrlog = 0.d0
return
endif
q2_1 = q2_step * dfloat(ix1)
q2_2 = q2_step + dfloat(ix2)
om_1 = om_step * dfloat(iy1)
om_2 = om_step * dfloat(iy2)
pt_1 = ta_step * dfloat(iz1-1)
pt_2 = ta_step * dfloat(iz2-1)
s_111 = xdat(ix1,iy1,iz1)
s_121 = xdat(ix1,iy2,iz1)
s_112 = xdat(ix1,iy1,iz2)
s_122 = xdat(ix1,iy2,iz2)
s_211 = xdat(ix2,iy1,iz1)
s_221 = xdat(ix2,iy2,iz1)
s_212 = xdat(ix2,iy1,iz2)
s_222 = xdat(ix2,iy2,iz2)
s_11 = ff__inlgcor(q2_1,om_1,pt_1,z,pt_2,s_111,s_112)
s_12 = ff__inlgcor(q2_1,om_2,pt_1,z,pt_2,s_121,s_122)
s_21 = ff__inlgcor(q2_2,om_1,pt_1,z,pt_2,s_211,s_212)
s_22 = ff__inlgcor(q2_2,om_2,pt_1,z,pt_2,s_221,s_222)
ax = ( x - q2_1 ) / q2_step
ay = ( y - om_1 ) / om_step
axy = ax * ay
ff__intrlog = s_11 * ( 1.d+00 - ax - ay + axy )
+ + s_12 * ( ay - axy )
+ + s_21 * ( ax - axy )
+ + s_22 * ( axy )
return
end
c
c-----------------------------------------------------------------------------
c-----------------------------------------------------------------------------
c
double precision function ff__inlgcor(x,y,z1,z,z2,f1,f2)
c - - - - - - - - - - - - - - - - - - - - - - - - -
c
c author: e. voutier
c date: october 2005
c purpose: 1-dimensional logarythmic interpolation
c
c - - - - - - - - - - - - - - - - - - - - - - - - -
c
c perform a logarythmic interpolation between the points z1 and z2 for
c non-singular f1 value. singular cases are reduced to a linear
c interpolation and correspond to a nul f1 (phase space effects at the
c kinematic boundaries) and a sign change between f1 and f2.