-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy patheval.py
154 lines (124 loc) · 5.87 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import argparse
import dataclasses
import os
import json
import time
import torch
from peft import LoraConfig, TaskType, get_peft_model
from accelerate import Accelerator
from gato.training.arguments import TrainingArgs
from gato.utils.utils import DotDict
from gato.policy.gato_policy import GatoPolicy
from gato.envs.setup_env import load_envs
from gato.tasks.control_task import ControlTask
from gato.tasks.text_task import TextTask
def main(args):
# load checkpoint
gato_checkpoint = torch.load(args.model_path, map_location=args.device)
# load args
if args.args_path is None:
args_path = os.path.join(os.path.dirname(args.model_path), 'args.json')
else:
args_path = args.args_path
eval_args = TrainingArgs(**json.load(open(args_path, 'r')))
if not eval_args.lora:
eval_args.pretrained_lm = None
# update args with eval_args
for k, v in args.items():
if v is not None:
setattr(eval_args, k, v)
env_args = {
'render_mode': 'human' if args.render else None,
}
envs, datasets = load_envs(eval_args.control_datasets, env_args) # Load Minari datasets and corresponding Gym environments
tasks = []
env_names = []
for env, dataset in zip(envs, datasets):
task = ControlTask(
env.unwrapped.spec.id,
env,
dataset,
args = eval_args,
context_len=eval_args.sequence_length,
training_prompt_len_proportion=eval_args.prompt_len_proportion,
share_prompt_episodes = not eval_args.unique_prompt_episodes,
top_k_prompting = args.top_k
)
env_names.append(env.unwrapped.spec.id)
tasks.append(task)
print('Evaluating on envs:', env_names)
if len(args.text_datasets) > 0:
# add text datasets
tasks.append(TextTask(args.text_datasets, args.text_datasets_paths, args.sequence_length, tokenizer_model=args.tokenizer_model_name))
model = GatoPolicy(
device=eval_args.device,
embed_dim=eval_args.embed_dim,
layers=eval_args.layers,
heads=eval_args.heads,
dropout=eval_args.dropout,
mu=eval_args.mu,
M=eval_args.M,
patch_size=eval_args.patch_size,
resid_mid_channels=eval_args.resid_mid_channels,
continuous_tokens=eval_args.continuous_tokens,
discrete_tokens=eval_args.discrete_tokens,
context_len=eval_args.sequence_length,
use_patch_pos_encoding=not eval_args.disable_patch_pos_encoding,
use_pos_encoding=not eval_args.disable_inner_pos_encoding,
activation_fn=eval_args.activation_fn,
pretrained_lm=eval_args.pretrained_lm,
flash=eval_args.flash
)
if eval_args.lora:
assert eval_args.pretrained_lm is not None, 'Must specify pretrained LM for LORA'
peft_config = LoraConfig(task_type=TaskType.CAUSAL_LM, inference_mode=False, r=eval_args.lora_r, lora_alpha=eval_args.lora_alpha, lora_dropout=eval_args.lora_dropout)
model.transformer = get_peft_model(model.transformer, peft_config)
model.load_state_dict(gato_checkpoint)
accelerator = Accelerator(cpu=eval_args.cpu, mixed_precision=eval_args.mixed_precision)
model = accelerator.prepare(model)
eval_args.device = accelerator.device
model = model.to(eval_args.device)
model.device = eval_args.device
logs = {}
model.eval()
eval_start = time.time()
# loop over eval for each task
with torch.no_grad():
for task in tasks:
if isinstance(task, ControlTask):
eval_logs = task.evaluate(model, n_iterations=eval_args.eval_episodes, deterministic=eval_args.eval_mode == 'deterministic', promptless_eval=eval_args.promptless_eval)
for k, v in eval_logs.items():
logs[f'evaluation/{task.name}/{k}'] = v
elif isinstance(task, TextTask):
eval_logs = task.evaluate(model, eval_args.eval_text_num_examples, deterministic=eval_args.eval_mode == 'deterministic', log_examples_to_output=eval_args.eval_text_log_examples)
for k, v in eval_logs.items():
logs[f'evaluation/text/{k}'] = v
logs['time/evaluation'] = time.time() - eval_start
print('=' * 80)
print(f'Evaluation results:')
for k, v in logs.items():
print(f'{k}: {v}')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--model_path', type=str, default=None) # path to model checkpoint
parser.add_argument('--args_path', type=str, default=None) # path to args.json file, will use args from same dir if None
parser.add_argument('--cpu', default=False, action='store_true')
# evaluation
parser.add_argument('--eval_mode', type=str, default='deterministic', choices=['deterministic', 'stochastic'])
# evaluation - control
parser.add_argument('--eval_episodes', type=int, default=None)
parser.add_argument('--promptless_eval', action='store_true', default=None)
parser.add_argument('--top_k', type=int, default=None) # sample prompts only from top k episodes
parser.add_argument('--render', action='store_true', default=None)
# evaluation - text
parser.add_argument('--sequence_length', '-k', type=int, default=1024) # number of tokens in seq
parser.add_argument('--tokenizer_model_name', type=str, default='gpt2')
parser.add_argument('--eval_text_num_examples', type=int, default=100)
parser.add_argument('--eval_text_log_examples', action='store_true', default=False)
# datasets / envs
parser.add_argument('--control_datasets', type=str, nargs='+', default=None)
parser.add_argument('--text_datasets', type=str, nargs='+', default=[]) # ['wikitext-2-v1']
parser.add_argument('--text_datasets_paths', type=str, nargs='+', default=[]) # ['wikitext']
args = parser.parse_args()
args = DotDict(vars(args))
main(args)