diff --git a/generate_cropped_notfaces.m b/generate_cropped_notfaces.m index f71c0ea..6f093a5 100644 --- a/generate_cropped_notfaces.m +++ b/generate_cropped_notfaces.m @@ -32,7 +32,7 @@ % Crop image croppedImage = img(startRow:startRow+dim-1, ... - startCol:startCol+dim-1); + startCol:startCol+dim-1, :); % Save image imgPath = strcat(new_imageDir, '/', int2str(n_have), '.jpg'); @@ -42,4 +42,45 @@ % list of uncropped images n_have = n_have + 1; i = i + 1; -end \ No newline at end of file +end + +%% Split training images into a training set and validation set +percentTraining = 80; +numOfTraining = floor((percentTraining/100)*n_have); + +% Making the directories +facesDir = 'cropped_training_images_faces'; +facesList = dir(sprintf('%s/*.jpg',facesDir)); + +notFacesDir = 'cropped_training_images_notfaces'; +notFacesList = dir(sprintf('%s/*.jpg',notFacesDir)); + +[~,~,~] = mkdir(strcat(facesDir,'/validation')); +[~,~,~] = mkdir(strcat(facesDir,'/training')); +[~,~,~] = mkdir(strcat(notFacesDir,'/validation')); +[~,~,~] = mkdir(strcat(notFacesDir,'/training')); + +for i = 1:numOfTraining + % Copy faces training images + source = strcat(facesDir,'/',facesList(i).name); + dest = strcat(facesDir,'/training/',facesList(i).name); + copyfile(source, dest); + + % Copy not faces training images + source = strcat(notFacesDir,'/',notFacesList(i).name); + dest = strcat(notFacesDir,'/training/',notFacesList(i).name); + copyfile(source, dest); +end + +for i = numOfTraining+1:n_have + % Copy faces validation images + source = strcat(facesDir,'/',facesList(i).name); + dest = strcat(facesDir,'/validation/',facesList(i).name); + copyfile(source, dest); + + % Copy not faces validation images + source = strcat(notFacesDir,'/',notFacesList(i).name); + dest = strcat(notFacesDir,'/validation/',notFacesList(i).name); + copyfile(source, dest); +end + \ No newline at end of file diff --git a/get_features.m b/get_features.m index 80e4b9a..2f13108 100644 --- a/get_features.m +++ b/get_features.m @@ -1,6 +1,9 @@ -close all -clear -run('../vlfeat-0.9.20/toolbox/vl_setup') +%% Run if VLFeat is not set up +run('vlfeat-0.9.21/toolbox/vl_setup'); + +%% Get Features +close all; +clear; pos_imageDir = 'cropped_training_images_faces'; pos_imageList = dir(sprintf('%s/*.jpg',pos_imageDir)); @@ -10,15 +13,18 @@ neg_imageList = dir(sprintf('%s/*.jpg',neg_imageDir)); neg_nImages = length(neg_imageList); -cellSize = 6; -featSize = 31*cellSize^2; +% cellSize needs to be a factor of 36 +cellSize = 4; +im = imread(sprintf('%s/%s',pos_imageDir,pos_imageList(1).name)); +[imRows, imCols, ~] = size(im); +featSize = 31*(imRows/cellSize)*(imCols/cellSize); pos_feats = zeros(pos_nImages,featSize); for i=1:pos_nImages im = im2single(imread(sprintf('%s/%s',pos_imageDir,pos_imageList(i).name))); feat = vl_hog(im,cellSize); pos_feats(i,:) = feat(:); - fprintf('got feat for pos image %d/%d\n',i,pos_nImages); +% fprintf('got feat for pos image %d/%d\n',i,pos_nImages); % imhog = vl_hog('render', feat); % subplot(1,2,1); % imshow(im); @@ -32,7 +38,7 @@ im = im2single(imread(sprintf('%s/%s',neg_imageDir,neg_imageList(i).name))); feat = vl_hog(im,cellSize); neg_feats(i,:) = feat(:); - fprintf('got feat for neg image %d/%d\n',i,neg_nImages); +% fprintf('got feat for neg image %d/%d\n',i,neg_nImages); % imhog = vl_hog('render', feat); % subplot(1,2,1); % imshow(im); @@ -41,4 +47,4 @@ % pause; end -save('pos_neg_feats.mat','pos_feats','neg_feats','pos_nImages','neg_nImages') \ No newline at end of file +save('pos_neg_feats.mat','pos_feats','neg_feats','pos_nImages','neg_nImages'); \ No newline at end of file diff --git a/train_svm.m b/train_svm.m index 6501bf6..5752ec1 100644 --- a/train_svm.m +++ b/train_svm.m @@ -1,13 +1,33 @@ -run('../vlfeat-0.9.20/toolbox/vl_setup') -load('pos_neg_feats.mat') +%% Run if VLFeat is not set up +run('vlfeat-0.9.20/toolbox/vl_setup'); -feats = cat(1,pos_feats,neg_feats); -labels = cat(1,ones(pos_nImages,1),-1*ones(neg_nImages,1)); +%% Split into training and validation +close all; +clear; -lambda = 0.1; -[w,b] = vl_svmtrain(feats',labels',lambda); +load('pos_neg_feats.mat'); + +percentTraining = 80; +numOfTraining = floor((percentTraining/100)*pos_nImages); + +trainFeats = cat(1,pos_feats(1:numOfTraining,:), ... + neg_feats(1:numOfTraining,:)); +validFeats = cat(1,pos_feats(1+numOfTraining:end,:), ... + neg_feats(1+numOfTraining:end,:)); +trainLabels = cat(1,ones(numOfTraining,1), ... + -1*ones(numOfTraining,1)); +validLabels = cat(1,ones(pos_nImages-numOfTraining,1), ... + -1*ones(pos_nImages-numOfTraining,1)); + +%% Train + +lambda = 0.06; +[w,b] = vl_svmtrain(trainFeats',trainLabels',lambda); fprintf('Classifier performance on train data:\n') -confidences = [pos_feats; neg_feats]*w + b; +confidences = [pos_feats(1:numOfTraining,:); neg_feats(1:numOfTraining,:)]*w + b; +[tp_rate, fp_rate, tn_rate, fn_rate] = report_accuracy(confidences, trainLabels); -[tp_rate, fp_rate, tn_rate, fn_rate] = report_accuracy(confidences, labels); +fprintf('Classifier performance on validation data:\n') +confidences = [pos_feats(1+numOfTraining:end,:); neg_feats(1+numOfTraining:end,:)]*w + b; +[tp_rate, fp_rate, tn_rate, fn_rate] = report_accuracy(confidences, validLabels); diff --git a/vlfeat-0.9.21/.gitattributes b/vlfeat-0.9.21/.gitattributes new file mode 100644 index 0000000..cdb3555 --- /dev/null +++ b/vlfeat-0.9.21/.gitattributes @@ -0,0 +1,3 @@ +*.manifest -crlf -diff -merge +*.vcproj binary +*.sln binary diff --git a/vlfeat-0.9.21/.gitignore b/vlfeat-0.9.21/.gitignore new file mode 100644 index 0000000..d96aef8 --- /dev/null +++ b/vlfeat-0.9.21/.gitignore @@ -0,0 +1,57 @@ +# Mac OS X Finder +.DS_Store + +# MEX files +*.mexglx +*.mexmac +*.mexmaci +*.mexmaci64 +*.mexa64 +*.mex + +# Python +*.pyc + +# Other generated files and directories +VERSION +docsrc/version.html +bin +results +doc +build +toolbox/mexw32 +toolbox/mexmaci +toolbox/mexmaci64 +toolbox/mexmac +toolbox/mexglx +toolbox/mexa64 +toolbox/mexw64 +toolbox/mex +toolbox/noprefix + +# Xcode +vlfeat.xcodeproj/*.mode1 +vlfeat.xcodeproj/*.mode1v3 +vlfeat.xcodeproj/*.mode2v3 +vlfeat.xcodeproj/*.pbxuser +vlfeat.xcodeproj/*.perspective* +vlfeat.xcodeproj/*.xcworkspace +vlfeat.xcodeproj/xcuserdata + +# Visual C++ +vlfeat.suo +vlfeat.ncb +vlfeat.vcproj.*.user +vc/* + +# Emacs backups +*~ + +# Vim swap files +.*.swp + +# Opt directory +opt/* + +# iDraw files +*.idraw diff --git a/vlfeat-0.9.21/COPYING b/vlfeat-0.9.21/COPYING new file mode 100644 index 0000000..1a1fb2e --- /dev/null +++ b/vlfeat-0.9.21/COPYING @@ -0,0 +1,25 @@ +Copyright (C) 2007-11, Andrea Vedaldi and Brian Fulkerson +Copyright (C) 2012-13, The VLFeat Team +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are +met: +1. Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. +2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the + distribution. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. diff --git a/vlfeat-0.9.21/Makefile b/vlfeat-0.9.21/Makefile new file mode 100644 index 0000000..908c578 --- /dev/null +++ b/vlfeat-0.9.21/Makefile @@ -0,0 +1,385 @@ +# file: Makefile +# description: Build everything +# author: Andrea Vedaldi + +# Copyright (C) 2014,18 Andrea Vedaldi. +# Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. +# All rights reserved. +# +# This file is part of the VLFeat library and is made available under +# the terms of the BSD license (see the COPYING file). + +# VLFEAT BUILDING INSTRUCTIONS +# +# This makefile builds VLFeat on standard Unix installations with the +# GNU toolchain. Mac OS X and GNU-Linux are explicitly +# supported. Usually, compiling VLFeat reduces to typing +# +# > cd PATH_TO_VLFEAT_SOURCE_TREE +# > make +# +# The makefile attempts to automatically determine the host +# architecture. If this fails, or if the architecture is ambiguous, +# the architecture can be set by specifying the ARCH variable. For +# instance: +# +# > make ARCH=maci64 +# +# builds VLFeat for Mac OS X Intel 64 bit. Pease +# see http://www.vlfeat.org/compiling.html +# for troubleshooting and details. +# +# Other useful variables are listed below (their default value is in +# square brackets). +# +# ARCH [not defined] - Active architecture. The supported +# architectures are maci, maci64, glnx86, or glnxa64 (these are +# the same architecture identifiers used by MATLAB: +# http://www.mathworks.com/help/techdoc/ref/computer.html). If +# undefined, the makefile attempts to automatically detect the +# architecture. +# +# DEBUG [not defined] - If defined, turns on debugging symbols and +# turns off optimizations +# +# PROFILE [not defined] - If defined, turns on debugging symbols but +# does NOT turn off optimizations. +# +# VERB [not defined] - If defined, display in full the command +# executed and their output. +# +# MEX [mex]- Path to MATLAB MEX compiler. If undefined, MATLAB support +# is disabled. +# +# MKOCTFILE [not defined] - Path to Octave MKOCTFILE compiler. If undefined, +# Octave support is disabled. +# +# If defined to anything other than "no", the following falgs disable +# specific features in the library. By defaults, all the features are +# enabled. If the makefile finds that the environment is unable to +# support some of them, it may decide to disable them automatically +# (in this case it will print a message). This behaviour can be +# overriden by defining the flag to be "no". +# +# DISABLE_SSE2 - SSE2 vector instructions support. +# DISABLE_AVX - AVX vector instructions support. +# DISABLE_THREADS - Supprot for multithreded library client. +# DISABLE_OPENMP - OpenMP-based multithreaded computations. +# +# To completely remove all build products use +# +# > make distclean +# +# Other useful targets include: +# +# clean - Removes intermediate build products for the active architecture. +# archclean - Removes all build products for the active architecture. +# distclean - Removes all build products. +# info - Display a list of the variables defined by the Makefile. +# help - Print this message. +# +# VLFeat is compsed of different parts (DLL, command line utilities, +# MATLAB interface, Octave interface) so the makefile is divided in +# components, located in make/*.mak. Please check out the +# corresponding files in order to adjust parameters. + +# Copyright (C) 2014,18 Andrea Vedaldi. +# Copyright (C) 2007-13 Andrea Vedaldi and Brian Fulkerson. +# All rights reserved. +# +# This file is part of the VLFeat library and is made available under +# the terms of the BSD license (see the COPYING file). + +SHELL = /bin/bash + +.PHONY : all +all: + +# Select which features to disable +# DISABLE_SSE2=yes +# DISABLE_AVX=yes +# DISABLE_THREADS=yes +# DISABLE_OPENMP=yes + +# -------------------------------------------------------------------- +# Error Messages +# -------------------------------------------------------------------- + +err_no_arch = +err_no_arch +=$(shell echo "** Unknown host architecture '$(UNAME)'. This identifier" 1>&2) +err_no_arch +=$(shell echo "** was obtained by running 'uname -sm'. Edit the Makefile " 1>&2) +err_no_arch +=$(shell echo "** to add the appropriate configuration." 1>&2) +err_no_arch +=config + +err_internal =$(shell echo Internal error) +err_internal +=internal + +err_spaces = $(shell echo "** VLFeat root dir VLDIR='$(VLDIR)' contains spaces." 1>&2) +err_spaces += $(shell echo "** This is not supported due to GNU Make limitations." 1>&2) +err_spaces +=spaces + +# -------------------------------------------------------------------- +# Auto-detect architecture +# -------------------------------------------------------------------- + +Darwin_PPC_ARCH := mac +Darwin_Power_Macintosh_ARCH := mac +Darwin_i386_ARCH := maci64 +Darwin_x86_64_ARCH := maci64 +Linux_i386_ARCH := glnx86 +Linux_i686_ARCH := glnx86 +Linux_unknown_ARCH := glnx86 +Linux_x86_64_ARCH := glnxa64 + +UNAME := $(shell uname -sm) +ARCH ?= $($(shell echo "$(UNAME)" | tr \ _)_ARCH) + +# sanity check +ifeq ($(ARCH),) +die:=$(error $(err_no_arch)) +endif + +ifneq ($(VLDIR),$(shell echo "$(VLDIR)" | sed 's/ //g')) +die:=$(error $(err_spaces)) +endif + +# -------------------------------------------------------------------- +# Configuration +# -------------------------------------------------------------------- + +VLDIR ?= . +LIBTOOL ?= libtool + +STD_CLFAGS = $(CFLAGS) +STD_CFLAGS += -std=c99 +STD_CFLAGS += -Wall -Wextra +STD_CFLAGS += -Wno-unused-function -Wno-long-long -Wno-variadic-macros +STD_CFLAGS += $(if $(DEBUG), -DDEBUG -O0 -g, -DNDEBUG -O3) +STD_CFLAGS += $(if $(PROFILE), -g) + +STD_LDFLAGS = $(LDFLAGS) + +# Architecture specific ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +# Detect compiler +COMPILER_VER_STRING:=$(shell $(CC) --version) $(shell $(CC) -v 2>&1) +COMPILER:=other + +ifneq ($(shell echo "$(COMPILER_VER_STRING)" | grep "gcc"),) +COMPILER:=gcc +COMPILER_VER:=$(shell \ +$(CC) -dumpversion | \ +sed -e 's/\.\([0-9][0-9]\)/\1/g' \ + -e 's/\.\([0-9]\)/0\1/g' \ + -e 's/^[0-9]\{3,4\}$$/&00/' ) +endif + +ifeq "$(findstring clang,$(COMPILER_VER_STRING))" "clang" +COMPILER:=clang +COMPILER_VER:=$(shell \ +echo "$(COMPILER_VER_STRING)" | \ +sed -n -e 's/.*version *\([0-9.][0-9.]*\).*/\1/p;' | \ +sed -e 's/\.\([0-9][0-9]\)/\1/g' \ + -e 's/\.\([0-9]\)/0\1/g' \ + -e 's/^[0-9]\{3,4\}$$/&00/' ) +endif + +$(info Detected compiler: $(COMPILER) $(COMPILER_VER)) +ifeq "$(COMPILER_VER)" "other" +$(warning Unsupported compiler detected, use at your own risk!) +endif + +ifeq "$(COMPILER)" "gcc" +ifeq "$(shell expr $(COMPILER_VER) \<= 40600)" "1" +ifneq "$(DISABLE_AVX)" "no" +$(info GCC <= 4.6.0 detected, disabling AVX.) +DISABLE_AVX:=yes +endif +endif +endif + +ifeq "$(COMPILER)" "clang" +ifneq "$(DISABLE_OPENMP)" "no" +$(info Apple Clang does not support OpenMP yet, disabling.) +$(info Alternatively, use brew llvm clang and specify DISABLE_OPENMP=no.) +DISABLE_OPENMP:=yes +endif +endif + +# Mac OS X Intel +ifeq "$(ARCH)" "$(filter $(ARCH),maci maci64)" +ifeq "$(ARCH)" "maci" +march=32 +else +march=64 +endif +SDKROOT ?= $(shell xcrun -sdk macosx --show-sdk-path) +MACOSX_DEPLOYMENT_TARGET ?= 10.4 +STD_CFLAGS += -m$(march) -isysroot $(SDKROOT) -mmacosx-version-min=$(MACOSX_DEPLOYMENT_TARGET) +STD_LDFLAGS += -Wl,-syslibroot,$(SDKROOT) -mmacosx-version-min=$(MACOSX_DEPLOYMENT_TARGET) +endif + +# Linux +ifeq "$(ARCH)" "$(filter $(ARCH),glnx86 glnxa64)" +ifeq "$(ARCH)" "glnx86" +march=32 +else +march=64 +endif +# Target compatibility with GLIBC 2.3.4 +# 1) _GNU_SOURCE avoids using isoc99_fscanf, limiting binary portability to recent GLIBC. +# 2) -fno-stack-protector avoids using a feature requiring GLBIC 2.4 +STD_CFLAGS += -m$(march) -D_GNU_SOURCE -fno-stack-protector +STD_LDFLAGS += -m$(march) -Wl,--rpath,\$$ORIGIN/ -Wl,--as-needed +endif + +# Convert back DISALBE_*="no" flags to be empty +ifeq "$(DISABLE_SSE2)" "no" +override DISABLE_SSE2:= +endif +ifeq "$(DISABLE_AVX)" "no" +override DISABLE_AVX:= +endif +ifeq "$(DISABLE_THREADS)" "no" +override DISABLE_THREADS:= +endif +ifeq "$(DISABLE_OPENMP)" "no" +override DISABLE_OPENMP:= +endif + +# -------------------------------------------------------------------- +# Functions +# -------------------------------------------------------------------- + +# $(call if-like,FILTER,WHY,WHAT) +define if-like +$(if $(filter $(1),$(2)),$(3)) +endef + +# $(call dump-var,VAR) pretty-prints the content of a variable VAR on +# multiple columns +ifdef VERB +define dump-var +@echo "$(1) =" +@echo "$($(1))" | sed 's/\([^ ][^ ]* [^ ][^ ]*\) */\1#/g' | \ +tr '#' '\n' | column -t | sed 's/\(.*\)/ \1/g' +endef +else +define dump-var +@printf "%15s = %s\n" "$(1)" \ +"$$(echo '$($(1))' | sed -e 's/[^ ][^ ]* /\.\.\./3' -e 's/\.\.\..*$$/\.\.\./g')" +endef +endif + +# $(call echo-var,VAR) pretty-prints the content of a variable VAR on +# one line +define echo-var +@printf "%15s = %s\n" '$(1)' '$($(1))' +endef + +# $(call echo-title,TITLE) pretty-prints TITLE as a title +define echo-title +@printf "** %s\n" '$(1)' +endef + +# $(call C, CMD) runs $(CMD) silently +define C +@printf "%15s %s\n" '$(1)' '$(@)' +$(Q)"$($(1))" +endef + +# If verbose print everything +ifdef VERB +Q= +else +Q=@ +endif + +# Greater or equal: returns the empty string if $1 >= $2, otherwise returns 'false', +# where the arguments are integer numbers +gt = $(shell if [ "$(1)" -lt "$(2)" ] ; then echo false ; fi) + +# rule to create a directory +.PRECIOUS: %/.dirstamp +%/.dirstamp : + @printf "%15s %s\n" MK "$(dir $@)" + @mkdir -p $(dir $@) + @echo "Directory generated by make." > $@ + +# $(call gendir, TARGET, DIR1 DIR2 ...) creates a target TARGET-dir that +# triggers the creation of the directories DIR1, DIR2 +define gendir +$(1)-dir=$(foreach x,$(2),$(x)/.dirstamp) +endef + +# -------------------------------------------------------------------- +# Build +# -------------------------------------------------------------------- + +# Each Makefile submodule appends appropriate dependencies to the all, +# clean, archclean, distclean, and info targets. In addition, it +# appends to the deps and bins variables the list of .d files (to be +# inclued by make as auto-dependencies) and the list of files to be +# added to the binary distribution. + +.PHONY: clean, archclean, distclean, info, help +no_dep_targets := clean archclean distclean help + +include make/dll.mak +include make/bin.mak +include make/matlab.mak +include make/octave.mak +include make/doc.mak +include make/dist.mak + +clean: + rm -f `find . -name '*~'` + rm -f `find . -name '.DS_Store'` + rm -f `find . -name '.gdb_history'` + rm -f `find . -name '._*'` + rm -rf ./results + +archclean: clean + +distclean: + +info: + $(call echo-title,General settings) + $(call dump-var,deps) + $(call echo-var,PROFILE) + $(call echo-var,DEBUG) + $(call echo-var,VER) + $(call echo-var,ARCH) + $(call echo-var,CC) + $(call echo-var,COMPILER) + $(call echo-var,COMPILER_VER) + $(call echo-var,STD_CFLAGS) + $(call echo-var,STD_LDFLAGS) + $(call echo-var,DISABLE_SSE2) + $(call echo-var,DISABLE_AVX) + $(call echo-var,DISABLE_THREADS) + $(call echo-var,DISABLE_OPENMP) + @printf "\nThere are %s lines of code.\n" \ + `cat $(m_src) $(mex_src) $(dll_src) $(dll_hdr) $(bin_src) | wc -l` + +# Holw help works: cat this file, +# skip the first block until an empty line is found (twice) +# print the first block until an empty line, +# remove the `# ' prefix from each remaining line + +help: + @cat Makefile | \ + sed -n '1,/^$$/!p' | \ + sed -n '1,/^$$/!p' | \ + sed -n '1,/^$$/p' | \ + sed 's/^# \{0,1\}\(.*\)$$/\1/' + +# -------------------------------------------------------------------- +# Include dependencies +# -------------------------------------------------------------------- + +.PRECIOUS: $(deps) + +ifneq ($(filter-out $(no_dep_targets), $(MAKECMDGOALS)),) +-include $(deps) +endif diff --git a/vlfeat-0.9.21/Makefile.mak b/vlfeat-0.9.21/Makefile.mak new file mode 100644 index 0000000..1275ecb --- /dev/null +++ b/vlfeat-0.9.21/Makefile.mak @@ -0,0 +1,586 @@ +# file: Makefile.mak +# descrption: Microsoft NMake makefile +# authors: Andrea Vedaldi, Brian Fulkerson, Mircea Cimpoi + +# Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. +# All rights reserved. +# +# This file is part of the VLFeat library and is made available under +# the terms of the BSD license (see the COPYING file). + +# -------------------------------------------------------------------- +# Customization +# -------------------------------------------------------------------- +# To modify this script to run on your platform it is usually +# sufficient to modify the following variables: +# +# ARCH: Either win32 or win64 [win64] +# DEBUG: Set to yes to ativate debugging [no] +# MATLABROOT: Path to MATLAB +# MATLABVER: MATLAB version (e.g. 90200 for 9.2.0 - 2017a) +# MSVSVER: Visual Studio version (e.g. 80, 90, 100) [90 for VS 9.0] +# MSVCROOT: Visual C++ location [$(VCInstallDir)]. +# WINSDKROOT: Windows SDK location [$(WindowsSdkDir)] +# +# Note that some of these variables depend on the architecture +# (either win32 or win64). + +VER = 0.9.21 +ARCH = win64 +DEBUG = no +BRANCH = v$(VER)-$(ARCH) +MSVSVER = +MSVCROOT = $(VCINSTALLDIR) +WINSDKROOT = $(WINDOWSSDKDIR) +GIT = git + +!if "$(MSVCROOT)" == "" +MSVCROOT = C:\Program Files\Microsoft Visual Studio 10.0\VC +!endif + +!if "$(WINSDKROOT)" == "" +WINSDKROOT = C:\Program Files\Microsoft SDKs\Windows\v7.0A +!endif + +!include make/nmake_helper.mak + +MATLABROOT = C:\Program Files\MATLAB\R2017a +MATLABVER = 90200 +MEX = "$(MATLABROOT)\bin\mex.bat" + +# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 32-bit +!if "$(ARCH)" == "win32" +!message === COMPILING FOR 32-BIT +!if $(MATLABVER) <= 80500 +MEXOPT = "$(MATLABROOT)\bin\win32\mexopts\msvc$(MSVSVER)opts.bat" +!else +MEXOPT = "$(MATLABROOT)\bin\win32\mexopts\msvc$(MSVSYEAR).xml" +!endif +MEXEXT = mexw32 +MEX_FLAGS = + +CC = "$(MSVCROOT)\bin\cl.exe" +LINK = "$(MSVCROOT)\bin\link.exe" +MSVCR_PATH = $(MSVCROOT)\redist\x86\Microsoft.VC$(MSVSVER).CRT + +LFLAGS = /MACHINE:X86 \ + /LIBPATH:"$(MSVCROOT)\lib" \ + /LIBPATH:"$(WINSDKROOT)\lib" + +# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 64-bit +!elseif "$(ARCH)" == "win64" +!message === COMPILING FOR 64-BIT +MEX = "$(MATLABROOT)\bin\mex.bat" +!if $(MATLABVER) <= 80500 +MEXOPT = "$(MATLABROOT)\bin\win64\mexopts\msvc$(MSVSVER)opts.bat" +!else +MEXOPT = "$(MATLABROOT)\bin\win64\mexopts\msvc$(MSVSYEAR).xml" +!endif +MEXEXT = mexw64 +MEX_FLAGS = -largeArrayDims + +CC = "$(MSVCROOT)\bin\amd64\cl.exe" +LINK = "$(MSVCROOT)\bin\amd64\link.exe" +!if $(MSVSVER) >= 100 +MSVCR_PATH = $(MSVCROOT)\redist\x64\Microsoft.VC$(MSVSVER).CRT +!else +MSVCR_PATH = $(MSVCROOT)\redist\amd64\Microsoft.VC$(MSVSVER).CRT +!endif + +LFLAGS = /MACHINE:X64 \ + /LIBPATH:"$(MSVCROOT)\lib\amd64" \ + /LIBPATH:"$(WINSDKROOT)\lib\x64" +!else +!error ARCH = $(ARCH) is an unknown architecture. +!endif + +# -------------------------------------------------------------------- +# Flags +# -------------------------------------------------------------------- +# Debug info is embedded in .obj and .lib files (CodeView /Z7 option) +# but in .pdb files for .exe and .dll (since the linker does not +# produce CodeView output anymore). +# +# CFLAGS +# /nologo : CL does not display splash +# _CRT_NO_DEPRECATE : Do not deprecate `insecure' fscanf, snprintf, ... +# __LITTLE_ENDIAN__ : Signal little endian architecture +# /I. : Add VLROOT to include search path +# /MD : Multi-thread run-time library dynamically linked +# /TC : Source code is C (not C++) +# /W3 : Usa all warnings +# /Zp8 : Align structures to 8 bytes +# /Ox : Turn on optimizations +# /D"DEBUG" : [DEBUG] Turn on debugging in VLFeat +# /Z7 : [DEBUG] Embedded CodeView debug info in .obj +# /D"NDEBUG" : [NO DEBUG] Switches off asserts +# +# LFLAGS +# /NOLOGO : LINK does not display splash +# /INCREMENTAL:NO : No incremental linking +# /MANIFEST : See DLL HELL below +# /DEBUG : [DEBUG] Generate debug info (.pdb files) +# +# MEX_FLAGS +# -I : Include VLFeat +# -L : Add a library search path +# -l : Link a dll +# +# ======================= ABOUT THE DLL HELL ========================= +# +# This makefile compiles VLFeat to make use of the side-by-side +# deployment model, redestribtin the appropraite Visual C runtime +# library with the library and executables. In Visual Studio < 10.0 +# this meant including a manifest file, while in version >= 10.0 this +# requirement has been relaxed. +# +# References: +# http://www.codeguru.com/forum/showthread.php?t=408061 +# http://mariusbancila.ro/blog/2010/03/24/visual-studio-2010-changes-for-vc-part-5 +# http://social.msdn.microsoft.com/Forums/is/vcgeneral/thread/ca9177b2-2d02-42d8-8892-c6a25e6cfadb +# + +bindir = bin\$(ARCH) +mexdir = toolbox\mex\$(MEXEXT) +objdir = $(bindir)\objs + +CFLAGS = /nologo /TC /MD \ + /D"_CRT_SECURE_NO_DEPRECATE" \ + /D"__LITTLE_ENDIAN__" \ + /D"VL_DISABLE_AVX" \ + /I. \ + /W1 /Zp8 /openmp + +LFLAGS = $(LFLAGS) /NOLOGO \ + /INCREMENTAL:NO \ + /MANIFEST + +!if "$(DEBUG)" != "no" +!message === DEBUGGING ON +CFLAGS = $(CFLAGS) /Z7 /D"DEBUG" +LFLAGS = $(LFLAGS) /DEBUG +MEX_FLAGS = $(MEX_FLAGS) -g +!else +!message === DEBUGGING OFF +CFLAGS = $(CFLAGS) /D"NDEBUG" /Ox +!endif + +DLL_CFLAGS = /D"VL_BUILD_DLL" +EXE_LFLAGS = $(LFLAGS) /LIBPATH:"$(bindir)" vl.lib +MEX_FLAGS = $(MEX_FLAGS) -f $(MEXOPT) -I. -Itoolbox -L"$(bindir)" -lvl + +libsrc = \ + vl\aib.c \ + vl\array.c \ + vl\covdet.c \ + vl\dsift.c \ + vl\fisher.c \ + vl\generic.c \ + vl\getopt_long.c \ + vl\gmm.c \ + vl\hikmeans.c \ + vl\hog.c \ + vl\homkermap.c \ + vl\host.c \ + vl\ikmeans.c \ + vl\imopv.c \ + vl\imopv_sse2.c \ + vl\kdtree.c \ + vl\kmeans.c \ + vl\lbp.c \ + vl\liop.c \ + vl\mathop.c \ + vl\mathop_avx.c \ + vl\mathop_sse2.c \ + vl\mser.c \ + vl\pgm.c \ + vl\quickshift.c \ + vl\random.c \ + vl\rodrigues.c \ + vl\scalespace.c \ + vl\sift.c \ + vl\slic.c \ + vl\stringop.c \ + vl\svm.c \ + vl\svmdataset.c \ + vl\vlad.c + +cmdsrc = \ + src\aib.c \ + src\mser.c \ + src\sift.c \ + src\test_gauss_elimination.c \ + src\test_getopt_long.c \ + src\test_gmm.c \ + src\test_heap-def.c \ + src\test_host.c \ + src\test_imopv.c \ + src\test_kmeans.c \ + src\test_liop.c \ + src\test_mathop.c \ + src\test_mathop_abs.c \ + src\test_nan.c \ + src\test_qsort-def.c \ + src\test_rand.c \ + src\test_sqrti.c \ + src\test_stringop.c \ + src\test_svd2.c \ + src\test_threads.c \ + src\test_vec_comp.c + +cmdsrc = \ + src\aib.c \ + src\mser.c \ + src\sift.c \ + src\test_gauss_elimination.c \ + src\test_getopt_long.c \ + src\test_gmm.c \ + src\test_heap-def.c \ + src\test_host.c \ + src\test_imopv.c \ + src\test_kmeans.c \ + src\test_liop.c \ + src\test_mathop.c \ + src\test_mathop_abs.c \ + src\test_nan.c \ + src\test_qsort-def.c \ + src\test_rand.c \ + src\test_sqrti.c \ + src\test_stringop.c \ + src\test_svd2.c \ + src\test_threads.c \ + src\test_vec_comp.c + +mexsrc = \ + toolbox\aib\vl_aib.c \ + toolbox\aib\vl_aibhist.c \ + toolbox\fisher\vl_fisher.c \ + toolbox\geometry\vl_irodr.c \ + toolbox\geometry\vl_rodr.c \ + toolbox\gmm\vl_gmm.c \ + toolbox\imop\vl_imdisttf.c \ + toolbox\imop\vl_imintegral.c \ + toolbox\imop\vl_imsmooth.c \ + toolbox\imop\vl_imwbackwardmx.c \ + toolbox\imop\vl_tpsumx.c \ + toolbox\kmeans\vl_hikmeans.c \ + toolbox\kmeans\vl_hikmeanspush.c \ + toolbox\kmeans\vl_ikmeans.c \ + toolbox\kmeans\vl_ikmeanspush.c \ + toolbox\kmeans\vl_kmeans.c \ + toolbox\misc\vl_alldist.c \ + toolbox\misc\vl_alldist2.c \ + toolbox\misc\vl_binsearch.c \ + toolbox\misc\vl_binsum.c \ + toolbox\misc\vl_cummax.c \ + toolbox\misc\vl_getpid.c \ + toolbox\misc\vl_hog.c \ + toolbox\misc\vl_homkermap.c \ + toolbox\misc\vl_ihashfind.c \ + toolbox\misc\vl_ihashsum.c \ + toolbox\misc\vl_inthist.c \ + toolbox\misc\vl_kdtreebuild.c \ + toolbox\misc\vl_kdtreequery.c \ + toolbox\misc\vl_lbp.c \ + toolbox\misc\vl_localmax.c \ + toolbox\misc\vl_sampleinthist.c \ + toolbox\misc\vl_simdctrl.c \ + toolbox\misc\vl_svmtrain.c \ + toolbox\misc\vl_threads.c \ + toolbox\misc\vl_twister.c \ + toolbox\misc\vl_version.c \ + toolbox\mser\vl_erfill.c \ + toolbox\mser\vl_mser.c \ + toolbox\quickshift\vl_quickshift.c \ + toolbox\sift\vl_covdet.c \ + toolbox\sift\vl_dsift.c \ + toolbox\sift\vl_liop.c \ + toolbox\sift\vl_sift.c \ + toolbox\sift\vl_siftdescriptor.c \ + toolbox\sift\vl_ubcmatch.c \ + toolbox\slic\vl_slic.c \ + toolbox\vlad\vl_vlad.c + +!if "$(ARCH)" == "win32" +libobj = $(libsrc:vl\=bin\win32\objs\) +cmdexe = $(cmdsrc:src\=bin\win32\) +mexdll = $(mexsrc:.c=.mexw32) +mexdll = $(mexdll:toolbox\fisher=toolbox\mex\mexw32) +mexdll = $(mexdll:toolbox\sift=toolbox\mex\mexw32) +mexdll = $(mexdll:toolbox\mser=toolbox\mex\mexw32) +mexdll = $(mexdll:toolbox\imop=toolbox\mex\mexw32) +mexdll = $(mexdll:toolbox\geometry=toolbox\mex\mexw32) +mexdll = $(mexdll:toolbox\gmm=toolbox\mex\mexw32) +mexdll = $(mexdll:toolbox\kmeans=toolbox\mex\mexw32) +mexdll = $(mexdll:toolbox\misc=toolbox\mex\mexw32) +mexdll = $(mexdll:toolbox\aib=toolbox\mex\mexw32) +mexdll = $(mexdll:toolbox\quickshift=toolbox\mex\mexw32) +mexdll = $(mexdll:toolbox\slic=toolbox\mex\mexw32) +mexdll = $(mexdll:toolbox\vlad=toolbox\mex\mexw32) +mexpdb = $(mexdll:.dll=.pdb) + +!elseif "$(ARCH)" == "win64" +libobj = $(libsrc:vl\=bin\win64\objs\) +cmdexe = $(cmdsrc:src\=bin\win64\) +mexdll = $(mexsrc:.c=.mexw64) +mexdll = $(mexdll:toolbox\fisher=toolbox\mex\mexw64) +mexdll = $(mexdll:toolbox\sift=toolbox\mex\mexw64) +mexdll = $(mexdll:toolbox\mser=toolbox\mex\mexw64) +mexdll = $(mexdll:toolbox\imop=toolbox\mex\mexw64) +mexdll = $(mexdll:toolbox\geometry=toolbox\mex\mexw64) +mexdll = $(mexdll:toolbox\gmm=toolbox\mex\mexw64) +mexdll = $(mexdll:toolbox\kmeans=toolbox\mex\mexw64) +mexdll = $(mexdll:toolbox\misc=toolbox\mex\mexw64) +mexdll = $(mexdll:toolbox\aib=toolbox\mex\mexw64) +mexdll = $(mexdll:toolbox\quickshift=toolbox\mex\mexw64) +mexdll = $(mexdll:toolbox\slic=toolbox\mex\mexw64) +mexdll = $(mexdll:toolbox\vlad=toolbox\mex\mexw64) +mexpdb = $(mexdll:.mexw64=.pdb) +!endif + +libobj = $(libobj:.c=.obj) +cmdexe = $(cmdexe:.c=.exe) +cmdpdb = $(cmdexe:.exe=.pdb) + +# Visual Studio redistributable files +MSVCR = Microsoft.VC$(MSVSVER).CRT +!if $(MSVSVER) <= 90 +# VS <= 2008 needs a manifest too +bincrt = $(bindir)\msvcr$(MSVSVER).dll $(bindir)\$(MSVCR).manifest +mexcrt = $(mexdir)\msvcr$(MSVSVER).dll $(mexdir)\$(MSVCR).manifest +!else if $(MSVSVER) <= 120 +bincrt = $(bindir)\msvcr$(MSVSVER).dll +mexcrt = $(mexdir)\msvcr$(MSVSVER).dll +!else +# With Visual Studio 2015 the universal run time does not need to be redistributed? +# https://blogs.msdn.microsoft.com/vcblog/2015/03/03/introducing-the-universal-crt/ +bincrt = +mexcrt = +!endif + +!ifdef MATLABROOT +all: $(bindir) $(objdir) $(mexdir) \ + $(bincrt) $(bindir)\vl.lib $(bindir)\vl.dll \ + $(cmdexe) \ + $(mexcrt) $(mexdir)\vl.dll $(mexdll) +!else +all: $(bindir) $(objdir) \ + $(bincrt) $(bindir)\vl.lib $(bindir)\vl.dll \ + $(cmdexe) +!endif + +BUILD_MEX=@echo .... CC [MEX] $(@) && \ + $(MEX) $(MEX_FLAGS) "$(<)" -output $(@) + +# -------------------------------------------------------------------- +# Maintenance rules +# -------------------------------------------------------------------- + +clean: + del /f /Q $(libobj) + del /f /Q $(objdir) + del /f /Q $(cmdpdb) + del /f /Q $(mexpdb) + +archclean: + if exist bin\$(ARCH) rmdir /S /Q bin\$(ARCH) + if exist $(mexdir) rmdir /S /Q $(mexdir) + +distclean: + if exist bin rmdir /S /Q bin + if exist toolbox\mex rmdir /S /Q toolbox\mex + +info: + @echo $(mexx) + @echo ** bindir = $(bindir) + @echo ** mexdir = $(mexdir) + @echo ** objdir = $(objdir) + @echo ** libsrc = $(libsrc) + @echo ** libobj = $(libobj) + @echo ** cmdsrc = $(cmdsrc) + @echo ** cmdexe = $(cmdexe) + @echo ** mexsrc = $(mexsrc) + @echo ** mexdll = $(mexdll) + @echo ** CC = $(CC) + @echo ** CFLAGS = $(CFLAGS) + @echo ** DLL_CFLAGS = $(DLL_CFLAGS) + @echo ** MEX_FLAGS = $(MEX_FLAGS) + @echo ** BUILD_MEX = "$(BUILD_MEX)" + @echo ** MATLABROOT = $(MATLABROOT) + @echo ** MEX = $(MEX) + @echo ** MEXEXT = $(MEXEXT) + @echo ** MEXOPT = $(MEXOPT) + @echo ** MSVSVER = $(MSVSVER) + @echo ** MSVCROOT = $(MSVCROOT) + @echo ** MSVCR = $(MSVCR) + @echo ** MSVCR_PATH = $(MSVCR_PATH) + @echo ** bincrt = $(bincrt) + @echo ** mexcrt = $(mexcrt) + @echo ** WINSDKROOT = $(WINSDKROOT) + @echo ** DEBUG = $(DEBUG) + +# -------------------------------------------------------------------- +# Build rules +# -------------------------------------------------------------------- + +# create directory if missing +$(bindir) : + mkdir $(bindir) + +$(objdir) : + mkdir $(objdir) + +$(mexdir) : + mkdir $(mexdir) + +# -------------------------------------------------------------------- +# Rules to compile the VLFeat DLL +# -------------------------------------------------------------------- + +# special sources with SSE2 support +$(objdir)\mathop_sse2.obj : vl\mathop_sse2.c + @echo .... CC [+SSE2] $(@) + @$(CC) $(CFLAGS) $(DLL_CFLAGS) /arch:SSE2 /D"__SSE2__" /c /Fo"$(@)" "vl\$(@B).c" + +$(objdir)\imopv_sse2.obj : vl\imopv_sse2.c + @echo .... CC [+SSE2] $(@) + @$(CC) $(CFLAGS) $(DLL_CFLAGS) /arch:SSE2 /D"__SSE2__" /c /Fo"$(@)" "vl\$(@B).c" + +# vl\*.c -> $objdir\*.obj +{vl}.c{$(objdir)}.obj: + @echo .... CC $(@) + @$(CC) $(CFLAGS) $(DLL_CFLAGS) /c /Fo"$(@)" "$(<)" + +# Link VLFeat DLL +$(bindir)\vl.dll : $(libobj) + @echo .. LINK [DLL] $(@R).dll + $(LINK) /DLL $(LFLAGS) $(**) /OUT:"$(@)" + @mt /nologo /outputresource:"$(@);#2" /manifest "$(@R).dll.manifest" + @-del "$(@R).dll.manifest" + +# *.obj -> *.lib +$(bindir)\vl.lib : $(libobj) + @echo ... LIB $(@R).lib + @lib $(**) /OUT:"$(@)" /NOLOGO + +# redistributable: msvcr__.dll => bin/win{32,64}/msvcr__.dll +$(bindir)\$(MSVCR).manifest : "$(MSVCR_PATH)\$(MSVCR).manifest" + copy $(**) "$(@)" + +$(bindir)\msvcr$(MSVSVER).dll: "$(MSVCR_PATH)\msvcr$(MSVSVER).dll" + copy $(**) "$(@)" + +# -------------------------------------------------------------------- +# Rules to compile the VLFeat EXE files +# -------------------------------------------------------------------- + +# src\*.c -> $bindir\*.exe +{src}.c{$(bindir)}.exe: + @echo .... CC [EXE] $(@) + @$(CC) $(CFLAGS) /Fe"$(@)" /Fo"$(@R).obj" "$(<)" /link $(EXE_LFLAGS) + @MT /nologo /outputresource:"$(@);#1" /manifest "$(@).manifest" + @-del "$(@).manifest" + @-del "$(@R).obj" + +# -------------------------------------------------------------------- +# Rules to compile the VLFeat MEX files +# -------------------------------------------------------------------- + +startmatlab: + "$(MATLABROOT)/bin/matlab.exe" -nodesktop + +# toolbox\*.c -> toolbox\*.dll +{toolbox\sift}.c{$(mexdir)}.$(MEXEXT): + $(BUILD_MEX) + +{toolbox\mser}.c{$(mexdir)}.$(MEXEXT): + $(BUILD_MEX) + +{toolbox\imop}.c{$(mexdir)}.$(MEXEXT): + $(BUILD_MEX) + +{toolbox\gmm}.c{$(mexdir)}.$(MEXEXT): + $(BUILD_MEX) + +{toolbox\geometry}.c{$(mexdir)}.$(MEXEXT): + $(BUILD_MEX) + +{toolbox\kmeans}.c{$(mexdir)}.$(MEXEXT): + $(BUILD_MEX) + +{toolbox\aib}.c{$(mexdir)}.$(MEXEXT): + $(BUILD_MEX) + +{toolbox\quickshift}.c{$(mexdir)}.$(MEXEXT): + $(BUILD_MEX) + +{toolbox\misc}.c{$(mexdir)}.$(MEXEXT): + $(BUILD_MEX) + +{toolbox\slic}.c{$(mexdir)}.$(MEXEXT): + $(BUILD_MEX) + +{toolbox\vlad}.c{$(mexdir)}.$(MEXEXT): + $(BUILD_MEX) + +{toolbox\fisher}.c{$(mexdir)}.$(MEXEXT): + $(BUILD_MEX) + +# vl.dll => mexw{32,64}\vl.dll +$(mexdir)\vl.dll : $(bindir)\vl.dll + copy "$(**)" "$(@)" + +# Ideally, the DLL should be linked to Intel compatibility library libiomp5md.dll that +# ships with MATLAB. However, there does not seem to be a clean way to do so without +# the .lib file. This is suboptimal as it casues two OMP libraries to be used (vcomp and iomp5). +# Possible work arounds that did not work yet: generate the .lib file from the .dll file, +# redirect somehow vcomp to iomp5. + +#$(LINK) /LIBPATH:"$(MATLABROOT)\extern\lib\win64\microsoft" /DLL $(LFLAGS) $(**) libmwblas.lib /nodefaultlib:vcomp /OUT:"$(@)" +#$(mexdir)\vl.dll : $(libobj) +# @echo .. LINK [DLL] $(@R).dll +# $(LINK) /DLL $(LFLAGS) $(**) /OUT:"$(@)" +# @-del "$(@R).dll.manifest" + +# redistributable: msvcr__.dll => bin/win{32,64}/msvcr__.dll +$(mexdir)\$(MSVCR).manifest : "$(MSVCR_PATH)\$(MSVCR).manifest" + copy $(**) "$(@)" + +$(mexdir)\msvcr$(MSVSVER).dll: "$(MSVCR_PATH)\msvcr$(MSVSVER).dll" + copy $(**) "$(@)" + +# -------------------------------------------------------------------- +# Rules to post the binary files +# -------------------------------------------------------------------- + +bin-release: + echo Fetching remote tags && \ + $(GIT) fetch --tags && \ + echo Checking out v$(VER) && \ + $(GIT) checkout v$(VER) + echo Rebuilding binaries for release + if exist "bin\$(ARCH)" del /f /Q "bin\$(ARCH)" + if exist "bin\mex\$(ARCH)" del /f /Q "toolbox\mex$(ARCH)" + nmake /f Makefile.mak ARCH=$(ARCH) + +bin-commit: bin-release + @echo Fetching remote tags && \ + $(GIT) fetch --tags + @echo Crearing/resetting and checking out branch $(BRANCH) to v$(VER) && \ + $(GIT) branch -f $(BRANCH) v$(VER) && \ + $(GIT) checkout $(BRANCH) + @echo Adding binaries && \ + $(GIT) add -f $(bincrt) && \ + $(GIT) add -f "$(bindir)\vl.lib" && \ + $(GIT) add -f "$(bindir)\vl.dll" && \ + $(GIT) add -f $(cmdexe) && \ + @echo Adding MEX files && \ + $(GIT) add -f $(mexcrt) && \ + $(GIT) add -f "$(mexdir)\vl.dll" && \ + $(GIT) add -f $(mexdll) && \ + @echo Commiting changes && \ + $(GIT) commit -m "$(ARCH) binaries for version $(VER)" + @echo Commiting and pushing to server the binaries && \ + $(GIT) push -v --force bin $(BRANCH):refs/heads/$(BRANCH) && \ + $(GIT) checkout v$(VER) && \ + $(GIT) branch -D $(BRANCH) diff --git a/vlfeat-0.9.21/README.md b/vlfeat-0.9.21/README.md new file mode 100644 index 0000000..51147b1 --- /dev/null +++ b/vlfeat-0.9.21/README.md @@ -0,0 +1,122 @@ +# VLFeat -- Vision Lab Features Library + +> Version 0.9.20 + +The VLFeat open source library implements popular computer vision +algorithms specialising in image understanding and local featurexs +extraction and matching. Algorithms incldue Fisher Vector, VLAD, +SIFT, MSER, k-means, hierarchical k-means, agglomerative information +bottleneck, SLIC superpixes, quick shift superpixels, large scale SVM +training, and many others. It is written in C for efficiency and +compatibility, with interfaces in MATLAB for ease of use, and detailed +documentation throughout. It supports Windows, Mac OS X, and Linux. + +VLFeat is distributed under the BSD license (see the `COPYING` file). + +The documentation is +[available online](http://www.vlfeat.org/index.html) and shipped with +the library as `doc/index.html`. See also: + +* [Using with MATLAB](http://www.vlfeat.org/install-matlab.html) +* [Using the command line utilities](http://www.vlfeat.org/install-shell.html) +* [Using the C API](http://www.vlfeat.org/install-c.html) +* [Compiling from source](http://www.vlfeat.org/compiling.html) + +## Quick start with MATLAB + +To start using VLFeat as a MATLAB toolbox, download the latest VLFeat +[binary package](http://www.vlfeat.org/download/). Note that the +pre-compiled binaries require MATLAB 2009B and later. Unpack it, for +example by using WinZIP (Windows), by double clicking on the archive +(Mac), or by using the command line (Linux and Mac): + + > tar xzf vlfeat-X.Y.Z-bin.tar.gz + +Here X.Y.Z denotes the latest version. Start MATLAB and run the +VLFeat setup command: + + > run /toolbox/vl_setup + +Here `` should be replaced with the path to the VLFeat +directory created by unpacking the archive. All VLFeat demos can now +be run in a row by the command: + + > vl_demo + +Check out the individual demos by editing this file: `edit vl_demo`. + +## Octave support + +The toolbox should be laregly compatible with GNU Octave, an open +source MATLAB equivalent. However, the binary distribution does not +ship with pre-built GNU Octave MEX files. To compile them use + + > cd + > make MKOCTFILE= + +# Changes + +- **0.9.21** Maintenance release. Bugfixes. +- **0.9.20** Maintenance release. Bugfixes. +- **0.9.19** Maintenance release. Minor bugfixes and fixes compilation + with MATLAB 2014a. +- **0.9.18** Several bugfixes. Improved documentation, particularly of + the covariant detectors. Minor enhancements of the Fisher vectors. +- **0.9.17** Rewritten SVM implementation, adding support for SGD and + SDCA optimisers and various loss functions (hinge, squared hinge, + logistic, etc.) and improving the interface. Added infrastructure to + support multi-core computations using OpenMP (MATLAB 2009B or later + required). Added OpenMP support to KD-trees and KMeans. Added new + Gaussian Mixture Models, VLAD encoding, and Fisher Vector encodings + (also with OpenMP support). Added LIOP feature descriptors. Added + new object category recognition example code, supporting several + standard benchmarks off-the-shelf. +- **0.9.16** Added `VL_COVDET`. This function implements the following + detectors: DoG, Hessian, Harris Laplace, Hessian Laplace, Multiscale + Hessian, Multiscale Harris. It also implements affine adaptation, + estiamtion of feature orientation, computation of descriptors on the + affine patches (including raw patches), and sourcing of custom + feature frame. +- **0.9.15** Added `VL_HOG` (HOG features). Added `VL_SVMPEGASOS` and + a vastly improved SVM implementation. Added `VL_IHASHSUM` (hashed + counting). Improved INTHIST (integral histogram). Added + `VL_CUMMAX`. Improved the implementation of `VL_ROC` and + VL_PR(). Added VL_DET() (Detection Error Trade-off (DET) + curves). Improved the verbosity control to AIB. Added support for + Xcode 4.3, improved support for past and future Xcode + versions. Completed the migration of the old test code in + `toolbox/test`, moving the functionality to the new unit tests + `toolbox/xtest`. +- **0.9.14** Added SLIC superpixels. Added VL_ALPHANUM(). Improved + Windows binary package and added support for Visual + Studio 2010. Improved the documentation layout and added a proper + bibliography. Bugfixes and other minor improvements. Moved from the + GPL to the less restrictive BSD license. +- **0.9.13** Fixed Windows binary package. +- **0.9.12** Fixes `vl_compile` and the architecture string on Linux 32 bit. +- **0.9.11** Fixes a compatibility problem on older Mac OS X versions. + A few bugfixes are included too. +- **0.9.10** Improves the homogeneous kernel map. Plenty of small + tweaks and improvements. Make maci64 the default architecture on the + Mac. +- **0.9.9** Added: sift matching example. Extended Caltech-101 + classification example to use kd-trees. +- **0.9.8** Added: image distance transform, PEGASOS, floating point + K-means, homogeneous kernel maps, a Caltech-101 classification + example. Improved documentation. +- **0.9.7** Changed the Mac OS X binary distribution to require a less + recent version of Mac OS X (10.5). +- **0.9.6** Changed the GNU/Linux binary distribution to require a + less recent version of the C library. +- **0.9.5** Added kd-tree and new SSE-accelerated vector/histogram + comparison code. Improved dense SIFT (dsift) implementation. Added + Snow Leopard and MATLAB R2009b support. +- **0.9.4** Added quick shift. Renamed dhog to dsift and improved + implementation and documentation. Improved tutorials. Added 64 bit + Windows binaries. Many other small changes. +- **0.9.3** Namespace change (everything begins with a vl_ prefix + now). Many other changes to provide compilation support on Windows + with MATLAB 7. +- **beta-3** Completes to the ikmeans code. +- **beta-2** Many additions. +- **beta-1** Initial public release. diff --git a/vlfeat-0.9.21/apps/phow_caltech101.m b/vlfeat-0.9.21/apps/phow_caltech101.m new file mode 100644 index 0000000..df90581 --- /dev/null +++ b/vlfeat-0.9.21/apps/phow_caltech101.m @@ -0,0 +1,320 @@ +function phow_caltech101() +% PHOW_CALTECH101 Image classification in the Caltech-101 dataset +% This program demonstrates how to use VLFeat to construct an image +% classifier on the Caltech-101 data. The classifier uses PHOW +% features (dense SIFT), spatial histograms of visual words, and a +% Chi2 SVM. To speedup computation it uses VLFeat fast dense SIFT, +% kd-trees, and homogeneous kernel map. The program also +% demonstrates VLFeat PEGASOS SVM solver, although for this small +% dataset other solvers such as LIBLINEAR can be more efficient. +% +% By default 15 training images are used, which should result in +% about 64% performance (a good performance considering that only a +% single feature type is being used). +% +% Call PHOW_CALTECH101 to train and test a classifier on a small +% subset of the Caltech-101 data. Note that the program +% automatically downloads a copy of the Caltech-101 data from the +% Internet if it cannot find a local copy. +% +% Edit the PHOW_CALTECH101 file to change the program configuration. +% +% To run on the entire dataset change CONF.TINYPROBLEM to FALSE. +% +% The Caltech-101 data is saved into CONF.CALDIR, which defaults to +% 'data/caltech-101'. Change this path to the desired location, for +% instance to point to an existing copy of the Caltech-101 data. +% +% The program can also be used to train a model on custom data by +% pointing CONF.CALDIR to it. Just create a subdirectory for each +% class and put the training images there. Make sure to adjust +% CONF.NUMTRAIN accordingly. +% +% Intermediate files are stored in the directory CONF.DATADIR. All +% such files begin with the prefix CONF.PREFIX, which can be changed +% to test different parameter settings without overriding previous +% results. +% +% The program saves the trained model in +% /-model.mat. This model can be used to +% test novel images independently of the Caltech data. +% +% load('data/baseline-model.mat') ; # change to the model path +% label = model.classify(model, im) ; +% + +% Author: Andrea Vedaldi + +% Copyright (C) 2011-2013 Andrea Vedaldi +% All rights reserved. +% +% This file is part of the VLFeat library and is made available under +% the terms of the BSD license (see the COPYING file). + +conf.calDir = 'data/caltech-101' ; +conf.dataDir = 'data/' ; +conf.autoDownloadData = true ; +conf.numTrain = 15 ; +conf.numTest = 15 ; +conf.numClasses = 102 ; +conf.numWords = 600 ; +conf.numSpatialX = [2 4] ; +conf.numSpatialY = [2 4] ; +conf.quantizer = 'kdtree' ; +conf.svm.C = 10 ; + +conf.svm.solver = 'sdca' ; +%conf.svm.solver = 'sgd' ; +%conf.svm.solver = 'liblinear' ; + +conf.svm.biasMultiplier = 1 ; +conf.phowOpts = {'Step', 3} ; +conf.clobber = false ; +conf.tinyProblem = true ; +conf.prefix = 'baseline' ; +conf.randSeed = 1 ; + +if conf.tinyProblem + conf.prefix = 'tiny' ; + conf.numClasses = 5 ; + conf.numSpatialX = 2 ; + conf.numSpatialY = 2 ; + conf.numWords = 300 ; + conf.phowOpts = {'Verbose', 2, 'Sizes', 7, 'Step', 5} ; +end + +conf.vocabPath = fullfile(conf.dataDir, [conf.prefix '-vocab.mat']) ; +conf.histPath = fullfile(conf.dataDir, [conf.prefix '-hists.mat']) ; +conf.modelPath = fullfile(conf.dataDir, [conf.prefix '-model.mat']) ; +conf.resultPath = fullfile(conf.dataDir, [conf.prefix '-result']) ; + +randn('state',conf.randSeed) ; +rand('state',conf.randSeed) ; +vl_twister('state',conf.randSeed) ; + +% -------------------------------------------------------------------- +% Download Caltech-101 data +% -------------------------------------------------------------------- + +if ~exist(conf.calDir, 'dir') || ... + (~exist(fullfile(conf.calDir, 'airplanes'),'dir') && ... + ~exist(fullfile(conf.calDir, '101_ObjectCategories', 'airplanes'))) + if ~conf.autoDownloadData + error(... + ['Caltech-101 data not found. ' ... + 'Set conf.autoDownloadData=true to download the required data.']) ; + end + vl_xmkdir(conf.calDir) ; + calUrl = ['http://www.vision.caltech.edu/Image_Datasets/' ... + 'Caltech101/101_ObjectCategories.tar.gz'] ; + fprintf('Downloading Caltech-101 data to ''%s''. This will take a while.', conf.calDir) ; + untar(calUrl, conf.calDir) ; +end + +if ~exist(fullfile(conf.calDir, 'airplanes'),'dir') + conf.calDir = fullfile(conf.calDir, '101_ObjectCategories') ; +end + +% -------------------------------------------------------------------- +% Setup data +% -------------------------------------------------------------------- +classes = dir(conf.calDir) ; +classes = classes([classes.isdir]) ; +classes = {classes(3:conf.numClasses+2).name} ; + +images = {} ; +imageClass = {} ; +for ci = 1:length(classes) + ims = dir(fullfile(conf.calDir, classes{ci}, '*.jpg'))' ; + ims = vl_colsubset(ims, conf.numTrain + conf.numTest) ; + ims = cellfun(@(x)fullfile(classes{ci},x),{ims.name},'UniformOutput',false) ; + images = {images{:}, ims{:}} ; + imageClass{end+1} = ci * ones(1,length(ims)) ; +end +selTrain = find(mod(0:length(images)-1, conf.numTrain+conf.numTest) < conf.numTrain) ; +selTest = setdiff(1:length(images), selTrain) ; +imageClass = cat(2, imageClass{:}) ; + +model.classes = classes ; +model.phowOpts = conf.phowOpts ; +model.numSpatialX = conf.numSpatialX ; +model.numSpatialY = conf.numSpatialY ; +model.quantizer = conf.quantizer ; +model.vocab = [] ; +model.w = [] ; +model.b = [] ; +model.classify = @classify ; + +% -------------------------------------------------------------------- +% Train vocabulary +% -------------------------------------------------------------------- + +if ~exist(conf.vocabPath) || conf.clobber + + % Get some PHOW descriptors to train the dictionary + selTrainFeats = vl_colsubset(selTrain, 30) ; + descrs = {} ; + %for ii = 1:length(selTrainFeats) + parfor ii = 1:length(selTrainFeats) + im = imread(fullfile(conf.calDir, images{selTrainFeats(ii)})) ; + im = standarizeImage(im) ; + [drop, descrs{ii}] = vl_phow(im, model.phowOpts{:}) ; + end + + descrs = vl_colsubset(cat(2, descrs{:}), 10e4) ; + descrs = single(descrs) ; + + % Quantize the descriptors to get the visual words + vocab = vl_kmeans(descrs, conf.numWords, 'verbose', 'algorithm', 'elkan', 'MaxNumIterations', 50) ; + save(conf.vocabPath, 'vocab') ; +else + load(conf.vocabPath) ; +end + +model.vocab = vocab ; + +if strcmp(model.quantizer, 'kdtree') + model.kdtree = vl_kdtreebuild(vocab) ; +end + +% -------------------------------------------------------------------- +% Compute spatial histograms +% -------------------------------------------------------------------- + +if ~exist(conf.histPath) || conf.clobber + hists = {} ; + parfor ii = 1:length(images) + % for ii = 1:length(images) + fprintf('Processing %s (%.2f %%)\n', images{ii}, 100 * ii / length(images)) ; + im = imread(fullfile(conf.calDir, images{ii})) ; + hists{ii} = getImageDescriptor(model, im); + end + + hists = cat(2, hists{:}) ; + save(conf.histPath, 'hists') ; +else + load(conf.histPath) ; +end + +% -------------------------------------------------------------------- +% Compute feature map +% -------------------------------------------------------------------- + +psix = vl_homkermap(hists, 1, 'kchi2', 'gamma', .5) ; + +% -------------------------------------------------------------------- +% Train SVM +% -------------------------------------------------------------------- + +if ~exist(conf.modelPath) || conf.clobber + switch conf.svm.solver + case {'sgd', 'sdca'} + lambda = 1 / (conf.svm.C * length(selTrain)) ; + w = [] ; + parfor ci = 1:length(classes) + perm = randperm(length(selTrain)) ; + fprintf('Training model for class %s\n', classes{ci}) ; + y = 2 * (imageClass(selTrain) == ci) - 1 ; + [w(:,ci) b(ci) info] = vl_svmtrain(psix(:, selTrain(perm)), y(perm), lambda, ... + 'Solver', conf.svm.solver, ... + 'MaxNumIterations', 50/lambda, ... + 'BiasMultiplier', conf.svm.biasMultiplier, ... + 'Epsilon', 1e-3); + end + + case 'liblinear' + svm = train(imageClass(selTrain)', ... + sparse(double(psix(:,selTrain))), ... + sprintf(' -s 3 -B %f -c %f', ... + conf.svm.biasMultiplier, conf.svm.C), ... + 'col') ; + w = svm.w(:,1:end-1)' ; + b = svm.w(:,end)' ; + end + + model.b = conf.svm.biasMultiplier * b ; + model.w = w ; + + save(conf.modelPath, 'model') ; +else + load(conf.modelPath) ; +end + +% -------------------------------------------------------------------- +% Test SVM and evaluate +% -------------------------------------------------------------------- + +% Estimate the class of the test images +scores = model.w' * psix + model.b' * ones(1,size(psix,2)) ; +[drop, imageEstClass] = max(scores, [], 1) ; + +% Compute the confusion matrix +idx = sub2ind([length(classes), length(classes)], ... + imageClass(selTest), imageEstClass(selTest)) ; +confus = zeros(length(classes)) ; +confus = vl_binsum(confus, ones(size(idx)), idx) ; + +% Plots +figure(1) ; clf; +subplot(1,2,1) ; +imagesc(scores(:,[selTrain selTest])) ; title('Scores') ; +set(gca, 'ytick', 1:length(classes), 'yticklabel', classes) ; +subplot(1,2,2) ; +imagesc(confus) ; +title(sprintf('Confusion matrix (%.2f %% accuracy)', ... + 100 * mean(diag(confus)/conf.numTest) )) ; +print('-depsc2', [conf.resultPath '.ps']) ; +save([conf.resultPath '.mat'], 'confus', 'conf') ; + +% ------------------------------------------------------------------------- +function im = standarizeImage(im) +% ------------------------------------------------------------------------- + +im = im2single(im) ; +if size(im,1) > 480, im = imresize(im, [480 NaN]) ; end + +% ------------------------------------------------------------------------- +function hist = getImageDescriptor(model, im) +% ------------------------------------------------------------------------- + +im = standarizeImage(im) ; +width = size(im,2) ; +height = size(im,1) ; +numWords = size(model.vocab, 2) ; + +% get PHOW features +[frames, descrs] = vl_phow(im, model.phowOpts{:}) ; + +% quantize local descriptors into visual words +switch model.quantizer + case 'vq' + [drop, binsa] = min(vl_alldist(model.vocab, single(descrs)), [], 1) ; + case 'kdtree' + binsa = double(vl_kdtreequery(model.kdtree, model.vocab, ... + single(descrs), ... + 'MaxComparisons', 50)) ; +end + +for i = 1:length(model.numSpatialX) + binsx = vl_binsearch(linspace(1,width,model.numSpatialX(i)+1), frames(1,:)) ; + binsy = vl_binsearch(linspace(1,height,model.numSpatialY(i)+1), frames(2,:)) ; + + % combined quantization + bins = sub2ind([model.numSpatialY(i), model.numSpatialX(i), numWords], ... + binsy,binsx,binsa) ; + hist = zeros(model.numSpatialY(i) * model.numSpatialX(i) * numWords, 1) ; + hist = vl_binsum(hist, ones(size(bins)), bins) ; + hists{i} = single(hist / sum(hist)) ; +end +hist = cat(1,hists{:}) ; +hist = hist / sum(hist) ; + +% ------------------------------------------------------------------------- +function [className, score] = classify(model, im) +% ------------------------------------------------------------------------- + +hist = getImageDescriptor(model, im) ; +psix = vl_homkermap(hist, 1, 'kchi2', 'gamma', .5) ; +scores = model.w' * psix + model.b' ; +[score, best] = max(scores) ; +className = model.classes{best} ; diff --git a/vlfeat-0.9.21/apps/recognition/encodeImage.m b/vlfeat-0.9.21/apps/recognition/encodeImage.m new file mode 100644 index 0000000..b10abbb --- /dev/null +++ b/vlfeat-0.9.21/apps/recognition/encodeImage.m @@ -0,0 +1,155 @@ +function descrs = encodeImage(encoder, im, varargin) +% ENCODEIMAGE Apply an encoder to an image +% DESCRS = ENCODEIMAGE(ENCODER, IM) applies the ENCODER +% to image IM, returning a corresponding code vector PSI. +% +% IM can be an image, the path to an image, or a cell array of +% the same, to operate on multiple images. +% +% ENCODEIMAGE(ENCODER, IM, CACHE) utilizes the specified CACHE +% directory to store encodings for the given images. The cache +% is used only if the images are specified as file names. +% +% See also: TRAINENCODER(). + +% Author: Andrea Vedaldi + +% Copyright (C) 2013 Andrea Vedaldi +% All rights reserved. +% +% This file is part of the VLFeat library and is made available under +% the terms of the BSD license (see the COPYING file). + +opts.cacheDir = [] ; +opts.cacheChunkSize = 512 ; +opts = vl_argparse(opts,varargin) ; + +if ~iscell(im), im = {im} ; end + +% break the computation into cached chunks +startTime = tic ; +descrs = cell(1, numel(im)) ; +numChunks = ceil(numel(im) / opts.cacheChunkSize) ; + +for c = 1:numChunks + n = min(opts.cacheChunkSize, numel(im) - (c-1)*opts.cacheChunkSize) ; + chunkPath = fullfile(opts.cacheDir, sprintf('chunk-%03d.mat',c)) ; + if ~isempty(opts.cacheDir) && exist(chunkPath) + fprintf('%s: loading descriptors from %s\n', mfilename, chunkPath) ; + load(chunkPath, 'data') ; + else + range = (c-1)*opts.cacheChunkSize + (1:n) ; + fprintf('%s: processing a chunk of %d images (%3d of %3d, %5.1fs to go)\n', ... + mfilename, numel(range), ... + c, numChunks, toc(startTime) / (c - 1) * (numChunks - c + 1)) ; + data = processChunk(encoder, im(range)) ; + if ~isempty(opts.cacheDir) + save(chunkPath, 'data') ; + end + end + descrs{c} = data ; + clear data ; +end +descrs = cat(2,descrs{:}) ; + +% -------------------------------------------------------------------- +function psi = processChunk(encoder, im) +% -------------------------------------------------------------------- +psi = cell(1,numel(im)) ; +if numel(im) > 1 & matlabpool('size') > 1 + parfor i = 1:numel(im) + psi{i} = encodeOne(encoder, im{i}) ; + end +else + % avoiding parfor makes debugging easier + for i = 1:numel(im) + psi{i} = encodeOne(encoder, im{i}) ; + end +end +psi = cat(2, psi{:}) ; + +% -------------------------------------------------------------------- +function psi = encodeOne(encoder, im) +% -------------------------------------------------------------------- + +im = encoder.readImageFn(im) ; + +features = encoder.extractorFn(im) ; + +imageSize = size(im) ; +psi = {} ; +for i = 1:size(encoder.subdivisions,2) + minx = encoder.subdivisions(1,i) * imageSize(2) ; + miny = encoder.subdivisions(2,i) * imageSize(1) ; + maxx = encoder.subdivisions(3,i) * imageSize(2) ; + maxy = encoder.subdivisions(4,i) * imageSize(1) ; + + ok = ... + minx <= features.frame(1,:) & features.frame(1,:) < maxx & ... + miny <= features.frame(2,:) & features.frame(2,:) < maxy ; + + descrs = encoder.projection * bsxfun(@minus, ... + features.descr(:,ok), ... + encoder.projectionCenter) ; + if encoder.renormalize + descrs = bsxfun(@times, descrs, 1./max(1e-12, sqrt(sum(descrs.^2)))) ; + end + + w = size(im,2) ; + h = size(im,1) ; + frames = features.frame(1:2,:) ; + frames = bsxfun(@times, bsxfun(@minus, frames, [w;h]/2), 1./[w;h]) ; + + descrs = extendDescriptorsWithGeometry(encoder.geometricExtension, frames, descrs) ; + + switch encoder.type + case 'bovw' + [words,distances] = vl_kdtreequery(encoder.kdtree, encoder.words, ... + descrs, ... + 'MaxComparisons', 100) ; + z = vl_binsum(zeros(encoder.numWords,1), 1, double(words)) ; + z = sqrt(z) ; + + case 'fv' + z = vl_fisher(descrs, ... + encoder.means, ... + encoder.covariances, ... + encoder.priors, ... + 'Improved') ; + case 'vlad' + [words,distances] = vl_kdtreequery(encoder.kdtree, encoder.words, ... + descrs, ... + 'MaxComparisons', 15) ; + assign = zeros(encoder.numWords, numel(words), 'single') ; + assign(sub2ind(size(assign), double(words), 1:numel(words))) = 1 ; + z = vl_vlad(descrs, ... + encoder.words, ... + assign, ... + 'SquareRoot', ... + 'NormalizeComponents') ; + end + z = z / max(sqrt(sum(z.^2)), 1e-12) ; + psi{i} = z(:) ; +end +psi = cat(1, psi{:}) ; + +% -------------------------------------------------------------------- +function psi = getFromCache(name, cache) +% -------------------------------------------------------------------- +[drop, name] = fileparts(name) ; +cachePath = fullfile(cache, [name '.mat']) ; +if exist(cachePath, 'file') + data = load(cachePath) ; + psi = data.psi ; +else + psi = [] ; +end + +% -------------------------------------------------------------------- +function storeToCache(name, cache, psi) +% -------------------------------------------------------------------- +[drop, name] = fileparts(name) ; +cachePath = fullfile(cache, [name '.mat']) ; +vl_xmkdir(cache) ; +data.psi = psi ; +save(cachePath, '-STRUCT', 'data') ; diff --git a/vlfeat-0.9.21/apps/recognition/experiments.m b/vlfeat-0.9.21/apps/recognition/experiments.m new file mode 100644 index 0000000..789fcac --- /dev/null +++ b/vlfeat-0.9.21/apps/recognition/experiments.m @@ -0,0 +1,237 @@ +function experiments() +% EXPERIMENTS Run image classification experiments +% The experimens download a number of benchmark datasets in the +% 'data/' subfolder. Make sure that there are several GBs of +% space available. +% +% By default, experiments run with a lite option turned on. This +% quickly runs all of them on tiny subsets of the actual data. +% This is used only for testing; to run the actual experiments, +% set the lite variable to false. +% +% Running all the experiments is a slow process. Using parallel +% MATLAB and several cores/machiens is suggested. + +% Author: Andrea Vedaldi + +% Copyright (C) 2013 Andrea Vedaldi +% All rights reserved. +% +% This file is part of the VLFeat library and is made available under +% the terms of the BSD license (see the COPYING file). + +lite = true ; +clear ex ; + +ex(1).prefix = 'fv-aug' ; +ex(1).trainOpts = {'C', 10} ; +ex(1).datasets = {'fmd', 'scene67'} ; +ex(1).seed = 1 ; +ex(1).opts = {... + 'type', 'fv', ... + 'numWords', 256, ... + 'layouts', {'1x1'}, ... + 'geometricExtension', 'xy', ... + 'numPcaDimensions', 80, ... + 'extractorFn', @(x) getDenseSIFT(x, ... + 'step', 4, ... + 'scales', 2.^(1:-.5:-3))}; + +ex(2) = ex(1) ; +ex(2).datasets = {'caltech101'} ; +ex(2).opts{end} = @(x) getDenseSIFT(x, ... + 'step', 4, ... + 'scales', 2.^(0:-.5:-3)) ; + +ex(3) = ex(1) ; +ex(3).datasets = {'voc07'} ; +ex(3).C = 1 ; + +ex(4) = ex(1) ; +ex(4).prefix = 'vlad-aug' ; +ex(4).opts = {... + 'type', 'vlad', ... + 'numWords', 256, ... + 'layouts', {'1x1'}, ... + 'geometricExtension', 'xy', ... + 'numPcaDimensions', 100, ... + 'whitening', true, ... + 'whiteningRegul', 0.01, ... + 'renormalize', true, ... + 'extractorFn', @(x) getDenseSIFT(x, ... + 'step', 4, ... + 'scales', 2.^(1:-.5:-3))}; +ex(5) = ex(4) ; +ex(5).datasets = {'caltech101'} ; +ex(5).opts{end} = ex(2).opts{end} ; + +ex(6) = ex(4) ; +ex(6).datasets = {'voc07'} ; +ex(6).C = 1 ; + +ex(7) = ex(1) ; +ex(7).prefix = 'bovw-aug' ; +ex(7).opts = {... + 'type', 'bovw', ... + 'numWords', 4096, ... + 'layouts', {'1x1'}, ... + 'geometricExtension', 'xy', ... + 'numPcaDimensions', 100, ... + 'whitening', true, ... + 'whiteningRegul', 0.01, ... + 'renormalize', true, ... + 'extractorFn', @(x) getDenseSIFT(x, ... + 'step', 4, ... + 'scales', 2.^(1:-.5:-3))}; + +ex(8) = ex(7) ; +ex(8).datasets = {'caltech101'} ; +ex(8).opts{end} = ex(2).opts{end} ; + +ex(9) = ex(7) ; +ex(9).datasets = {'voc07'} ; +ex(9).C = 1 ; + +ex(10).prefix = 'fv' ; +ex(10).trainOpts = {'C', 10} ; +ex(10).datasets = {'fmd', 'scene67'} ; +ex(10).seed = 1 ; +ex(10).opts = {... + 'type', 'fv', ... + 'numWords', 256, ... + 'layouts', {'1x1'}, ... + 'geometricExtension', 'none', ... + 'numPcaDimensions', 80, ... + 'extractorFn', @(x) getDenseSIFT(x, ... + 'step', 4, ... + 'scales', 2.^(1:-.5:-3))}; + +ex(11) = ex(10) ; +ex(11).datasets = {'caltech101'} ; +ex(11).opts{end} = @(x) getDenseSIFT(x, ... + 'step', 4, ... + 'scales', 2.^(0:-.5:-3)) ; + +ex(12) = ex(10) ; +ex(12).datasets = {'voc07'} ; +ex(12).C = 1 ; + + +ex(13).prefix = 'fv-sp' ; +ex(13).trainOpts = {'C', 10} ; +ex(13).datasets = {'fmd', 'scene67'} ; +ex(13).seed = 1 ; +ex(13).opts = {... + 'type', 'fv', ... + 'numWords', 256, ... + 'layouts', {'1x1', '3x1'}, ... + 'geometricExtension', 'none', ... + 'numPcaDimensions', 80, ... + 'extractorFn', @(x) getDenseSIFT(x, ... + 'step', 4, ... + 'scales', 2.^(1:-.5:-3))}; + +ex(14) = ex(13) ; +ex(14).datasets = {'caltech101'} ; +ex(14).opts{6} = {'1x1', '2x2'} ; +ex(14).opts{end} = @(x) getDenseSIFT(x, ... + 'step', 4, ... + 'scales', 2.^(0:-.5:-3)) ; + +ex(15) = ex(13) ; +ex(15).datasets = {'voc07'} ; +ex(15).C = 1 ; + + +if lite, tag = 'lite' ; +else, tag = 'ex' ; end + +for i=1:numel(ex) + for j=1:numel(ex(i).datasets) + dataset = ex(i).datasets{j} ; + if ~isfield(ex(i), 'trainOpts') || ~iscell(ex(i).trainOpts) + ex(i).trainOpts = {} ; + end + traintest(... + 'prefix', [tag '-' dataset '-' ex(i).prefix], ... + 'seed', ex(i).seed, ... + 'dataset', char(dataset), ... + 'datasetDir', fullfile('data', dataset), ... + 'lite', lite, ... + ex(i).trainOpts{:}, ... + 'encoderParams', ex(i).opts) ; + end +end + +% print HTML table +pf('\n') ; +ph('method', 'VOC07', 'Caltech 101', 'Scene 67', 'FMD') ; +pr('FV', ... + ge([tag '-voc07-fv'],'ap11'), ... + ge([tag '-caltech101-fv']), ... + ge([tag '-scene67-fv']), ... + ge([tag '-fmd-fv'])) ; +pr('FV + aug.', ... + ge([tag '-voc07-fv-aug'],'ap11'), ... + ge([tag '-caltech101-fv-aug']), ... + ge([tag '-scene67-fv-aug']), ... + ge([tag '-fmd-fv-aug'])) ; +pr('FV + s.p.', ... + ge([tag '-voc07-fv-sp'],'ap11'), ... + ge([tag '-caltech101-fv-sp']), ... + ge([tag '-scene67-fv-sp']), ... + ge([tag '-fmd-fv-sp'])) ; +%pr('VLAD', ... +% ge([tag '-voc07-vlad'],'ap11'), ... +% ge([tag '-caltech101-vlad']), ... +% ge([tag '-scene67-vlad']), ... +% ge([tag '-fmd-vlad'])) ; +pr('VLAD + aug.', ... + ge([tag '-voc07-vlad-aug'],'ap11'), ... + ge([tag '-caltech101-vlad-aug']), ... + ge([tag '-scene67-vlad-aug']), ... + ge([tag '-fmd-vlad-aug'])) ; +%pr('VLAD+sp', ... +% ge([tag '-voc07-vlad-sp'],'ap11'), ... +% ge([tag '-caltech101-vlad-sp']), ... +% ge([tag '-scene67-vlad-sp']), ... +% ge([tag '-fmd-vlad-sp'])) ; +%pr('BOVW', ... +% ge([tag '-voc07-bovw'],'ap11'), ... +% ge([tag '-caltech101-bovw']), ... +% ge([tag '-scene67-bovw']), ... +% ge([tag '-fmd-bovw'])) ; +pr('BOVW + aug.', ... + ge([tag '-voc07-bovw-aug'],'ap11'), ... + ge([tag '-caltech101-bovw-aug']), ... + ge([tag '-scene67-bovw-aug']), ... + ge([tag '-fmd-bovw-aug'])) ; +%pr('BOVW+sp', ... +% ge([tag '-voc07-bovw-sp'],'ap11'), ... +% ge([tag '-caltech101-bovw-sp']), ... +% ge([tag '-scene67-bovw-sp']), ... +% ge([tag '-fmd-bovw-sp'])) ; +pf('
\n'); + +function pf(str) +fprintf(str) ; + +function str = ge(name, format) +if nargin == 1, format = 'acc'; end +data = load(fullfile('data', name, 'result.mat')) ; +switch format + case 'acc' + str = sprintf('%.2f%% Acc', mean(diag(data.confusion)) * 100) ; + case 'ap11' + str = sprintf('%.2f%% mAP', mean(data.ap11) * 100) ; +end + +function pr(varargin) +fprintf('') ; +for i=1:numel(varargin), fprintf('%s',varargin{i}) ; end +fprintf('\n') ; + +function ph(varargin) +fprintf('') ; +for i=1:numel(varargin), fprintf('%s',varargin{i}) ; end +fprintf('\n') ; diff --git a/vlfeat-0.9.21/apps/recognition/extendDescriptorsWithGeometry.m b/vlfeat-0.9.21/apps/recognition/extendDescriptorsWithGeometry.m new file mode 100644 index 0000000..44e4b4e --- /dev/null +++ b/vlfeat-0.9.21/apps/recognition/extendDescriptorsWithGeometry.m @@ -0,0 +1,24 @@ +function descrs = extendDescriptorsWithGeometry(type, frames, descrs) +% EXTENDDESCRIPTORSWITHGEOMETRY Extend feature descriptors with geometric components +% DESCRS = EXTENDDESCRIPTORSWITHGEOMETRY(TYPE, FRAMES, DESCRS) +% extends the descriptorss DESCRS with either nothing (TYPE = +% 'none') or XY (TYPE = 'xy') from the FRAMES matrix. Note that, +% for this to make sense, DESCRS and FRAMES should be properly normalized. + +% Author: Andrea Vedaldi + +% Copyright (C) 2013 Andrea Vedaldi +% All rights reserved. +% +% This file is part of the VLFeat library and is made available under +% the terms of the BSD license (see the COPYING file). + + +switch lower(type) + case 'none' + case 'xy' + z = frames(1:2,:) ; + descrs = cat(1, descrs, z) ; + otherwise + error('Uknown geometric extension ''%s''.', type) ; +end diff --git a/vlfeat-0.9.21/apps/recognition/getDenseSIFT.m b/vlfeat-0.9.21/apps/recognition/getDenseSIFT.m new file mode 100644 index 0000000..8aff60e --- /dev/null +++ b/vlfeat-0.9.21/apps/recognition/getDenseSIFT.m @@ -0,0 +1,61 @@ +function features = getDenseSIFT(im, varargin) +% GETDENSESIFT Extract dense SIFT features +% FEATURES = GETDENSESIFT(IM) extract dense SIFT features from +% image IM. + +% Author: Andrea Vedaldi + +% Copyright (C) 2013 Andrea Vedaldi +% All rights reserved. +% +% This file is part of the VLFeat library and is made available under +% the terms of the BSD license (see the COPYING file). + +opts.scales = logspace(log10(1), log10(.25), 5) ; +opts.contrastthreshold = 0 ; +opts.step = 3 ; +opts.rootSift = false ; +opts.normalizeSift = true ; +opts.binSize = 8 ; +opts.geometry = [4 4 8] ; +opts.sigma = 0 ; +opts = vl_argparse(opts, varargin) ; + +dsiftOpts = {'norm', 'fast', 'floatdescriptors', ... + 'step', opts.step, ... + 'size', opts.binSize, ... + 'geometry', opts.geometry} ; + +if size(im,3)>1, im = rgb2gray(im) ; end +im = im2single(im) ; +im = vl_imsmooth(im, opts.sigma) ; + +for si = 1:numel(opts.scales) + im_ = imresize(im, opts.scales(si)) ; + + [frames{si}, descrs{si}] = vl_dsift(im_, dsiftOpts{:}) ; + + % root SIFT + if opts.rootSift + descrs{si} = sqrt(descrs{si}) ; + end + if opts.normalizeSift + descrs{si} = snorm(descrs{si}) ; + end + + % zero low contrast descriptors + info.contrast{si} = frames{si}(3,:) ; + kill = info.contrast{si} < opts.contrastthreshold ; + descrs{si}(:,kill) = 0 ; + + % store frames + frames{si}(1:2,:) = (frames{si}(1:2,:)-1) / opts.scales(si) + 1 ; + frames{si}(3,:) = opts.binSize / opts.scales(si) / 3 ; +end + +features.frame = cat(2, frames{:}) ; +features.descr = cat(2, descrs{:}) ; +features.contrast = cat(2, info.contrast{:}) ; + +function x = snorm(x) +x = bsxfun(@times, x, 1./max(1e-5,sqrt(sum(x.^2,1)))) ; diff --git a/vlfeat-0.9.21/apps/recognition/readImage.m b/vlfeat-0.9.21/apps/recognition/readImage.m new file mode 100644 index 0000000..627e9d8 --- /dev/null +++ b/vlfeat-0.9.21/apps/recognition/readImage.m @@ -0,0 +1,37 @@ +function [im, scale] = readImage(imagePath) +% READIMAGE Read and standardize image +% [IM, SCALE] = READIMAGE(IMAGEPATH) reads the specified image file, +% converts the result to SINGLE class, and rescales the image +% to have a maximum height of 480 pixels, returing the corresponding +% scaling factor SCALE. +% +% READIMAGE(IM) where IM is already an image applies only the +% standardization to it. + +% Author: Andrea Vedaldi + +% Copyright (C) 2013 Andrea Vedaldi +% All rights reserved. +% +% This file is part of the VLFeat library and is made available under +% the terms of the BSD license (see the COPYING file). + +if ischar(imagePath) + try + im = imread(imagePath) ; + catch + error('Corrupted image %s', imagePath) ; + end +else + im = imagePath ; +end + +im = im2single(im) ; + +scale = 1 ; +if (size(im,1) > 480) + scale = 480 / size(im,1) ; + im = imresize(im, scale) ; + im = min(max(im,0),1) ; +end + diff --git a/vlfeat-0.9.21/apps/recognition/setupCaltech256.m b/vlfeat-0.9.21/apps/recognition/setupCaltech256.m new file mode 100644 index 0000000..cd4921d --- /dev/null +++ b/vlfeat-0.9.21/apps/recognition/setupCaltech256.m @@ -0,0 +1,78 @@ +function imdb = setupCaltech256(datasetDir, varargin) +% SETUPCALTECH256 Setup Caltech 256 and 101 datasets +% This is similar to SETUPGENERIC(), with modifications to setup +% Caltech-101 and Caltech-256 according to the standard +% evaluation protocols. Specific options include: +% +% Variant:: 'caltech256' +% Either 'caltech101' or 'caltech256'. +% +% AutoDownload:: true +% Automatically download the data from the Internet if not +% found at DATASETDIR. +% +% See:: SETUPGENERIC(). + +% Author: Andrea Vedaldi + +% Copyright (C) 2013 Andrea Vedaldi +% All rights reserved. +% +% This file is part of the VLFeat library and is made available under +% the terms of the BSD license (see the COPYING file). + +opts.lite = false ; +opts.numTrain = 30 ; +opts.numTest = 25 ; +opts.seed = 1 ; +opts.variant = 'caltech256' ; +opts.autoDownload = true ; +opts = vl_argparse(opts, varargin) ; + +% Download and unpack +vl_xmkdir(datasetDir) ; +switch opts.variant + case 'caltech101' + name = '101_ObjectCategories' ; + checkClassName = 'airplanes' ; + url = 'http://www.vision.caltech.edu/Image_Datasets/Caltech101/101_ObjectCategories.tar.gz' ; + numClasses = 102 ; + case 'caltech256' + name = '256_ObjectCategories' ; + checkClassName = '001.ak47' ; + url = 'http://www.vision.caltech.edu/Image_Datasets/Caltech256/256_ObjectCategories.tar' ; + numClasses = 257 ; + otherwise + error('Uknown dataset variant ''%s''.', opts.variant) ; +end + +if exist(fullfile(datasetDir, checkClassName), 'file') + % ok +elseif exist(fullfile(datasetDir, name, checkClassName), 'file') + datasetDir = fullfile(datasetDir, name) ; +elseif opts.autoDownload + fprintf('Downloading %s data to ''%s''. This will take a while.', opts.variant, datasetDir) ; + untar(url, datasetDir) ; + datasetDir = fullfile(datasetDir, name) ; +else + error('Could not find %s dataset in ''%s''', opts.variant, datasetDir) ; +end + +% Read classes +imdb = setupGeneric(datasetDir, ... + 'numTrain', opts.numTrain, 'numVal', 0, 'numTest', opts.numTest, ... + 'expectedNumClasses', numClasses, ... + 'seed', opts.seed, 'lite', opts.lite) ; + +% In Caltech 256 background is not evaluated +switch opts.variant + case 'caltech101' + case 'caltech256' + imdb.images.set(imdb.images.class == 257) = 0 ; + ok = find(imdb.images.set ~= 0) ; + imdb.images.id = imdb.images.id(ok) ; + imdb.images.name = imdb.images.name(ok) ; + imdb.images.set = imdb.images.set(ok) ; + imdb.images.class = imdb.images.class(ok) ; +end + diff --git a/vlfeat-0.9.21/apps/recognition/setupFMD.m b/vlfeat-0.9.21/apps/recognition/setupFMD.m new file mode 100644 index 0000000..4a74322 --- /dev/null +++ b/vlfeat-0.9.21/apps/recognition/setupFMD.m @@ -0,0 +1,39 @@ +function imdb = setupFMD(datasetDir, varargin) +% SETUPSCENE67 Setup Flickr Material Dataset +% This is similar to SETUPCALTECH101(), with modifications to setup +% the Flickr Material Dataset accroding to the standard +% evaluation protocols. +% +% See: SETUPCALTECH101(). + +% Author: Andrea Vedaldi + +% Copyright (C) 2013 Andrea Vedaldi +% All rights reserved. +% +% This file is part of the VLFeat library and is made available under +% the terms of the BSD license (see the COPYING file). + +opts.lite = false ; +opts.seed = 1 ; +opts.numTrain = 50 ; +opts.numTest = 50 ; +opts.autoDownload = true ; +opts = vl_argparse(opts, varargin) ; + +% Download and unpack +vl_xmkdir(datasetDir) ; +if exist(fullfile(datasetDir, 'image', 'wood')) + % ok +elseif opts.autoDownload + url = 'http://people.csail.mit.edu/celiu/CVPR2010/FMD/FMD.zip' ; + fprintf('Downloading FMD data to ''%s''. This will take a while.', datasetDir) ; + unzip(url, datasetDir) ; +else + error('FMD not found in %s', datasetDir) ; +end + +imdb = setupGeneric(fullfile(datasetDir,'image'), ... + 'numTrain', opts.numTrain, 'numVal', 0, 'numTest', opts.numTest, ... + 'expectedNumClasses', 10, ... + 'seed', opts.seed, 'lite', opts.lite) ; diff --git a/vlfeat-0.9.21/apps/recognition/setupGeneric.m b/vlfeat-0.9.21/apps/recognition/setupGeneric.m new file mode 100644 index 0000000..94525be --- /dev/null +++ b/vlfeat-0.9.21/apps/recognition/setupGeneric.m @@ -0,0 +1,135 @@ +function imdb = setupGeneric(datasetDir, varargin) +% SETUPGENERIC Setup a Caltech-101-like dataset +% IMDB = SETUPGENERIC(DATASETDIR) initializes a IMDB structure +% representing the dataset located at DATASETDIR. The dataset +% is supposed to be organized similarly to Caltech-101, i.e. +% to have one directory per image class, with a number of +% image files in each directory. +% +% SETUPGENERIC(..., 'OPT', VAL, ...) accepts the following +% options: +% +% Lite:: false +% If set to TRUE, use at most 3 classes and at most 5 images +% in each of TRAIN, VAL, and TEST. +% +% Seed:: 1 +% The random seed used to generate the partitions. +% +% NumTrain:: 50 +% Maximum number of training images per class. +% +% NumVal:: 0 +% Maximum number of validation images per class. +% +% NumTest:: 50 +% Maximum number of test images per class. +% +% ExpectedNumClasses:: [] +% If set to a number, generate an error if the number +% of classes found in DATASETDIR differs. This is only +% used as a sanity check. +% +% IMDB is a structure with the following fields: +% +% IMDB.IMAGES:: +% A structure of arrays representing the images in the +% dataset. +% +% IMDB.IMAGES.ID:: +% Vector of image numeric IDs. +% +% IMDB.IMAGES.NAME:: +% Cell array with the image names. +% +% IMDB.IMAGES.SET:: +% Vector of subset IDs for each image (train, val, test). +% +% IMDB.IMAGES.CLASS:: +% Vector of class IDs for each image. +% +% IMDB.META:: +% A substructure with meta information on the data. +% +% IMDB.META.CLASSES:: +% Cell array of class names. +% +% IMDB.IMAGEDIR:: +% Image directory. Join the image name to this directory to +% access an image file. + +% Author: Andrea Vedaldi + +% Copyright (C) 2013 Andrea Vedaldi +% All rights reserved. +% +% This file is part of the VLFeat library and is made available under +% the terms of the BSD license (see the COPYING file). + +opts.lite = false ; +opts.numTrain = 50 ; +opts.numVal = 0 ; +opts.numTest = 50 ; +opts.seed = 1 ; +opts.expectedNumClasses = [] ; +opts = vl_argparse(opts, varargin) ; + +% Construct image database imdb structure +imdb.meta.sets = {'train', 'val', 'test'} ; +names = dir(datasetDir) ; +names = {names([names.isdir]).name} ; +names = setdiff(names, {'.', '..'}) ; +imdb.meta.classes = names ; + +names = {} ; +classes = {} ; +for c = 1:numel(imdb.meta.classes) + class = imdb.meta.classes{c} ; + tmp = dir(fullfile(datasetDir, [class filesep '*.jpg'])) ; + names{c} = strcat([class filesep], {tmp.name}) ; + classes{c} = repmat(c, 1, numel(names{c})) ; +end + +names = cat(2,names{:}) ; +classes = cat(2,classes{:}) ; +sets = zeros(1,numel(names)) ; +ids = 1:numel(names) ; + +numClasses = numel(imdb.meta.classes) ; +if ~isempty(opts.expectedNumClasses) && numClasses ~= opts.expectedNumClasses + error('Expected %d classes in image database at %s.', opts.expectedNumClasses, datasetDir) ; +end + +for c = 1:numClasses + sel = find(classes == c) ; + randn('state', opts.seed) ; + rand('state', opts.seed) ; + selTrain = vl_colsubset(sel, opts.numTrain) ; + selVal = vl_colsubset(setdiff(sel, selTrain), opts.numVal) ; + selTest = vl_colsubset(setdiff(sel, [selTrain selVal]), opts.numTest) ; + sets(selTrain) = 1 ; + sets(selVal) = 2 ; + sets(selTest) = 3 ; +end + +ok = find(sets ~= 0) ; +imdb.images.id = ids(ok) ; +imdb.images.name = names(ok) ; +imdb.images.set = sets(ok) ; +imdb.images.class = classes(ok) ; +imdb.imageDir = datasetDir ; + +if opts.lite + ok = {} ; + for c = 1:3 + ok{end+1} = vl_colsubset(find(imdb.images.class == c & imdb.images.set == 1), 5) ; + ok{end+1} = vl_colsubset(find(imdb.images.class == c & imdb.images.set == 2), 5) ; + ok{end+1} = vl_colsubset(find(imdb.images.class == c & imdb.images.set == 3), 5) ; + end + ok = cat(2, ok{:}) ; + imdb.meta.classes = imdb.meta.classes(1:3) ; + imdb.images.id = imdb.images.id(ok) ; + imdb.images.name = imdb.images.name(ok) ; + imdb.images.set = imdb.images.set(ok) ; + imdb.images.class = imdb.images.class(ok) ; +end diff --git a/vlfeat-0.9.21/apps/recognition/setupScene67.m b/vlfeat-0.9.21/apps/recognition/setupScene67.m new file mode 100644 index 0000000..df1d43d --- /dev/null +++ b/vlfeat-0.9.21/apps/recognition/setupScene67.m @@ -0,0 +1,65 @@ +function imdb = setupScene67(datasetDir, varargin) +% SETUPSCENE67 Setup MIT Scene 67 dataset +% This is similar to SETUPGENERIC(), with modifications to setup +% MIT Scene 67 according to the standard evaluation protocols. The +% function supports only the LITE option. +% +% See: SETUPGENERIC(). + +% Author: Andrea Vedaldi + +% Copyright (C) 2013 Andrea Vedaldi +% All rights reserved. +% +% This file is part of the VLFeat library and is made available under +% the terms of the BSD license (see the COPYING file). + +opts.lite = false ; +opts = vl_argparse(opts, varargin) ; + +% Download and unpack +vl_xmkdir(datasetDir) ; +if exist(fullfile(datasetDir, 'Images', 'airport_inside')) + % ok +else + url = 'http://groups.csail.mit.edu/vision/LabelMe/NewImages/indoorCVPR_09.tar' ; + trainImagesUrl = 'http://web.mit.edu/torralba/www/TrainImages.txt' ; + testImagesUrl = 'http://web.mit.edu/torralba/www/TestImages.txt' ; + fprintf('Downloading MIT Scene 67 data to ''%s''. This will take a while.', datasetDir) ; + urlwrite(trainImagesUrl, fullfile(datasetDir, 'TrainImages.txt')) ; + urlwrite(testImagesUrl, fullfile(datasetDir, 'TestImages.txt')) ; + untar(url, datasetDir) ; +end + +% Construct image database imdb structure +imdb.meta.sets = {'train', 'val', 'test'} ; + +trainNames = textread(fullfile(datasetDir, 'TrainImages.txt'),'%s','delimiter','\n') ; +testNames = textread(fullfile(datasetDir, 'TestImages.txt'),'%s','delimiter','\n') ; +names = [trainNames; testNames]' ; +sets = [ones(1,numel(trainNames)), 3*ones(1,numel(testNames))] ; +imdb.images.id = 1:numel(names) ; +[imdb.images.name,perm] = sort(names) ; +imdb.images.set = sets(perm) ; + +a = regexp(imdb.images.name, '^([^/]+)*/.*$', 'tokens') ; +for i = 1:numel(names) + a{i} = a{i}{1}{1} ; +end +[imdb.meta.classes, ~, imdb.images.class] = unique(a) ; +imdb.images.class = imdb.images.class(:)' ; +imdb.imageDir = fullfile(datasetDir, 'Images') ; + +if opts.lite + ok = {} ; + for c = 1:3 + ok{end+1} = vl_colsubset(find(imdb.images.class == c & imdb.images.set == 1), 5) ; + ok{end+1} = vl_colsubset(find(imdb.images.class == c & imdb.images.set == 3), 5) ; + end + ok = cat(2, ok{:}) ; + imdb.meta.classes = imdb.meta.classes(1:3) ; + imdb.images.id = imdb.images.id(ok) ; + imdb.images.name = imdb.images.name(ok) ; + imdb.images.set = imdb.images.set(ok) ; + imdb.images.class = imdb.images.class(ok) ; +end diff --git a/vlfeat-0.9.21/apps/recognition/setupVoc.m b/vlfeat-0.9.21/apps/recognition/setupVoc.m new file mode 100644 index 0000000..7cc36b3 --- /dev/null +++ b/vlfeat-0.9.21/apps/recognition/setupVoc.m @@ -0,0 +1,141 @@ +function imdb = setupVoc(datasetDir, varargin) +% SETUPVOC Setup PASCAL VOC data +% IMDB = SETUPVOC(DATASETDIR, 'EDITION', '2007') setups the +% PASCAL VOC 2007 data. This is similar to SETUPGENERIC(), but adapted +% to the peculiarities of this dataset. In particular, the +% difficult image flag and the fact that multiple labels apply to +% each image are supported. +% +% Note that only the PASCAL VOC 2007 data comes with test images +% and labels. For the other editions, setting up the test images +% cannot be automatized due to restrictions in the distribution. +% +% See also: SETUPGENERIC(). + +% Author: Andrea Vedaldi + +% Copyright (C) 2013 Andrea Vedaldi +% All rights reserved. +% +% This file is part of the VLFeat library and is made available under +% the terms of the BSD license (see the COPYING file). + +opts.edition = '2007' ; +opts.autoDownload = true ; +opts.lite = false ; +opts = vl_argparse(opts, varargin) ; + +switch opts.edition + case '2007' + urls = {'http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007/VOCtrainval_06-Nov-2007.tar', ... + 'http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007/VOCtest_06-Nov-2007.tar'} ; + case '2008' + urls = {'http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2008/VOCtrainval_14-Jul-2008.tar'} ; + case '2009' + urls = {'http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2009/VOCtrainval_11-May-2009.tar'} ; + case '2010' + urls = {'http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2010/VOCtrainval_03-May-2010.tar'} ; + case '2011' + urls = {'http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2011/VOCtrainval_25-May-2011.tar'} ; + case '2012' + urls = {'http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2012/VOCtrainval_11-May-2012.tar'} ; + otherwise + error('Unknown PASCAL VOC edition ''%s''.', opts.edition) ; +end + +% Download and unpack +vl_xmkdir(datasetDir) ; +if exist(fullfile(datasetDir, ['VOC' opts.edition], 'Annotations')) + % ok +elseif exist(fullfile(datasetDir, 'VOCdevkit', ['VOC' opts.edition], 'Annotations')) + % ok + datasetDir = fullfile(datasetDir, 'VOCdevkit') ; +elseif opts.autoDownload + for i = 1:length(urls) + fprintf('Downloading VOC data ''%s'' to ''%s''. This will take a while.', urls{i}, datasetDir) ; + untar(urls{i}, datasetDir) ; + end + datasetDir = fullfile(datasetDir, 'VOCdevkit') ; +else + error('VOC data not found in %s', datasetDir) ; +end + +imdb.images.id = [] ; +imdb.images.set = uint8([]) ; +imdb.images.name = {} ; +imdb.images.size = zeros(2,0) ; +imdb.meta.sets = {'train', 'val', 'test'} ; +imdb.meta.classes = {'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', ... + 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', ... + 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'} ; +imdb.imageDir = fullfile(datasetDir, ['VOC', opts.edition], 'JPEGImages') ; + +% Get the list of images +map = containers.Map() ; +j = 0 ; +for si = 1:numel(imdb.meta.sets) + setName = imdb.meta.sets{si} ; + annoPath = fullfile(datasetDir, ['VOC' opts.edition], ... + 'ImageSets', 'Main', ... + [setName '.txt']) ; + fprintf('%s: reading %s\n', mfilename, annoPath) ; + [names,labels] = textread(annoPath, '%s %f') ; + for i=1:length(names) + j = j + 1 ; + map(names{i}) = j ; + imdb.images.id(j) = j ; + imdb.images.set(j) = si ; + imdb.images.name{j} = [names{i} '.jpg'] ; + %info = imfinfo(fullfile(imdb.imageDir, imdb.images.name{j})) ; + %imdb.images.size(:,j) = [info.Width ; info.Height] ; + %fprintf('\radded %s', imdb.images.name{j}) ; + end +end + +% Get class labels +for ci = 1:length(imdb.meta.classes) + imdb.classes.imageIds{ci} = [] ; + imdb.classes.difficult{ci} = false(0) ; +end +for si = 1:numel(imdb.meta.sets) + for ci = 1:length(imdb.meta.classes) + setName = imdb.meta.sets{si} ; + className = imdb.meta.classes{ci} ; + annoPath = fullfile(datasetDir, ['VOC' opts.edition], ... + 'ImageSets', 'Main', ... + [className '_' setName '.txt']) ; + fprintf('%s: reading %s\n', mfilename, annoPath) ; + [names,labels] = textread(annoPath, '%s %f') ; + for i = 1:numel(names) + j = map(names{i}) ; + if labels(i) >= 0 + imdb.classes.imageIds{ci}(end+1) = j ; + imdb.classes.difficult{ci}(end+1) = (labels(i) == 0) ; + end + end + end +end + +if opts.lite + ok = {} ; + for c = 1:3 + trainIds = intersect(imdb.images.id(imdb.images.set == 1), imdb.classes.imageIds{c}) ; + testIds = intersect(imdb.images.id(imdb.images.set == 3), imdb.classes.imageIds{c}) ; + + ok{end+1} = vl_colsubset(find(ismember(imdb.images.id, trainIds)), 5) ; + ok{end+1} = vl_colsubset(find(ismember(imdb.images.id, testIds)), 5) ; + end + ok = unique(cat(2, ok{:})) ; + imdb.meta.classes = imdb.meta.classes(1:3) ; + imdb.classes.imageIds = imdb.classes.imageIds(1:3) ; + imdb.classes.difficult = imdb.classes.difficult(1:3) ; + imdb.images.id = imdb.images.id(ok) ; + imdb.images.name = imdb.images.name(ok) ; + imdb.images.set = imdb.images.set(ok) ; + for c = 1:3 + ok = ismember(imdb.classes.imageIds{c}, imdb.images.id) ; + imdb.classes.imageIds{c} = imdb.classes.imageIds{c}(ok) ; + imdb.classes.difficult{c} = imdb.classes.difficult{c}(ok) ; + end +end + diff --git a/vlfeat-0.9.21/apps/recognition/trainEncoder.m b/vlfeat-0.9.21/apps/recognition/trainEncoder.m new file mode 100644 index 0000000..c8dcbfa --- /dev/null +++ b/vlfeat-0.9.21/apps/recognition/trainEncoder.m @@ -0,0 +1,209 @@ +function encoder = trainEncoder(images, varargin) +% TRAINENCODER Train image encoder: BoVW, VLAD, FV +% ENCODER = TRAINENCOER(IMAGES) trains a BoVW encoder from the +% specified list of images IMAGES. +% +% TRAINENCODER(..., 'OPT', VAL, ...) accepts the following options: +% +% Type:: 'bovw' +% Bag of visual words ('bovw'), VLAD ('vlad') or Fisher Vector +% ('fv'). +% +% numPcaDimension:: +inf +% Use PCA to reduce the descriptor dimensionality to this +% dimension. Use +inf to deactivate PCA. +% +% Whitening:: false +% Set to true to divide the principal components by the +% corresponding standard deviation s_i. +% +% WhiteningRegul:: 0 +% When using whitening, divide by s_max * WhiteningRegul + s_i +% instead of s_i alone. +% +% Renormalize:: false +% If true, descriptors are L2 normalized after PCA or +% whitening. +% +% +% Subdivisions:: [] +% A list of spatial subdivisions. Each column is a rectangle +% [XMIN YMIN XMAX YMAX]. The spatial subdivisions are +% +% Layouts:: {'1x1'} +% A list of strings representing regular spatial subdivisions +% in the format MxN, where M is the number of vertical +% subdivisions and N the number of horizontal ones. For +% example {'1x1', 2x2'} uses 5 partitions: the whole image and +% four quadrants. The subdivisions are appended to the ones +% specified by the SUBDIVISIONS option. +% +% ReadImageFn:: @readImage +% The function used to load an image. +% +% ExtractorFn:: @getDenseSIFT +% The function used to extract the feature frames and +% descriptors from an image. + +% Author: Andrea Vedaldi + +% Copyright (C) 2013 Andrea Vedaldi +% All rights reserved. +% +% This file is part of the VLFeat library and is made available under +% the terms of the BSD license (see the COPYING file). + +opts.type = 'bovw' ; +opts.numWords = [] ; +opts.seed = 1 ; +opts.numPcaDimensions = +inf ; +opts.whitening = false ; +opts.whiteningRegul = 0 ; +opts.numSamplesPerWord = [] ; +opts.renormalize = false ; +opts.layouts = {'1x1'} ; +opts.geometricExtension = 'none' ; +opts.subdivisions = zeros(4,0) ; +opts.readImageFn = @readImage ; +opts.extractorFn = @getDenseSIFT ; +opts.lite = false ; +opts = vl_argparse(opts, varargin) ; + +for i = 1:numel(opts.layouts) + t = sscanf(opts.layouts{i},'%dx%d') ; + m = t(1) ; + n = t(2) ; + [x,y] = meshgrid(... + linspace(0,1,n+1), ... + linspace(0,1,m+1)) ; + x1 = x(1:end-1,1:end-1) ; + y1 = y(1:end-1,1:end-1) ; + x2 = x(2:end,2:end) ; + y2 = y(2:end,2:end) ; + opts.subdivisions = cat(2, opts.subdivisions, ... + [x1(:)' ; + y1(:)' ; + x2(:)' ; + y2(:)'] ) ; +end + +if isempty(opts.numWords) + switch opts.type + case {'bovw'} + opts.numWords = 1024 ; + case {'fv'} + opts.numWords = 64 ; + opts.numPcaDimensions = 80 ; + case {'vlad'} + opts.numWords = 64 ; + opts.numPcaDimensions = 100 ; + opts.whitening = true ; + opts.whiteninRegul = 0.01 ; + otherwise + assert(false) ; + end +end + +if isempty(opts.numSamplesPerWord) + switch opts.type + case {'bovw'} + opts.numSamplesPerWord = 200 ; + case {'vlad','fv'} + opts.numSamplesPerWord = 1000 ; + otherwise + assert(false) ; + end + if opts.lite + opts.numSamplesPerWord = 10 ; + end +end + +disp(opts) ; + +encoder.type = opts.type ; +encoder.subdivisions = opts.subdivisions ; +encoder.readImageFn = opts.readImageFn ; +encoder.extractorFn = opts.extractorFn ; +encoder.numWords = opts.numWords ; +encoder.renormalize = opts.renormalize ; +encoder.geometricExtension = opts.geometricExtension ; + +%% Step 0: obtain sample image descriptors +numImages = numel(images) ; +numDescrsPerImage = ceil(opts.numWords * opts.numSamplesPerWord / numImages) ; +parfor i = 1:numImages + fprintf('%s: reading: %s\n', mfilename, images{i}) ; + im = encoder.readImageFn(images{i}) ; + w = size(im,2) ; + h = size(im,1) ; + features = encoder.extractorFn(im) ; + randn('state',0) ; + rand('state',0) ; + sel = vl_colsubset(1:size(features.descr,2), single(numDescrsPerImage)) ; + descrs{i} = features.descr(:,sel) ; + frames{i} = features.frame(:,sel) ; + frames{i} = bsxfun(@times, bsxfun(@minus, frames{i}(1:2,:), [w;h]/2), 1./[w;h]) ; +end +descrs = cat(2, descrs{:}) ; +frames = cat(2, frames{:}) ; + +%% Step 1 (optional): learn PCA projection +if opts.numPcaDimensions < inf || opts.whitening + fprintf('%s: learning PCA rotation/projection\n', mfilename) ; + encoder.projectionCenter = mean(descrs,2) ; + x = bsxfun(@minus, descrs, encoder.projectionCenter) ; + X = x*x' / size(x,2) ; + [V,D] = eig(X) ; + d = diag(D) ; + [d,perm] = sort(d,'descend') ; + d = d + opts.whiteningRegul * max(d) ; + m = min(opts.numPcaDimensions, size(descrs,1)) ; + V = V(:,perm) ; + if opts.whitening + encoder.projection = diag(1./sqrt(d(1:m))) * V(:,1:m)' ; + else + encoder.projection = V(:,1:m)' ; + end + clear X V D d ; +else + encoder.projection = 1 ; + encoder.projectionCenter = 0 ; +end +descrs = encoder.projection * bsxfun(@minus, descrs, encoder.projectionCenter) ; +if encoder.renormalize + descrs = bsxfun(@times, descrs, 1./max(1e-12, sqrt(sum(descrs.^2)))) ; +end + + +%% Step 2 (optional): geometrically augment the features + +descrs = extendDescriptorsWithGeometry(opts.geometricExtension, frames, descrs) ; + +%% Step 3: learn a VQ or GMM vocabulary +dimension = size(descrs,1) ; +numDescriptors = size(descrs,2) ; + +switch encoder.type + case {'bovw', 'vlad'} + vl_twister('state', opts.seed) ; + encoder.words = vl_kmeans(descrs, opts.numWords, 'verbose', 'algorithm', 'elkan') ; + encoder.kdtree = vl_kdtreebuild(encoder.words, 'numTrees', 2) ; + + case {'fv'} ; + vl_twister('state', opts.seed) ; + if 1 + v = var(descrs')' ; + [encoder.means, encoder.covariances, encoder.priors] = ... + vl_gmm(descrs, opts.numWords, 'verbose', ... + 'Initialization', 'kmeans', ... + 'CovarianceBound', double(max(v)*0.0001), ... + 'NumRepetitions', 1) ; + else + addpath lib/yael/matlab + [a,b,c] = ... + yael_gmm(descrs, opts.numWords, 'verbose', 2) ; + encoder.priors = single(a) ; + encoder.means = single(b) ; + encoder.covariances = single(c) ; + end +end diff --git a/vlfeat-0.9.21/apps/recognition/traintest.m b/vlfeat-0.9.21/apps/recognition/traintest.m new file mode 100644 index 0000000..21f501c --- /dev/null +++ b/vlfeat-0.9.21/apps/recognition/traintest.m @@ -0,0 +1,185 @@ +function recognition_demo(varargin) +% RECOGNITION_DEMO Demonstrates using VLFeat for image classification + +if ~exist('vl_version') + run(fullfile(fileparts(which(mfilename)), ... + '..', '..', 'toolbox', 'vl_setup.m')) ; +end + +opts.dataset = 'caltech101' ; +opts.prefix = 'bovw' ; +opts.encoderParams = {'type', 'bovw'} ; +opts.seed = 1 ; +opts.lite = true ; +opts.C = 1 ; +opts.kernel = 'linear' ; +opts.dataDir = 'data'; +for pass = 1:2 + opts.datasetDir = fullfile(opts.dataDir, opts.dataset) ; + opts.resultDir = fullfile(opts.dataDir, opts.prefix) ; + opts.imdbPath = fullfile(opts.resultDir, 'imdb.mat') ; + opts.encoderPath = fullfile(opts.resultDir, 'encoder.mat') ; + opts.modelPath = fullfile(opts.resultDir, 'model.mat') ; + opts.diaryPath = fullfile(opts.resultDir, 'diary.txt') ; + opts.cacheDir = fullfile(opts.resultDir, 'cache') ; + opts = vl_argparse(opts,varargin) ; +end + +% do not do anything if the result data already exist +if exist(fullfile(opts.resultDir,'result.mat')), + load(fullfile(opts.resultDir,'result.mat'), 'ap', 'confusion') ; + fprintf('%35s mAP = %04.1f, mean acc = %04.1f\n', opts.prefix, ... + 100*mean(ap), 100*mean(diag(confusion))) ; + return ; +end + +vl_xmkdir(opts.cacheDir) ; +diary(opts.diaryPath) ; diary on ; +disp('options:' ); disp(opts) ; + +% -------------------------------------------------------------------- +% Get image database +% -------------------------------------------------------------------- + +if exist(opts.imdbPath) + imdb = load(opts.imdbPath); +else + switch opts.dataset + case 'scene67', imdb = setupScene67(opts.datasetDir, 'lite', opts.lite) ; + case 'caltech101', imdb = setupCaltech256(opts.datasetDir, 'lite', opts.lite, ... + 'variant', 'caltech101', 'seed', opts.seed) ; + case 'caltech256', imdb = setupCaltech256(opts.datasetDir, 'lite', opts.lite) ; + case 'voc07', imdb = setupVoc(opts.datasetDir, 'lite', opts.lite, 'edition', '2007') ; + case 'fmd', imdb = setupFMD(opts.datasetDir, 'lite', opts.lite) ; + otherwise, error('Unknown dataset type.') ; + end + save(opts.imdbPath, '-struct', 'imdb') ; +end + +% -------------------------------------------------------------------- +% Train encoder and encode images +% -------------------------------------------------------------------- + +if exist(opts.encoderPath) + encoder = load(opts.encoderPath) ; +else + numTrain = 5000 ; + if opts.lite, numTrain = 10 ; end + train = vl_colsubset(find(imdb.images.set <= 2), numTrain, 'uniform') ; + encoder = trainEncoder(fullfile(imdb.imageDir,imdb.images.name(train)), ... + opts.encoderParams{:}, ... + 'lite', opts.lite) ; + save(opts.encoderPath, '-struct', 'encoder') ; + diary off ; + diary on ; +end + +descrs = encodeImage(encoder, fullfile(imdb.imageDir, imdb.images.name), ... + 'cacheDir', opts.cacheDir) ; +diary off ; +diary on ; + +% -------------------------------------------------------------------- +% Train and evaluate models +% -------------------------------------------------------------------- + +if isfield(imdb.images, 'class') + classRange = unique(imdb.images.class) ; +else + classRange = 1:numel(imdb.classes.imageIds) ; +end +numClasses = numel(classRange) ; + +% apply kernel maps +switch opts.kernel + case 'linear' + case 'hell' + descrs = sign(descrs) .* sqrt(abs(descrs)) ; + case 'chi2' + descrs = vl_homkermap(descrs,1,'kchi2') ; + otherwise + assert(false) ; +end +descrs = bsxfun(@times, descrs, 1./sqrt(sum(descrs.^2))) ; + +% train and test +train = find(imdb.images.set <= 2) ; +test = find(imdb.images.set == 3) ; +lambda = 1 / (opts.C*numel(train)) ; +par = {'Solver', 'sdca', 'Verbose', ... + 'BiasMultiplier', 1, ... + 'Epsilon', 0.001, ... + 'MaxNumIterations', 100 * numel(train)} ; + +scores = cell(1, numel(classRange)) ; +ap = zeros(1, numel(classRange)) ; +ap11 = zeros(1, numel(classRange)) ; +w = cell(1, numel(classRange)) ; +b = cell(1, numel(classRange)) ; +for c = 1:numel(classRange) + if isfield(imdb.images, 'class') + y = 2 * (imdb.images.class == classRange(c)) - 1 ; + else + y = - ones(1, numel(imdb.images.id)) ; + [~,loc] = ismember(imdb.classes.imageIds{classRange(c)}, imdb.images.id) ; + y(loc) = 1 - imdb.classes.difficult{classRange(c)} ; + end + if all(y <= 0), continue ; end + + [w{c},b{c}] = vl_svmtrain(descrs(:,train), y(train), lambda, par{:}) ; + scores{c} = w{c}' * descrs + b{c} ; + + [~,~,info] = vl_pr(y(test), scores{c}(test)) ; + ap(c) = info.ap ; + ap11(c) = info.ap_interp_11 ; + fprintf('class %s AP %.2f; AP 11 %.2f\n', imdb.meta.classes{classRange(c)}, ... + ap(c) * 100, ap11(c)*100) ; +end +scores = cat(1,scores{:}) ; + +diary off ; +diary on ; + +% confusion matrix (can be computed only if each image has only one label) +if isfield(imdb.images, 'class') + [~,preds] = max(scores, [], 1) ; + confusion = zeros(numClasses) ; + for c = 1:numClasses + sel = find(imdb.images.class == classRange(c) & imdb.images.set == 3) ; + tmp = accumarray(preds(sel)', 1, [numClasses 1]) ; + tmp = tmp / max(sum(tmp),1e-10) ; + confusion(c,:) = tmp(:)' ; + end +else + confusion = NaN ; +end + +% save results +save(opts.modelPath, 'w', 'b') ; +save(fullfile(opts.resultDir,'result.mat'), ... + 'scores', 'ap', 'ap11', 'confusion', 'classRange', 'opts') ; + +% figures +meanAccuracy = sprintf('mean accuracy: %f\n', mean(diag(confusion))); +mAP = sprintf('mAP: %.2f %%; mAP 11: %.2f', mean(ap) * 100, mean(ap11) * 100) ; + +figure(1) ; clf ; +imagesc(confusion) ; axis square ; +title([opts.prefix ' - ' meanAccuracy]) ; +vl_printsize(1) ; +print('-dpdf', fullfile(opts.resultDir, 'result-confusion.pdf')) ; +print('-djpeg', fullfile(opts.resultDir, 'result-confusion.jpg')) ; + +figure(2) ; clf ; bar(ap * 100) ; +title([opts.prefix ' - ' mAP]) ; +ylabel('AP %%') ; xlabel('class') ; +grid on ; +vl_printsize(1) ; +ylim([0 100]) ; +print('-dpdf', fullfile(opts.resultDir,'result-ap.pdf')) ; + +disp(meanAccuracy) ; +disp(mAP) ; +diary off ; + +end diff --git a/vlfeat-0.9.21/apps/sift_mosaic.m b/vlfeat-0.9.21/apps/sift_mosaic.m new file mode 100644 index 0000000..9e0fdee --- /dev/null +++ b/vlfeat-0.9.21/apps/sift_mosaic.m @@ -0,0 +1,149 @@ +function mosaic = sift_mosaic(im1, im2) +% SIFT_MOSAIC Demonstrates matching two images using SIFT and RANSAC +% +% SIFT_MOSAIC demonstrates matching two images based on SIFT +% features and RANSAC and computing their mosaic. +% +% SIFT_MOSAIC by itself runs the algorithm on two standard test +% images. Use SIFT_MOSAIC(IM1,IM2) to compute the mosaic of two +% custom images IM1 and IM2. + +% AUTORIGHTS + +if nargin == 0 + im1 = imread(fullfile(vl_root, 'data', 'river1.jpg')) ; + im2 = imread(fullfile(vl_root, 'data', 'river2.jpg')) ; +end + +% make single +im1 = im2single(im1) ; +im2 = im2single(im2) ; + +% make grayscale +if size(im1,3) > 1, im1g = rgb2gray(im1) ; else im1g = im1 ; end +if size(im2,3) > 1, im2g = rgb2gray(im2) ; else im2g = im2 ; end + +% -------------------------------------------------------------------- +% SIFT matches +% -------------------------------------------------------------------- + +[f1,d1] = vl_sift(im1g) ; +[f2,d2] = vl_sift(im2g) ; + +[matches, scores] = vl_ubcmatch(d1,d2) ; + +numMatches = size(matches,2) ; + +X1 = f1(1:2,matches(1,:)) ; X1(3,:) = 1 ; +X2 = f2(1:2,matches(2,:)) ; X2(3,:) = 1 ; + +% -------------------------------------------------------------------- +% RANSAC with homography model +% -------------------------------------------------------------------- + +clear H score ok ; +for t = 1:100 + % estimate homograpyh + subset = vl_colsubset(1:numMatches, 4) ; + A = [] ; + for i = subset + A = cat(1, A, kron(X1(:,i)', vl_hat(X2(:,i)))) ; + end + [U,S,V] = svd(A) ; + H{t} = reshape(V(:,9),3,3) ; + + % score homography + X2_ = H{t} * X1 ; + du = X2_(1,:)./X2_(3,:) - X2(1,:)./X2(3,:) ; + dv = X2_(2,:)./X2_(3,:) - X2(2,:)./X2(3,:) ; + ok{t} = (du.*du + dv.*dv) < 6*6 ; + score(t) = sum(ok{t}) ; +end + +[score, best] = max(score) ; +H = H{best} ; +ok = ok{best} ; + +% -------------------------------------------------------------------- +% Optional refinement +% -------------------------------------------------------------------- + +function err = residual(H) + u = H(1) * X1(1,ok) + H(4) * X1(2,ok) + H(7) ; + v = H(2) * X1(1,ok) + H(5) * X1(2,ok) + H(8) ; + d = H(3) * X1(1,ok) + H(6) * X1(2,ok) + 1 ; + du = X2(1,ok) - u ./ d ; + dv = X2(2,ok) - v ./ d ; + err = sum(du.*du + dv.*dv) ; +end + +if exist('fminsearch') == 2 + H = H / H(3,3) ; + opts = optimset('Display', 'none', 'TolFun', 1e-8, 'TolX', 1e-8) ; + H(1:8) = fminsearch(@residual, H(1:8)', opts) ; +else + warning('Refinement disabled as fminsearch was not found.') ; +end + +% -------------------------------------------------------------------- +% Show matches +% -------------------------------------------------------------------- + +dh1 = max(size(im2,1)-size(im1,1),0) ; +dh2 = max(size(im1,1)-size(im2,1),0) ; + +figure(1) ; clf ; +subplot(2,1,1) ; +imagesc([padarray(im1,dh1,'post') padarray(im2,dh2,'post')]) ; +o = size(im1,2) ; +line([f1(1,matches(1,:));f2(1,matches(2,:))+o], ... + [f1(2,matches(1,:));f2(2,matches(2,:))]) ; +title(sprintf('%d tentative matches', numMatches)) ; +axis image off ; + +subplot(2,1,2) ; +imagesc([padarray(im1,dh1,'post') padarray(im2,dh2,'post')]) ; +o = size(im1,2) ; +line([f1(1,matches(1,ok));f2(1,matches(2,ok))+o], ... + [f1(2,matches(1,ok));f2(2,matches(2,ok))]) ; +title(sprintf('%d (%.2f%%) inliner matches out of %d', ... + sum(ok), ... + 100*sum(ok)/numMatches, ... + numMatches)) ; +axis image off ; + +drawnow ; + +% -------------------------------------------------------------------- +% Mosaic +% -------------------------------------------------------------------- + +box2 = [1 size(im2,2) size(im2,2) 1 ; + 1 1 size(im2,1) size(im2,1) ; + 1 1 1 1 ] ; +box2_ = inv(H) * box2 ; +box2_(1,:) = box2_(1,:) ./ box2_(3,:) ; +box2_(2,:) = box2_(2,:) ./ box2_(3,:) ; +ur = min([1 box2_(1,:)]):max([size(im1,2) box2_(1,:)]) ; +vr = min([1 box2_(2,:)]):max([size(im1,1) box2_(2,:)]) ; + +[u,v] = meshgrid(ur,vr) ; +im1_ = vl_imwbackward(im2double(im1),u,v) ; + +z_ = H(3,1) * u + H(3,2) * v + H(3,3) ; +u_ = (H(1,1) * u + H(1,2) * v + H(1,3)) ./ z_ ; +v_ = (H(2,1) * u + H(2,2) * v + H(2,3)) ./ z_ ; +im2_ = vl_imwbackward(im2double(im2),u_,v_) ; + +mass = ~isnan(im1_) + ~isnan(im2_) ; +im1_(isnan(im1_)) = 0 ; +im2_(isnan(im2_)) = 0 ; +mosaic = (im1_ + im2_) ./ mass ; + +figure(2) ; clf ; +imagesc(mosaic) ; axis image off ; +title('Mosaic') ; + +if nargout == 0, clear mosaic ; end + +end diff --git a/vlfeat-0.9.21/data/box.pgm b/vlfeat-0.9.21/data/box.pgm new file mode 100644 index 0000000..55d9cc6 Binary files /dev/null and b/vlfeat-0.9.21/data/box.pgm differ diff --git a/vlfeat-0.9.21/data/box.sift b/vlfeat-0.9.21/data/box.sift new file mode 100644 index 0000000..ade0566 --- /dev/null +++ b/vlfeat-0.9.21/data/box.sift @@ -0,0 +1,5105 @@ +638 128 +133.92 135.88 14.38 -2.732 + 3 12 23 38 10 15 78 20 39 67 42 8 12 8 39 35 118 43 17 0 + 0 1 12 109 9 2 6 0 0 21 46 22 14 18 51 19 5 9 41 52 + 65 30 3 21 55 49 26 30 118 118 25 12 8 3 2 60 53 56 72 20 + 7 10 16 7 88 23 13 15 12 11 11 71 45 7 4 49 82 38 38 91 + 118 15 2 16 33 3 5 118 98 38 6 19 36 1 0 15 64 22 1 2 + 6 11 18 61 31 3 0 6 15 23 118 118 13 0 0 35 38 18 40 96 + 24 1 0 13 17 3 24 98 +132.36 99.75 11.45 -2.910 + 94 32 7 2 13 7 5 23 121 94 13 5 0 0 4 59 13 30 71 32 + 0 6 32 11 25 32 13 0 0 16 51 5 44 50 0 3 33 55 11 9 + 121 121 12 9 6 3 0 18 55 60 48 44 44 9 0 2 106 117 13 2 + 1 0 1 1 37 1 1 25 80 35 15 41 121 3 0 2 14 3 2 121 + 51 11 0 20 93 6 0 20 109 57 3 4 5 0 0 28 21 2 0 5 + 13 12 75 119 35 0 0 13 28 14 37 121 12 0 0 21 46 5 11 93 + 29 0 0 3 14 4 11 99 +102.33 26.00 13.65 2.815 + 6 105 49 19 3 2 33 27 1 29 26 20 94 51 22 4 0 0 0 2 + 51 12 0 0 0 0 0 0 0 0 0 0 15 122 54 18 26 42 0 0 + 66 122 55 16 63 13 0 1 4 1 1 3 122 33 0 0 0 0 0 0 + 0 0 0 0 101 41 1 0 63 61 2 13 122 29 0 0 24 34 11 81 + 13 0 0 0 122 122 11 15 0 0 0 0 20 9 0 0 81 4 0 0 + 30 46 49 76 122 1 8 5 9 20 32 122 11 0 9 52 122 103 11 17 + 0 0 0 21 96 14 0 0 +102.33 26.00 13.65 -0.005 + 7 0 0 0 0 0 0 3 126 18 3 1 0 0 6 99 56 19 25 126 + 26 6 49 30 11 58 78 82 14 11 45 1 7 0 0 0 0 0 0 0 + 126 37 7 11 5 0 0 10 45 25 23 126 104 0 0 0 84 23 16 97 + 69 0 0 8 4 0 0 0 0 0 0 1 126 2 0 5 15 9 6 49 + 34 4 0 38 126 116 11 9 86 26 0 11 102 41 2 4 3 0 0 0 + 0 0 0 0 110 15 2 0 0 6 10 43 17 6 9 3 46 126 30 16 + 19 10 3 1 29 94 54 54 +88.61 134.04 13.25 2.721 + 27 56 20 6 9 21 12 17 33 120 114 6 4 8 8 0 41 106 23 9 + 19 42 3 0 45 54 13 0 14 26 1 3 45 12 6 22 24 22 29 35 + 61 52 8 1 35 92 55 23 120 106 0 0 16 24 5 35 92 4 0 0 + 33 40 9 30 81 74 22 31 4 2 5 8 52 77 34 9 39 37 15 32 + 120 38 3 0 5 17 28 120 41 5 19 10 7 32 89 63 34 27 4 0 + 0 6 33 17 40 60 29 0 0 8 23 22 120 113 79 5 0 0 2 16 + 9 21 120 58 0 1 10 3 +54.78 257.69 13.53 0.144 + 1 5 12 8 7 68 39 0 0 0 2 7 4 63 76 0 5 1 2 3 + 0 50 111 10 0 0 0 0 0 45 74 2 9 52 38 22 43 42 5 0 + 23 22 34 130 53 28 23 0 137 24 18 31 12 39 98 60 19 0 0 3 + 29 92 104 15 1 18 21 53 116 46 25 5 57 20 19 99 76 35 27 12 + 137 21 2 15 31 4 6 53 29 1 0 9 57 3 0 3 3 2 21 50 + 29 24 65 35 30 4 10 24 19 95 81 35 137 3 0 12 25 10 21 113 + 7 0 0 10 33 3 0 3 +183.07 270.18 9.16 -0.080 + 15 32 39 72 23 3 5 9 56 19 10 55 46 11 47 70 118 36 2 5 + 37 2 6 54 4 1 0 4 104 3 0 0 111 33 56 45 3 0 5 118 + 53 23 14 80 44 6 38 107 118 74 9 19 43 1 4 19 10 2 0 2 + 118 5 0 0 64 7 11 13 2 6 116 118 28 5 10 61 41 17 118 49 + 118 10 3 16 27 2 35 82 10 1 1 35 114 2 0 0 0 0 0 0 + 0 8 92 5 0 0 0 0 0 2 88 10 6 1 1 7 3 0 19 17 + 0 0 0 20 17 0 0 0 +177.84 206.06 10.30 2.135 + 0 0 0 7 0 0 0 0 0 0 7 127 66 0 0 0 7 80 42 78 + 60 11 14 5 0 103 127 39 0 12 17 1 0 0 0 76 15 0 0 0 + 14 9 24 127 108 19 0 2 127 42 28 63 26 24 19 25 28 8 8 2 + 22 57 43 21 12 9 3 102 34 5 2 4 32 11 2 37 127 127 17 23 + 127 30 1 3 29 44 18 60 53 40 6 8 95 48 3 5 18 20 3 23 + 31 69 19 3 33 32 4 18 73 46 19 11 52 39 6 16 23 20 24 32 + 24 26 25 62 74 5 2 2 +159.89 84.19 9.17 -1.049 + 0 27 15 0 2 95 32 0 0 2 8 0 1 121 121 6 5 2 1 0 + 0 26 121 121 0 0 0 0 0 121 121 30 1 71 60 0 0 17 19 3 + 12 37 115 8 1 17 45 9 121 63 21 1 0 5 49 51 19 1 0 12 + 35 85 36 10 1 4 3 0 0 38 121 34 9 6 11 2 0 26 121 45 + 109 11 2 7 6 6 72 95 17 0 0 76 61 0 0 5 18 18 1 0 + 0 3 33 40 12 5 2 3 2 12 82 23 1 0 0 57 39 11 41 15 + 0 0 0 79 41 0 0 1 +159.89 84.19 9.17 -2.597 + 122 32 0 0 0 0 0 122 36 11 19 1 0 12 32 90 0 5 17 0 + 0 80 58 0 0 1 0 0 0 81 37 0 122 121 5 2 1 0 0 30 + 50 51 122 61 21 1 0 5 72 97 107 10 1 8 6 7 38 14 1 0 + 0 64 38 11 122 4 0 3 10 0 1 122 44 8 12 39 115 7 1 17 + 122 42 9 5 10 2 0 31 78 20 11 5 2 4 2 14 25 0 0 34 + 16 0 2 88 22 3 1 72 54 0 0 20 122 34 1 3 2 0 0 40 + 30 39 19 20 1 0 0 2 +134.90 100.75 11.03 -2.885 + 94 29 7 7 23 4 4 43 119 71 10 7 0 0 9 88 7 17 63 30 + 0 11 47 8 17 22 15 0 0 25 62 2 49 74 1 4 35 42 8 9 + 119 119 13 18 13 4 0 17 60 49 64 62 55 20 0 2 119 84 17 1 + 0 1 2 1 48 2 1 34 74 36 11 37 119 6 0 3 18 3 1 102 + 52 16 1 23 112 14 0 11 106 75 6 2 4 0 0 17 24 0 0 10 + 19 16 69 106 56 0 0 33 28 2 15 119 22 0 0 42 59 3 10 68 + 47 0 0 3 8 1 5 84 +106.62 199.07 9.61 2.766 + 18 0 1 30 77 17 34 96 52 1 1 12 41 9 9 119 7 8 4 13 + 50 52 33 20 14 39 36 0 2 55 45 7 60 7 8 11 11 23 33 56 + 72 11 12 119 73 4 3 45 119 26 11 49 33 13 31 65 34 5 3 10 + 106 118 53 34 27 31 119 55 8 3 1 11 39 22 80 119 23 1 6 36 + 119 104 47 29 8 0 2 26 31 51 51 30 55 32 9 4 43 21 30 16 + 25 35 2 14 55 33 10 3 7 15 20 50 32 62 26 5 10 26 73 19 + 28 63 60 5 3 9 10 8 +80.91 100.53 10.31 2.726 + 43 120 63 1 1 4 3 1 40 76 2 0 16 62 6 0 42 39 5 0 + 40 53 1 3 95 29 0 0 3 5 2 10 72 66 2 0 27 44 15 7 + 120 106 0 0 20 13 1 8 66 6 0 1 94 52 3 16 120 5 0 0 + 1 3 9 45 37 9 5 7 48 55 26 48 120 13 0 0 10 15 21 120 + 38 2 0 1 57 67 83 45 120 2 2 1 1 2 25 86 47 50 32 4 + 1 5 6 17 120 81 8 1 0 3 10 54 15 13 60 32 0 18 72 18 + 7 0 102 70 0 0 21 30 +57.14 80.64 10.77 2.497 + 8 46 3 0 8 62 10 0 71 51 1 0 15 51 2 4 105 24 0 0 + 0 13 16 15 1 0 0 0 26 120 21 2 105 120 0 0 10 18 1 4 + 69 21 0 0 55 69 13 14 120 40 0 0 2 3 12 33 20 1 1 22 + 32 66 16 6 120 34 0 0 2 8 15 82 50 9 2 3 14 43 114 58 + 70 4 30 63 0 3 49 94 12 1 54 120 9 2 0 4 84 114 13 3 + 0 0 2 17 39 76 75 72 0 0 13 8 0 0 91 120 0 0 6 4 + 0 0 29 76 0 0 0 0 +107.83 164.35 7.44 2.483 + 3 10 4 10 26 70 18 4 1 12 40 9 1 36 60 4 32 60 21 2 + 0 12 26 13 48 123 8 0 0 0 0 2 24 11 4 14 55 26 7 13 + 79 11 1 0 5 51 119 94 9 2 3 2 68 123 78 20 51 82 15 4 + 12 17 5 10 45 41 14 59 118 8 0 1 123 104 12 20 19 11 6 25 + 24 15 10 54 123 120 20 7 32 5 1 1 12 63 63 55 41 9 5 63 + 73 0 1 24 123 92 61 27 1 0 0 10 37 46 58 69 9 4 2 2 + 19 32 17 28 3 10 12 10 +107.83 164.35 7.44 -0.125 + 4 26 59 118 27 1 0 0 29 57 14 12 20 8 22 19 1 0 0 22 + 63 61 83 19 5 4 9 27 42 56 31 9 28 16 12 36 69 19 4 5 + 118 55 8 9 3 1 11 83 26 5 6 118 118 22 46 52 0 0 7 100 + 115 13 13 57 12 11 7 26 97 29 3 2 105 118 60 25 2 0 0 8 + 12 36 62 118 85 10 2 3 36 0 0 18 43 17 19 118 0 2 2 8 + 81 100 24 0 9 68 13 2 4 34 25 1 29 46 18 13 4 2 4 21 + 54 3 6 37 6 0 4 51 +183.12 237.81 5.75 -0.774 + 17 29 37 34 43 8 1 1 131 8 8 10 30 10 2 36 30 7 2 5 + 131 35 1 9 23 108 2 1 24 14 3 2 47 19 38 76 76 4 1 1 + 131 33 15 15 13 5 2 34 32 2 2 49 131 49 4 13 14 10 0 5 + 20 25 30 63 89 5 2 96 53 0 0 12 131 58 18 37 8 1 1 15 + 23 12 15 131 47 4 17 71 21 0 1 18 3 0 7 130 26 0 0 13 + 22 4 49 95 86 14 2 3 1 0 22 111 6 2 1 18 6 2 36 117 + 1 0 0 28 3 0 3 29 +165.56 228.91 6.21 -0.745 + 33 21 1 8 114 16 2 3 41 47 16 16 75 11 1 1 93 1 3 7 + 59 18 4 58 27 18 8 8 83 15 2 19 10 9 2 10 112 54 6 1 + 24 29 60 75 66 12 4 1 124 27 27 21 19 4 1 33 33 1 0 10 + 124 34 2 11 14 8 1 65 124 7 0 2 67 6 4 124 96 2 0 5 + 124 38 13 32 11 1 1 25 24 8 10 97 52 9 5 33 10 3 2 61 + 124 5 5 6 34 1 1 43 51 5 41 77 109 19 5 8 1 0 17 79 + 5 3 3 22 6 2 29 82 +165.21 258.79 6.29 2.503 + 1 4 33 81 11 1 0 7 49 11 11 53 9 1 9 83 16 3 2 43 + 118 23 18 57 25 0 0 23 102 5 4 68 13 13 13 20 61 96 0 0 + 118 32 5 10 19 6 0 19 35 6 2 73 118 16 16 15 43 5 1 6 + 48 24 60 70 11 13 0 0 45 118 9 4 118 11 5 37 33 58 18 26 + 79 15 7 115 109 1 4 10 83 6 1 2 45 37 24 26 20 37 1 0 + 4 42 2 0 5 6 4 41 79 105 7 3 98 15 7 78 46 31 12 11 + 111 17 7 14 40 15 1 9 +165.21 258.79 6.29 -0.949 + 12 21 30 18 74 58 8 13 81 122 33 4 7 7 3 37 8 99 47 4 + 6 22 4 3 0 29 9 0 2 52 13 0 29 26 3 4 122 82 3 9 + 122 4 1 1 42 40 8 58 13 84 47 15 104 56 3 6 5 122 31 0 + 3 13 2 0 19 41 43 54 47 17 3 1 122 50 14 18 32 18 2 8 + 31 8 0 4 122 104 7 4 28 55 4 1 9 21 19 53 17 11 11 49 + 100 10 2 0 122 82 12 20 19 3 0 3 43 16 8 75 83 21 3 21 + 34 1 0 12 9 3 4 83 +144.70 239.92 6.03 2.434 + 49 11 2 23 84 6 5 37 23 0 0 26 116 24 21 34 99 12 2 0 + 4 1 9 105 77 13 0 1 23 23 4 21 79 12 2 36 101 2 0 4 + 50 8 1 24 95 28 55 49 58 26 6 1 39 43 36 30 116 42 3 5 + 37 7 1 10 32 11 8 97 73 8 4 4 116 34 4 44 42 8 2 9 + 85 6 0 1 109 74 4 12 116 26 13 29 50 8 1 17 3 3 2 36 + 66 106 15 2 116 37 9 17 10 24 24 22 41 24 31 87 59 15 0 2 + 16 28 82 64 16 2 0 4 +134.52 270.61 7.10 0.052 + 2 1 11 20 22 73 73 20 9 1 9 7 11 37 118 32 118 2 0 1 + 4 7 24 89 35 0 0 11 49 22 0 6 51 2 7 83 18 9 18 79 + 22 20 19 118 56 27 50 33 118 66 15 20 10 3 9 38 29 2 0 39 + 74 0 0 2 36 31 31 82 13 2 8 43 12 5 5 116 32 8 104 93 + 118 20 3 9 15 4 41 89 20 1 0 19 87 8 0 3 16 17 16 20 + 4 1 25 118 12 6 9 109 21 3 35 65 118 26 9 29 17 2 5 15 + 10 0 0 18 75 2 0 0 +123.57 252.53 6.80 2.544 + 74 7 3 46 52 3 2 11 54 4 1 35 68 20 39 34 73 20 4 1 + 39 25 23 26 95 15 1 18 61 10 2 15 26 7 10 108 70 38 5 5 + 115 17 5 42 41 14 3 24 101 15 8 12 115 42 2 27 93 17 22 92 + 89 1 1 24 13 5 0 13 58 115 29 8 113 29 39 50 27 41 29 28 + 20 28 89 115 42 5 1 7 19 22 91 78 12 0 5 36 21 15 0 0 + 27 68 3 0 0 2 16 43 115 115 3 0 16 22 23 51 16 16 7 20 + 25 30 13 1 0 0 11 47 +114.22 223.60 6.40 -0.997 + 9 9 2 15 57 16 16 8 2 0 1 51 46 12 30 32 70 5 0 6 + 6 7 32 120 20 11 13 11 52 61 17 37 26 15 5 45 67 2 2 8 + 120 4 0 18 43 18 46 120 61 54 2 1 69 71 54 60 32 78 4 3 + 77 60 2 4 18 1 0 20 93 62 11 6 120 43 0 6 25 12 4 20 + 66 33 1 2 120 106 5 5 19 65 23 23 39 33 6 1 4 0 0 0 + 85 120 18 4 115 56 1 0 6 25 31 12 48 72 10 5 59 64 3 1 + 0 1 3 26 93 43 7 0 +93.78 229.02 5.90 1.919 + 51 111 4 1 39 49 1 1 13 10 3 4 119 119 0 1 95 67 10 2 + 22 9 1 9 11 36 40 78 16 1 0 1 75 119 22 13 16 64 6 1 + 23 40 39 117 119 49 0 1 119 12 1 15 47 19 5 29 14 2 2 22 + 49 62 22 24 6 29 27 65 105 71 4 0 30 11 55 119 55 1 0 21 + 119 37 14 14 6 3 0 32 30 32 32 35 11 27 11 15 4 14 13 87 + 83 19 3 2 31 23 22 31 43 6 2 14 22 37 82 10 0 0 4 17 + 19 25 63 54 3 4 1 1 +93.78 229.02 5.90 -1.668 + 2 5 17 33 8 3 28 28 7 3 2 9 31 24 50 33 120 48 1 0 + 13 9 6 27 59 52 24 0 2 49 44 22 24 3 1 0 5 29 66 94 + 11 0 0 6 97 87 28 20 120 27 1 1 22 18 27 120 29 57 53 2 + 3 94 54 33 13 38 33 38 30 26 22 18 10 31 16 6 85 115 1 2 + 120 120 1 1 39 40 8 24 35 120 12 1 3 116 37 10 36 29 20 64 + 57 5 7 16 36 26 9 4 28 32 22 31 11 62 1 1 40 90 28 3 + 19 120 17 0 0 6 13 11 +88.30 272.70 6.70 0.022 + 2 1 21 36 45 71 11 4 89 45 6 11 8 9 3 26 146 49 0 1 + 14 0 0 10 18 1 0 9 90 5 0 0 0 6 50 45 60 34 3 1 + 67 81 19 13 54 25 1 5 146 82 2 2 19 1 0 9 27 1 0 13 + 106 11 0 0 0 5 43 16 15 76 84 10 59 5 14 14 24 25 120 54 + 146 8 0 1 9 8 13 94 27 0 0 9 83 48 1 3 28 0 2 38 + 24 34 65 66 26 19 14 62 38 40 90 35 146 37 6 7 8 1 8 48 + 14 1 0 33 78 2 0 1 +60.84 202.41 6.93 1.109 + 11 18 35 15 11 37 12 27 2 20 29 29 58 78 11 1 53 33 9 26 + 46 32 10 62 43 93 3 2 42 36 2 13 0 17 75 36 70 104 6 0 + 31 38 113 75 86 27 2 3 113 28 25 20 67 25 16 96 40 75 8 19 + 113 26 8 15 5 65 113 30 26 10 3 1 44 17 10 20 69 53 44 22 + 113 40 37 33 46 11 18 33 34 27 23 32 96 30 23 8 8 51 7 3 + 21 102 40 1 15 104 21 3 9 16 25 5 10 30 46 60 55 6 12 5 + 14 75 53 33 18 2 4 3 +43.02 205.42 6.57 1.072 + 1 8 12 21 33 56 10 0 38 33 12 39 50 35 5 27 69 117 4 1 + 24 26 2 20 3 29 1 0 111 117 0 0 3 37 90 49 48 33 3 0 + 106 25 39 35 46 38 16 93 41 68 9 15 117 34 15 53 47 110 5 5 + 89 96 0 0 8 8 26 36 90 33 12 5 117 47 20 14 26 14 14 33 + 65 24 18 33 117 39 14 9 84 76 2 2 34 37 18 12 11 57 9 1 + 5 19 28 6 40 25 29 27 23 12 34 20 19 66 72 58 33 4 4 1 + 14 58 28 32 21 7 7 2 +43.02 205.42 6.57 -1.996 + 19 6 5 1 22 63 26 33 24 4 5 1 23 80 66 46 35 9 20 13 + 25 25 43 43 3 17 25 6 12 67 9 0 40 40 15 11 98 67 2 2 + 118 33 18 9 53 20 22 42 29 12 17 44 118 29 21 17 72 36 22 11 + 17 8 13 24 107 84 0 0 59 94 4 5 118 27 15 49 43 63 8 24 + 43 25 16 95 118 23 43 28 62 20 1 0 7 34 96 52 118 103 0 0 + 7 31 0 0 22 16 4 29 81 103 3 2 62 39 8 39 32 18 11 37 + 36 54 8 0 2 18 19 16 +28.36 216.32 6.06 1.514 + 21 21 45 23 37 6 14 31 29 7 1 9 25 12 48 75 86 38 1 7 + 90 1 1 7 1 1 0 4 127 0 0 0 121 8 9 13 11 3 9 120 + 35 11 5 105 110 11 17 36 127 47 5 26 108 2 0 4 6 1 0 4 + 127 2 0 0 51 34 61 33 11 3 6 41 29 10 22 64 76 29 16 16 + 127 9 0 4 92 12 9 32 8 0 0 0 127 9 0 0 25 41 33 42 + 10 1 0 0 41 52 35 24 9 6 4 4 91 41 9 14 61 3 1 2 + 7 3 0 0 127 5 0 0 +28.36 216.32 6.06 -1.966 + 77 58 0 0 29 67 4 2 22 6 6 2 24 60 26 35 16 4 5 1 + 23 70 58 35 26 5 10 7 15 16 35 34 115 115 0 0 19 21 0 0 + 33 30 20 15 115 63 1 2 115 28 16 7 35 12 20 42 16 5 9 33 + 115 17 16 13 115 114 0 0 4 2 0 0 95 58 0 1 88 115 5 9 + 115 23 13 36 32 38 6 28 21 10 11 65 115 16 24 14 57 39 0 0 + 0 0 0 0 115 90 0 0 15 54 1 1 12 8 7 38 65 70 3 3 + 45 28 9 43 18 5 6 17 +211.05 265.30 5.41 -1.613 + 0 4 119 6 1 11 65 3 3 22 60 7 45 30 38 7 0 1 0 0 + 109 38 0 0 0 0 0 0 0 0 0 0 12 39 131 14 0 5 13 14 + 131 113 107 5 27 5 2 21 25 7 1 0 122 25 0 1 0 0 0 0 + 0 0 0 0 14 7 8 4 14 92 92 39 131 33 4 4 24 6 12 41 + 49 1 0 0 125 19 1 3 0 0 0 0 2 0 0 0 14 38 9 13 + 131 126 40 5 131 68 6 9 81 27 2 11 61 5 0 0 111 13 0 2 + 0 0 0 0 3 0 0 0 +181.72 185.56 5.05 2.141 + 23 0 0 44 31 1 0 45 1 0 1 121 109 27 30 18 16 3 12 27 + 30 17 34 63 11 90 62 15 15 24 10 3 8 6 19 120 23 3 0 12 + 6 8 30 131 54 29 17 4 80 24 42 37 14 25 32 44 8 12 6 2 + 15 124 84 17 0 15 45 131 31 5 0 0 48 22 32 131 23 0 0 3 + 131 50 10 20 5 5 4 53 27 7 4 9 80 45 13 18 2 0 3 32 + 110 47 6 4 50 3 2 47 51 9 0 53 131 44 1 1 1 0 0 54 + 35 20 2 5 66 28 2 1 +181.72 185.56 5.05 -1.784 + 0 4 2 2 81 103 10 0 63 72 14 0 34 27 1 2 125 48 11 1 + 0 0 10 37 110 19 0 0 18 10 4 10 2 8 1 0 31 125 50 1 + 81 4 0 0 27 125 47 13 125 30 5 0 0 9 16 39 100 33 7 0 + 11 7 5 14 11 92 29 4 10 37 16 5 10 9 26 21 78 125 23 13 + 81 25 22 33 21 30 16 47 102 107 29 24 12 2 0 0 5 18 53 57 + 1 0 5 9 4 17 117 77 12 5 19 13 16 32 28 27 42 13 11 22 + 125 57 2 11 34 11 0 0 +170.90 274.36 4.75 -0.013 + 0 0 1 68 29 3 35 122 7 1 1 14 15 16 116 115 135 10 2 5 + 7 6 24 46 27 1 0 7 50 12 0 2 3 1 7 38 10 2 28 135 + 15 15 17 135 64 6 15 32 135 67 17 36 10 1 0 4 39 5 0 15 + 80 1 0 0 1 0 16 135 54 5 6 20 42 4 6 135 65 6 3 23 + 135 11 2 8 6 0 1 45 44 0 0 5 74 9 0 2 3 6 35 49 + 33 9 14 8 39 2 0 5 32 34 25 12 135 6 0 1 3 1 6 26 + 29 1 1 14 56 1 0 1 +171.74 158.84 5.09 -3.078 + 7 31 70 24 21 16 1 1 2 9 99 20 17 56 40 1 35 45 111 0 + 0 3 78 35 125 50 12 0 0 0 9 51 20 31 22 4 15 15 83 76 + 33 27 26 54 78 29 23 7 125 32 12 5 3 1 45 90 125 3 0 0 + 0 0 8 92 1 1 12 64 47 16 45 26 68 5 2 22 125 41 4 10 + 125 42 22 1 9 4 0 52 78 55 67 0 0 0 0 29 14 18 28 49 + 10 3 5 13 25 7 0 4 92 44 3 7 71 55 61 9 9 7 2 8 + 20 71 117 7 5 0 0 1 +165.04 187.09 5.62 2.185 + 2 1 6 80 52 20 9 5 12 8 26 40 29 23 41 32 8 47 32 13 + 27 84 44 12 4 121 55 18 2 23 28 1 3 15 42 121 13 2 0 0 + 121 31 31 90 7 3 5 48 58 5 3 4 49 92 47 46 4 15 16 5 + 14 64 72 2 14 3 12 97 77 15 0 22 121 40 3 18 1 0 0 71 + 92 30 5 14 110 26 2 8 50 20 17 13 64 30 3 7 47 4 0 0 + 121 37 2 23 121 26 2 2 2 1 6 84 81 48 2 2 20 44 13 13 + 19 18 6 2 55 106 8 4 +156.82 264.90 5.88 -1.025 + 12 40 60 33 26 22 7 12 28 116 95 9 3 9 2 14 6 83 30 0 + 1 33 16 3 1 12 8 0 2 56 16 0 15 15 5 10 116 116 9 9 + 116 40 8 3 30 41 10 72 27 83 69 14 59 51 8 18 3 116 63 3 + 7 19 6 0 22 70 12 7 81 66 1 0 116 33 4 8 55 63 5 8 + 71 20 3 5 116 107 4 3 9 76 20 1 32 45 17 5 8 32 34 32 + 34 23 8 5 116 66 35 43 31 9 0 2 99 27 2 17 62 52 9 9 + 16 3 3 19 39 34 16 22 +154.01 112.28 5.66 -2.565 + 70 78 10 1 3 0 7 116 52 62 4 0 0 0 8 100 17 5 1 0 + 0 0 9 22 0 0 2 0 0 2 14 1 50 122 29 18 3 0 0 33 + 122 122 19 6 0 0 0 21 50 16 67 66 11 0 1 2 0 12 122 14 + 1 0 1 0 81 4 4 52 11 4 4 102 122 26 3 7 3 1 3 118 + 37 14 30 62 117 57 1 3 23 10 119 22 52 16 3 21 56 4 1 3 + 5 9 17 122 53 11 10 1 1 0 12 81 19 8 3 37 106 17 3 5 + 24 13 5 7 53 11 27 38 +144.18 95.83 4.58 0.708 + 0 0 19 26 28 48 17 0 80 1 5 5 7 16 5 61 70 2 1 21 + 12 4 2 60 0 2 16 36 16 14 10 2 31 7 55 71 64 8 1 2 + 126 22 16 7 4 3 2 84 36 4 7 18 46 13 8 39 0 0 21 107 + 28 13 12 0 29 1 4 30 27 29 122 12 126 55 0 1 3 4 44 63 + 41 21 4 36 114 20 3 17 0 0 8 126 117 2 0 2 0 0 0 0 + 0 45 126 3 18 0 0 0 6 13 126 85 7 0 0 41 126 29 11 27 + 0 0 0 91 126 40 9 12 +134.55 203.86 5.26 -0.487 + 3 0 1 26 96 22 3 6 119 1 1 10 6 5 4 119 74 3 2 63 + 107 7 8 81 95 9 1 41 83 4 1 4 13 0 0 8 56 69 19 16 + 119 16 1 2 12 24 7 105 39 6 3 60 119 20 7 26 76 20 4 17 + 65 13 10 12 22 6 2 41 51 19 6 18 119 67 7 23 28 8 1 23 + 28 24 13 49 119 11 6 6 5 11 24 48 76 19 15 5 17 26 3 19 + 20 19 10 13 83 3 0 9 15 7 9 78 10 1 12 106 101 3 1 8 + 6 1 36 119 36 0 0 4 +126.42 124.53 5.02 -3.082 + 43 35 48 15 11 4 2 8 66 92 103 20 25 0 0 5 148 148 24 5 + 6 0 0 0 17 46 7 11 35 64 14 1 58 6 0 10 58 34 7 12 + 134 24 0 32 82 12 5 17 148 58 1 3 7 1 1 34 52 44 8 5 + 9 6 2 24 26 3 0 4 107 54 12 31 71 10 7 7 15 49 44 61 + 148 32 8 1 1 3 12 75 49 23 27 13 0 0 2 18 22 14 5 39 + 79 3 0 3 66 41 29 27 12 4 2 11 148 38 4 0 0 0 1 41 + 44 8 3 0 1 0 11 52 +123.50 110.65 5.10 -3.082 + 53 57 62 16 24 0 0 5 146 146 20 6 6 0 0 0 30 66 8 9 + 35 69 16 2 5 6 1 4 60 141 13 9 89 15 0 23 57 14 8 17 + 146 42 1 4 10 2 3 42 74 46 12 9 9 4 1 32 6 11 5 4 + 109 72 1 2 45 11 9 5 8 33 31 43 146 37 9 1 1 5 12 70 + 69 29 32 15 0 0 5 29 39 6 2 8 109 29 2 12 50 29 19 23 + 15 3 0 9 146 34 5 1 0 0 0 47 60 10 2 1 0 0 12 62 + 15 4 1 25 107 5 1 18 +111.21 162.50 5.46 2.283 + 5 19 10 4 3 50 40 6 4 34 8 2 6 49 42 13 30 43 9 1 + 3 28 34 17 15 49 29 14 11 3 8 11 48 12 6 3 18 46 14 21 + 93 1 0 0 8 69 111 101 13 12 5 1 24 130 97 15 6 30 22 8 + 24 54 8 1 51 52 27 14 32 11 0 5 130 64 7 5 17 14 12 27 + 40 13 1 5 130 130 17 7 13 13 1 2 52 117 66 11 11 45 30 11 + 66 10 0 0 130 130 13 3 2 0 0 1 46 48 11 81 130 5 0 0 + 47 49 7 28 47 16 19 15 +111.21 162.50 5.46 0.017 + 42 20 3 20 32 2 0 5 100 56 15 18 11 1 6 68 3 1 6 29 + 26 8 101 129 0 0 2 79 58 31 68 21 39 5 2 6 28 21 11 23 + 129 24 6 8 4 2 3 129 25 6 8 129 45 3 12 98 0 0 3 129 + 106 10 3 1 35 32 16 32 34 6 1 3 129 129 65 37 4 0 0 5 + 15 20 66 129 12 4 9 21 4 0 0 48 71 38 13 29 33 5 0 6 + 53 10 3 11 55 45 26 6 8 1 1 7 41 12 27 42 10 5 5 23 + 42 1 15 47 23 5 6 53 +103.96 210.44 5.58 -0.971 + 51 34 23 16 4 1 1 15 17 9 4 40 111 4 0 7 21 0 5 25 + 30 9 48 97 56 22 0 1 11 22 45 60 17 8 3 8 12 20 28 50 + 49 10 5 66 97 3 0 8 125 17 0 6 31 24 19 94 35 37 1 3 + 125 83 16 14 17 0 0 5 82 110 30 39 40 3 0 20 90 61 10 9 + 125 60 1 3 15 7 5 14 37 18 2 6 125 83 5 4 42 6 0 0 + 79 95 5 14 7 1 0 0 74 106 38 6 103 80 2 0 5 28 26 8 + 31 65 12 7 46 45 3 3 +102.42 310.08 5.28 -3.086 + 2 0 0 0 0 0 0 0 151 0 0 0 0 0 0 25 106 0 0 0 + 3 1 3 56 28 0 0 7 151 28 0 15 7 0 0 0 0 0 0 0 + 151 3 0 0 0 0 0 39 107 18 3 0 6 0 5 67 17 2 2 62 + 151 3 0 8 12 0 0 0 0 0 0 1 151 13 7 2 0 0 0 16 + 109 74 27 5 11 1 1 11 27 12 0 57 151 2 0 1 14 0 0 0 + 0 0 0 1 151 2 1 1 0 2 1 19 111 10 3 3 12 3 4 27 + 29 0 0 9 151 28 0 5 +100.92 249.32 5.29 -1.505 + 1 5 74 84 13 1 5 3 13 39 116 24 6 6 24 9 72 85 92 0 + 0 0 2 21 14 21 66 51 25 23 8 7 1 0 5 28 9 13 53 59 + 22 7 0 15 70 31 41 37 116 40 1 2 10 3 9 64 40 26 6 4 + 15 110 62 38 5 2 1 12 42 58 43 24 31 1 0 46 84 21 9 50 + 113 47 8 1 7 30 55 116 19 116 66 1 6 50 12 4 7 35 9 4 + 41 44 1 1 78 24 1 4 79 58 1 19 116 91 1 0 3 62 40 60 + 4 37 14 1 21 116 17 1 +95.27 124.82 4.79 2.999 + 38 8 0 1 25 38 13 27 104 20 4 2 9 26 42 44 143 76 12 4 + 0 0 1 19 38 17 14 10 0 0 2 25 25 27 6 17 86 20 2 4 + 64 71 39 40 17 5 5 6 143 99 7 1 0 0 0 14 84 17 3 0 + 0 0 5 41 42 11 3 16 96 41 2 10 117 13 3 10 56 49 3 27 + 143 12 0 0 3 4 0 74 88 7 1 0 3 3 17 45 24 0 0 2 + 64 103 22 14 64 0 0 0 19 30 53 85 143 0 0 0 1 4 20 143 + 44 4 12 22 16 6 14 39 +76.51 96.28 5.36 -0.279 + 3 20 81 69 30 0 0 1 18 117 108 1 0 0 2 19 34 103 21 29 + 16 0 1 8 0 1 33 128 51 3 0 0 28 9 15 39 58 37 19 20 + 119 26 6 1 2 2 20 115 39 23 16 52 70 8 15 45 2 8 15 127 + 128 1 0 0 27 8 25 38 42 44 12 3 128 35 13 9 8 8 3 21 + 16 9 21 37 95 16 5 4 2 4 0 12 128 39 2 0 52 12 23 59 + 37 12 3 5 128 38 4 4 6 6 3 23 11 4 2 30 57 21 6 3 + 0 0 0 9 116 72 6 1 +73.62 39.10 5.24 2.449 + 55 100 7 0 0 4 1 3 36 60 1 0 13 43 11 2 17 39 5 1 + 19 45 16 12 10 15 0 0 31 129 25 9 129 109 26 1 1 1 0 15 + 129 67 0 0 10 34 6 36 33 57 3 0 22 129 16 11 51 83 0 0 + 15 100 10 10 129 60 9 1 2 5 15 77 129 70 1 0 0 5 3 27 + 49 15 0 0 1 107 40 11 21 9 0 0 1 33 63 26 32 67 46 9 + 13 15 5 15 129 129 10 1 0 0 0 4 78 35 0 0 0 2 3 0 + 1 0 0 0 2 12 10 0 +73.62 39.10 5.24 0.124 + 122 2 5 16 12 0 0 53 27 58 19 14 5 0 0 2 10 12 0 30 + 10 0 0 0 0 0 4 122 36 0 0 0 122 8 7 47 74 0 0 32 + 122 47 17 37 39 0 0 8 43 10 9 122 36 0 0 0 0 0 3 122 + 122 12 0 0 84 24 17 26 43 3 1 16 104 8 14 46 44 3 0 37 + 11 4 55 122 50 0 0 0 1 15 52 122 68 18 1 0 40 4 1 3 + 23 3 1 20 35 9 3 58 70 0 0 11 0 0 15 122 102 16 0 0 + 28 8 48 108 44 16 3 20 +65.29 113.55 5.28 2.406 + 48 127 19 2 2 1 0 0 64 77 6 1 1 1 3 16 12 13 3 16 + 61 89 11 14 4 14 14 15 57 47 4 4 101 127 4 1 4 35 15 4 + 127 127 0 0 0 2 4 25 31 15 3 52 70 64 27 18 2 0 0 24 + 52 33 94 23 62 31 0 0 0 35 30 81 127 34 0 0 0 2 5 127 + 77 3 0 0 6 62 62 22 1 0 0 0 1 23 127 24 26 31 25 11 + 7 25 28 79 75 127 19 0 0 0 0 87 43 55 0 0 0 0 1 8 + 10 8 0 0 0 0 5 2 +41.49 181.70 5.49 0.612 + 0 7 20 62 43 17 0 0 0 83 96 13 21 6 0 0 4 115 71 1 + 2 64 11 0 0 34 20 0 1 115 38 0 0 1 27 31 36 19 20 0 + 14 22 18 41 89 51 14 1 115 94 30 6 8 18 8 15 5 97 75 5 + 18 52 8 4 3 14 27 18 8 27 61 9 10 9 30 52 40 115 68 9 + 115 47 7 21 18 57 20 53 26 27 11 2 80 115 13 16 1 18 48 29 + 7 39 49 1 1 11 62 101 36 49 5 0 81 115 16 37 16 19 3 3 + 47 91 6 12 45 51 2 1 +41.49 181.70 5.49 -1.648 + 54 1 0 1 113 33 3 25 113 10 14 26 24 7 2 110 13 2 10 113 + 113 7 7 15 53 18 8 28 25 3 8 25 73 3 1 6 113 52 2 11 + 48 20 61 113 23 9 1 16 83 14 33 92 40 32 76 42 46 6 0 1 + 15 74 88 38 81 3 0 9 113 42 0 2 15 2 5 67 90 33 30 39 + 113 53 5 8 2 7 27 55 23 37 6 5 39 63 26 6 84 2 0 0 + 97 44 0 3 9 0 0 0 48 54 25 45 17 15 0 0 2 26 32 40 + 31 31 12 8 7 10 15 18 +39.18 245.22 5.22 2.041 + 33 28 26 31 9 6 1 5 33 92 51 42 9 7 12 37 13 42 73 105 + 12 9 9 39 22 2 37 108 16 13 6 44 9 32 58 52 8 9 6 3 + 108 53 34 44 3 2 2 74 34 26 22 45 26 25 20 65 51 0 2 21 + 23 30 18 108 5 1 0 5 27 45 50 9 81 87 26 3 12 31 42 14 + 68 54 92 61 7 1 1 41 108 2 5 73 36 0 0 92 0 0 0 1 + 12 56 108 17 4 3 4 8 82 70 51 16 96 6 13 10 15 5 5 108 + 44 0 0 108 79 0 0 49 +198.17 238.22 4.01 1.737 + 89 0 0 3 6 0 0 18 16 3 2 57 135 3 1 4 21 7 1 11 + 52 46 27 28 3 0 0 1 65 136 7 2 103 0 0 12 27 0 0 19 + 29 22 6 114 136 1 0 1 136 49 4 21 19 23 23 44 17 0 0 0 + 66 136 33 20 79 0 0 13 50 0 0 17 28 3 0 32 136 29 9 17 + 136 66 9 3 16 11 9 47 34 38 27 15 74 84 4 8 45 0 0 18 + 46 0 0 8 3 2 7 30 107 9 7 10 34 59 37 11 1 2 5 17 + 32 81 32 4 4 5 0 2 +198.17 238.22 4.01 -1.543 + 0 0 0 0 19 90 45 7 9 6 6 21 24 28 28 16 137 15 4 5 + 2 0 2 11 23 0 0 0 76 1 0 3 36 55 2 4 38 59 45 15 + 23 17 10 29 137 89 9 1 137 45 8 8 19 4 0 8 35 0 0 1 + 107 1 0 3 36 137 39 18 24 3 0 0 19 19 24 32 137 76 5 14 + 137 3 0 0 23 28 6 66 31 0 0 0 115 2 0 6 22 137 14 1 + 3 2 0 0 28 75 28 28 20 9 1 4 137 10 3 6 10 5 1 23 + 19 0 0 1 97 1 0 3 +197.40 144.51 4.31 -1.792 + 15 30 17 27 38 8 2 14 118 61 4 27 67 15 0 0 126 62 0 0 + 36 17 0 0 1 0 0 0 73 31 0 0 34 17 6 2 32 26 57 58 + 105 32 0 0 120 62 17 16 126 67 0 0 23 13 5 29 10 1 0 0 + 116 50 0 1 0 0 0 1 27 37 126 27 19 1 0 0 37 56 126 85 + 90 4 0 0 11 16 95 126 4 0 0 0 126 56 2 4 5 0 0 0 + 0 2 73 28 0 0 0 0 0 5 86 18 0 0 0 0 15 25 26 9 + 0 0 0 0 90 49 0 0 +197.40 144.51 4.31 -3.000 + 0 11 40 0 0 16 81 0 0 9 25 0 0 23 126 1 0 4 4 0 + 0 30 130 1 0 0 0 0 0 22 116 0 0 50 130 4 2 16 18 0 + 12 121 130 0 0 4 24 3 98 124 53 0 0 4 35 15 11 0 0 0 + 0 7 84 10 4 11 34 10 4 49 85 3 44 34 43 0 0 31 130 50 + 130 38 7 0 0 1 19 110 26 0 0 0 0 0 11 17 58 28 32 26 + 33 3 2 9 103 13 2 0 0 7 40 58 130 1 0 0 0 1 11 68 + 11 1 0 0 0 0 1 10 +186.29 170.45 3.79 0.992 + 31 96 38 24 10 9 0 0 6 32 30 92 47 24 5 0 2 0 23 90 + 19 21 34 94 12 0 4 5 0 2 32 119 30 81 1 0 46 119 0 0 + 78 73 2 4 17 34 26 9 29 28 9 16 15 33 62 82 30 60 5 0 + 0 5 44 54 15 6 0 0 76 119 9 5 119 13 0 5 24 53 18 46 + 15 40 28 55 104 38 2 5 10 119 78 7 7 3 1 1 6 20 0 0 + 26 116 7 2 21 3 1 0 17 95 27 40 5 5 6 4 89 119 3 6 + 0 30 44 6 53 63 0 0 +170.51 170.68 3.68 0.099 + 16 12 1 21 127 18 13 4 127 59 2 6 12 0 0 3 17 8 2 6 + 20 19 21 42 0 0 0 0 3 7 44 100 28 5 0 41 127 5 0 1 + 127 32 1 5 17 0 1 32 56 20 27 2 0 0 11 100 10 9 47 66 + 10 4 17 45 11 0 3 20 127 54 34 15 127 30 10 2 9 13 36 74 + 25 30 127 54 19 12 2 7 0 4 127 127 5 5 2 0 0 13 86 9 + 10 16 16 4 10 74 37 1 6 14 18 28 5 22 14 18 33 90 42 3 + 0 0 13 23 7 55 120 0 +170.10 76.99 4.24 -1.108 + 2 14 136 41 20 23 8 6 64 35 88 72 0 3 10 6 136 55 5 1 + 0 0 0 6 28 2 0 0 5 2 0 1 26 4 8 3 87 113 39 78 + 83 19 7 1 46 134 62 71 136 52 0 0 5 13 5 19 44 5 0 0 + 5 2 0 0 16 0 0 0 14 91 59 84 20 0 0 0 38 136 83 72 + 136 4 0 0 2 31 60 109 42 1 0 1 4 2 0 11 0 0 0 0 + 0 21 62 4 0 0 0 0 2 23 95 4 6 0 0 0 1 5 65 36 + 5 0 0 10 13 0 3 10 +154.30 217.74 3.88 2.492 + 8 0 0 42 118 4 0 8 34 0 0 4 12 1 30 117 110 3 0 0 + 0 1 34 118 71 15 5 10 16 0 1 27 43 0 0 50 118 12 13 14 + 118 9 0 2 5 8 30 99 86 30 1 5 23 29 40 46 69 30 1 3 + 18 17 13 29 24 0 0 7 50 33 118 56 115 42 12 4 5 41 74 36 + 86 42 34 42 25 7 0 2 118 40 3 4 6 16 9 26 114 10 0 5 + 8 17 18 33 7 2 3 3 62 100 16 4 84 25 19 14 39 12 0 5 + 118 30 5 4 5 3 3 27 +152.82 236.93 3.90 2.296 + 0 0 1 22 129 14 2 1 79 11 0 4 96 15 20 17 129 46 4 3 + 5 9 17 31 45 37 5 11 18 13 6 4 5 2 1 9 129 19 6 5 + 46 3 0 0 45 31 122 91 44 39 14 6 5 59 73 29 42 43 26 26 + 12 9 0 0 13 9 1 17 129 2 0 2 129 65 1 7 33 10 12 26 + 27 7 0 0 43 126 16 6 52 22 5 8 81 51 0 0 5 7 3 23 + 129 1 0 0 129 70 1 5 43 1 0 0 74 17 0 0 36 46 3 3 + 34 3 0 0 91 78 1 2 +152.82 236.93 3.90 0.908 + 20 21 51 16 2 6 16 18 1 0 42 33 31 27 13 9 0 2 44 14 + 11 12 75 27 1 10 56 1 0 1 115 28 21 54 124 9 0 2 7 4 + 108 41 62 22 5 0 5 61 14 10 34 2 0 0 63 103 2 6 51 1 + 0 0 79 36 19 8 15 0 0 50 124 17 98 66 38 0 0 17 83 29 + 8 28 124 29 1 20 30 7 0 13 124 16 1 8 19 1 0 3 7 10 + 7 66 124 2 2 5 5 2 1 53 124 4 0 0 13 7 1 76 124 0 + 0 1 16 3 5 71 122 0 +149.72 169.29 4.41 0.263 + 35 2 2 31 44 1 0 38 57 31 40 16 2 0 0 30 19 8 47 32 + 1 1 28 66 2 0 22 52 39 9 25 24 21 4 2 42 79 30 45 43 + 122 15 5 26 24 3 2 34 26 7 60 63 58 26 17 31 20 2 68 60 + 10 4 32 106 33 6 4 105 122 23 20 3 122 28 3 20 27 1 4 33 + 19 5 2 9 32 26 76 89 4 1 5 8 6 8 79 114 35 1 2 61 + 122 23 16 19 122 21 19 5 7 2 14 76 20 30 104 24 1 1 22 62 + 1 5 94 122 10 5 12 9 +146.80 254.75 4.36 2.524 + 95 7 1 7 14 1 4 30 14 2 0 67 125 4 4 8 48 1 0 10 + 34 29 79 54 29 17 9 4 11 42 33 10 111 18 4 28 35 1 2 9 + 57 12 3 109 125 0 0 2 125 16 1 9 19 17 4 20 8 1 2 4 + 110 55 2 2 18 21 37 69 42 25 1 2 79 8 20 111 101 1 0 10 + 125 11 0 1 12 8 1 34 15 0 0 0 125 43 2 6 0 0 8 26 + 71 124 7 0 50 12 17 32 12 40 57 23 125 51 10 3 3 1 8 22 + 9 10 14 42 78 17 0 1 +146.80 254.75 4.36 -0.915 + 17 8 0 4 40 61 32 24 5 3 23 36 106 92 7 13 58 69 25 4 + 2 4 10 99 17 106 16 0 2 7 9 18 48 79 3 3 48 23 1 1 + 28 6 0 1 130 112 2 5 130 12 0 0 23 17 9 60 29 12 12 6 + 68 59 13 19 77 110 3 1 11 5 0 1 17 23 6 7 130 103 1 2 + 130 13 0 1 42 37 3 11 63 5 1 8 85 51 2 5 18 54 15 2 + 8 17 13 10 5 36 85 64 53 14 0 0 130 32 16 21 23 5 0 2 + 55 6 2 13 39 26 5 5 +132.05 177.92 4.28 2.183 + 2 5 10 5 46 41 27 2 5 16 22 3 5 67 71 2 18 13 0 0 + 4 65 34 17 13 6 2 0 0 59 61 29 4 6 18 24 116 28 0 1 + 116 43 37 15 32 20 6 24 65 8 1 4 61 60 11 19 116 16 0 0 + 5 26 60 73 11 3 1 0 95 116 19 9 114 70 10 4 41 82 3 14 + 49 56 20 23 75 16 0 2 116 81 2 4 11 5 2 7 48 46 7 5 + 26 82 22 13 2 35 13 7 116 116 3 0 6 75 52 18 20 9 0 0 + 116 116 10 7 2 0 0 0 +127.35 229.96 4.03 2.382 + 34 13 2 0 1 33 68 30 29 32 29 23 12 16 3 1 130 68 7 6 + 2 1 1 5 14 19 10 21 91 30 2 3 52 9 0 0 23 70 13 9 + 31 15 8 9 112 65 0 0 130 36 4 3 11 4 4 37 25 4 2 20 + 130 22 9 19 112 13 0 0 27 28 2 5 37 1 0 0 130 92 2 5 + 130 37 3 4 24 12 2 16 34 15 5 62 130 3 0 3 106 39 3 2 + 10 9 1 4 11 4 4 21 116 65 1 2 82 65 51 23 22 14 0 3 + 7 16 50 130 36 0 0 0 +126.51 145.06 4.28 0.158 + 3 14 17 32 60 23 12 6 8 11 4 14 58 11 15 17 116 7 1 3 + 18 3 3 66 107 10 7 20 2 2 17 111 35 48 28 52 112 1 1 20 + 35 44 20 67 69 8 2 16 116 74 23 16 11 0 0 9 83 68 116 116 + 1 0 1 9 96 1 0 11 116 8 1 45 66 2 0 45 116 9 1 38 + 116 38 38 17 17 0 0 31 32 22 61 39 0 0 5 43 36 1 0 7 + 73 60 51 31 26 0 0 32 74 30 47 45 68 13 5 36 41 4 5 29 + 72 10 7 11 14 7 2 25 +121.96 195.78 3.92 -0.673 + 0 0 8 17 128 25 1 0 25 0 4 24 30 20 10 32 129 5 0 1 + 1 0 2 107 73 9 7 32 91 6 0 20 0 0 0 0 129 53 17 5 + 54 7 0 0 11 73 20 17 129 17 1 0 0 5 6 60 35 9 7 28 + 98 33 10 16 26 1 0 16 129 18 15 20 38 4 0 0 35 125 22 18 + 129 122 3 1 13 22 5 25 34 50 14 23 106 39 6 9 46 5 1 22 + 57 1 1 20 22 5 2 45 84 28 5 16 126 64 2 22 39 6 0 7 + 47 38 15 17 24 9 1 4 +86.94 253.62 4.43 1.543 + 0 24 50 111 106 12 1 0 55 41 4 21 55 5 1 38 61 99 19 4 + 1 1 3 21 8 27 33 57 64 16 6 3 12 6 22 62 117 77 6 2 + 117 24 13 26 16 9 2 45 24 31 59 92 31 1 1 21 4 28 71 70 + 30 6 4 5 4 0 2 50 117 42 1 1 53 42 58 38 28 16 3 5 + 34 15 44 98 19 0 3 66 13 8 6 8 10 9 37 80 0 0 0 9 + 66 56 95 0 2 1 14 11 18 42 117 12 43 2 8 2 0 2 117 117 + 13 0 0 5 12 14 107 44 +86.94 253.62 4.43 -2.323 + 0 0 14 120 41 5 0 3 15 23 49 120 9 4 5 22 44 120 28 4 + 2 4 3 5 50 120 58 6 0 0 3 14 3 2 3 77 120 46 1 2 + 87 10 1 7 36 32 28 78 21 31 21 3 25 120 33 23 93 97 39 3 + 5 20 8 40 9 11 13 44 70 9 8 4 108 21 0 3 27 10 36 68 + 36 13 1 5 76 81 24 17 49 77 3 1 33 43 22 9 29 27 34 15 + 2 15 22 6 94 43 3 0 1 5 40 79 8 7 6 6 12 55 90 23 + 2 9 5 4 5 88 107 4 +83.17 221.94 3.85 2.010 + 17 3 0 4 139 87 0 0 139 10 0 1 17 10 5 24 33 36 13 5 + 2 11 9 13 1 13 27 97 9 0 0 0 18 1 6 99 139 33 0 2 + 139 4 0 5 33 12 9 53 42 3 2 8 41 101 20 24 0 0 3 85 + 77 47 6 2 21 2 25 139 62 0 5 11 139 39 2 8 8 1 5 29 + 61 28 10 18 51 55 7 7 11 2 0 3 59 94 46 46 30 5 13 11 + 3 0 23 83 94 23 6 4 1 0 22 55 68 38 15 21 20 17 10 13 + 27 55 23 55 40 20 7 19 +77.43 172.11 3.81 -1.142 + 74 10 3 4 24 53 20 54 11 1 1 7 97 127 14 22 49 0 0 0 + 3 10 26 118 2 0 0 2 31 85 38 24 57 34 13 19 22 5 1 6 + 30 10 6 55 127 50 5 5 127 17 1 4 9 10 10 67 35 0 0 0 + 49 127 24 32 77 14 1 1 4 10 17 33 26 5 2 7 65 127 47 19 + 127 41 0 0 22 49 10 31 64 32 2 0 13 71 12 16 24 37 68 30 + 11 4 10 12 9 43 121 28 53 24 3 3 96 71 23 9 35 14 0 2 + 72 89 4 0 3 6 1 2 +78.77 126.37 4.18 2.795 + 21 34 6 12 33 11 0 2 107 63 15 13 37 26 0 3 133 55 0 0 + 0 0 0 11 42 19 2 2 2 3 19 18 86 34 1 1 29 52 2 6 + 129 21 0 0 64 87 5 13 133 38 0 0 1 5 9 25 66 26 4 7 + 3 3 24 27 45 22 0 1 42 131 23 10 63 20 0 0 19 45 61 98 + 133 2 0 0 0 5 30 133 45 0 2 11 37 41 24 37 9 33 22 19 + 19 43 51 28 24 53 17 0 0 2 111 133 39 7 0 0 0 0 39 125 + 25 0 0 0 4 30 3 18 +75.43 256.49 3.82 -2.309 + 0 0 8 121 75 13 0 0 8 0 12 121 96 40 5 25 31 15 10 9 + 2 20 34 78 14 87 41 3 9 36 9 2 11 19 19 67 76 19 0 0 + 53 6 0 19 121 46 5 17 121 25 0 0 9 48 35 65 11 8 5 2 + 52 121 19 10 14 30 44 59 31 0 0 0 35 10 7 31 61 16 46 52 + 105 22 1 1 7 8 55 107 9 5 1 6 90 72 31 5 3 15 58 21 + 4 19 50 4 121 67 13 4 0 12 12 34 76 36 6 3 3 16 73 90 + 2 3 4 5 7 61 91 7 +68.91 268.56 4.38 0.705 + 0 3 20 51 77 60 4 1 3 16 32 9 33 40 38 21 81 8 25 9 + 1 10 44 58 67 7 0 0 0 53 56 57 9 7 26 70 72 24 0 0 + 93 17 14 15 14 12 12 39 90 12 0 0 19 45 25 65 132 17 0 0 + 0 5 9 132 9 32 26 47 86 21 0 0 132 82 3 12 22 4 0 30 + 83 18 0 0 3 11 17 132 34 0 2 32 3 0 2 132 2 7 10 26 + 18 31 18 28 80 15 1 8 4 1 12 132 64 2 1 23 1 0 0 132 + 3 0 6 83 21 1 2 20 +66.88 236.33 3.40 -1.893 + 22 31 37 4 0 19 4 3 47 8 5 3 3 8 49 55 26 0 0 0 + 1 11 94 64 16 1 1 27 51 13 4 9 60 3 0 0 69 102 8 11 + 114 19 1 0 0 3 26 100 20 8 4 5 10 84 90 39 0 0 0 9 + 38 114 22 1 20 1 0 4 84 61 114 44 114 54 8 1 5 29 114 59 + 24 58 57 17 11 18 4 5 13 20 15 4 5 69 30 10 56 1 0 4 + 10 12 86 114 5 2 2 48 114 83 103 29 2 44 79 49 51 10 1 0 + 9 66 74 1 1 1 0 0 +59.87 74.32 3.79 2.463 + 32 36 15 1 39 31 11 53 37 43 66 28 5 13 35 37 118 69 8 3 + 1 1 3 7 66 32 0 0 0 0 0 0 3 15 8 7 68 111 15 7 + 23 45 98 56 20 7 9 19 118 118 40 4 0 0 1 21 116 53 0 0 + 0 0 0 0 0 0 4 74 104 44 2 0 12 15 16 35 58 36 64 60 + 118 66 7 1 0 0 20 118 118 34 0 0 0 0 0 6 0 0 4 38 + 16 35 85 4 3 10 2 5 3 4 118 42 52 33 1 0 0 0 88 89 + 77 13 0 0 0 0 5 62 +55.58 184.38 3.85 2.794 + 12 29 84 17 0 0 0 1 22 5 53 77 6 0 10 50 52 9 2 13 + 6 5 41 102 20 14 23 48 10 2 1 6 26 19 117 11 0 0 2 2 + 125 33 27 8 1 0 5 97 33 5 19 81 31 15 26 60 4 2 13 85 + 30 2 1 4 30 9 16 1 0 23 125 21 125 87 75 21 5 42 46 22 + 13 31 125 125 7 8 1 1 30 62 53 37 0 0 0 1 0 7 21 3 + 5 45 125 9 0 3 16 13 28 125 51 1 3 9 30 17 7 123 59 0 + 16 52 12 0 0 13 34 19 +55.58 184.38 3.85 -1.604 + 43 15 42 62 13 0 0 31 0 0 13 124 124 14 11 2 52 3 1 33 + 44 11 19 41 70 2 0 0 0 0 4 43 27 11 79 124 1 0 0 3 + 89 7 28 70 25 41 106 77 25 1 0 0 7 124 124 38 110 9 0 0 + 1 25 14 40 54 4 7 82 10 2 28 34 124 69 5 2 0 7 19 48 + 23 36 15 14 62 124 33 6 41 46 2 5 66 73 10 3 12 0 0 0 + 4 7 54 60 64 51 2 0 0 8 24 20 22 64 14 9 15 9 5 3 + 13 8 0 2 24 66 72 12 +54.29 234.76 4.18 2.918 + 64 41 15 0 0 2 3 18 33 19 19 14 10 6 14 61 3 2 11 60 + 49 17 13 7 0 2 34 49 36 36 25 0 30 54 57 12 10 4 3 9 + 47 76 119 20 3 0 11 16 119 43 34 18 11 36 73 79 4 7 5 3 + 8 119 119 12 33 3 12 24 19 7 23 92 45 12 22 0 0 19 119 103 + 119 119 41 3 4 19 50 33 4 96 119 7 2 14 33 3 95 34 5 6 + 12 15 5 47 43 32 63 12 2 20 44 32 1 11 42 42 48 30 37 2 + 0 39 92 36 38 10 36 4 +45.88 256.98 4.17 2.522 + 13 11 14 1 2 29 47 7 19 38 76 24 12 6 2 6 26 27 100 51 + 1 0 16 54 76 104 42 4 0 0 22 32 0 0 22 25 23 43 27 0 + 44 1 8 27 73 30 9 20 115 19 7 4 2 2 50 115 13 11 18 22 + 7 10 95 47 0 0 8 14 12 90 115 1 27 5 2 28 50 115 70 5 + 115 115 52 13 10 12 6 14 12 31 92 73 2 1 6 44 0 0 4 34 + 72 85 11 0 0 0 13 107 65 38 11 13 5 24 20 12 13 3 45 115 + 6 9 20 13 0 0 38 115 +42.78 270.76 3.83 0.506 + 2 6 22 73 68 43 7 0 3 42 24 26 67 13 18 7 13 114 73 1 + 0 9 14 6 79 114 25 0 0 12 6 20 20 13 93 108 6 0 7 10 + 96 7 7 20 7 14 62 76 27 8 2 0 0 78 114 94 114 12 0 1 + 1 1 15 114 21 1 8 3 0 11 47 48 114 66 0 0 1 14 19 27 + 84 28 0 0 0 23 44 114 28 0 0 15 8 0 5 107 45 10 1 0 + 2 15 7 18 87 22 0 0 4 27 11 66 114 10 0 3 1 0 0 108 + 7 0 1 52 23 0 0 13 +27.14 275.59 4.56 1.418 + 19 71 57 7 2 6 8 9 36 22 51 69 21 8 4 4 142 56 2 7 + 38 4 0 1 10 3 0 0 142 40 0 0 12 4 4 1 12 27 44 96 + 29 7 4 4 53 76 38 21 142 50 0 0 26 5 10 33 23 7 0 0 + 142 45 0 1 18 0 0 0 10 12 77 93 3 0 1 0 34 57 142 32 + 53 3 2 2 18 8 112 114 8 0 0 0 142 46 2 7 0 2 36 9 + 0 0 35 12 0 4 46 19 0 0 37 4 3 8 44 19 11 2 15 5 + 1 2 3 4 142 25 0 0 +27.14 275.59 4.56 0.092 + 0 4 51 0 0 40 143 0 0 4 37 1 0 61 143 0 0 4 6 0 + 0 59 143 0 0 0 0 0 0 50 143 0 0 25 143 7 13 22 9 1 + 12 63 143 2 0 6 19 3 102 92 50 0 1 9 40 9 10 1 3 10 + 20 24 58 2 14 8 11 40 66 33 10 15 45 18 19 1 1 6 91 65 + 143 17 3 0 4 2 26 78 18 1 1 10 61 9 1 5 28 16 10 44 + 8 1 6 22 63 99 2 0 0 3 23 23 102 22 1 1 6 1 8 28 + 7 1 1 21 47 4 1 2 +25.21 255.74 4.06 1.596 + 66 19 13 3 2 0 1 45 13 5 2 28 64 13 6 19 147 23 1 12 + 21 3 1 5 33 1 0 12 147 0 0 0 45 115 50 5 2 2 2 8 + 20 25 74 94 47 0 0 2 147 19 6 21 20 0 0 2 43 1 0 22 + 147 0 0 0 3 23 15 0 7 24 58 43 38 8 30 23 21 32 12 9 + 147 6 2 6 11 0 0 18 33 1 0 31 147 0 0 0 3 0 0 1 + 35 28 38 46 24 1 0 2 60 45 52 18 147 3 0 2 13 1 17 52 + 16 1 0 24 147 0 0 1 +24.15 205.50 4.17 1.623 + 2 1 5 15 31 5 47 70 8 2 2 9 19 6 29 75 130 12 3 6 + 12 0 1 4 20 0 0 23 138 0 0 0 25 1 1 22 19 10 45 84 + 20 7 4 99 92 12 13 5 138 18 5 21 24 0 0 2 22 0 0 39 + 138 0 0 0 16 1 1 113 52 2 0 16 54 4 4 138 59 7 2 13 + 138 4 1 12 26 0 0 29 15 0 0 34 138 0 0 0 6 4 19 68 + 25 12 7 10 40 0 0 13 23 52 29 28 138 0 0 3 30 1 2 35 + 6 0 0 22 138 0 0 0 +199.18 171.89 3.24 -1.512 + 101 0 0 0 17 21 6 47 122 11 6 26 24 6 0 20 118 7 3 16 + 22 6 0 18 32 0 0 2 59 0 0 7 25 3 2 17 17 13 34 105 + 46 18 30 144 17 0 1 26 144 42 20 37 2 0 0 9 43 0 0 5 + 88 0 0 6 26 39 17 51 28 3 4 15 79 6 6 132 94 2 0 5 + 144 8 3 9 2 0 0 35 35 0 0 7 105 0 0 7 33 5 0 5 + 50 13 10 22 93 0 0 11 135 8 0 4 144 0 0 0 3 0 0 29 + 19 0 0 6 97 0 0 6 +192.93 199.99 3.30 -1.756 + 11 128 29 0 2 3 0 0 25 111 19 35 17 4 1 1 123 63 6 28 + 16 9 1 1 83 22 0 0 18 7 0 1 58 24 1 3 21 9 0 2 + 128 39 2 3 5 26 12 37 128 29 0 2 22 97 16 17 128 28 0 0 + 9 5 0 2 52 3 0 5 13 47 20 6 128 46 0 0 2 11 3 12 + 120 14 0 0 39 111 10 15 128 19 0 0 6 10 2 6 8 0 0 0 + 38 128 18 3 128 38 0 0 3 18 4 16 86 36 5 29 38 14 0 3 + 93 41 3 9 11 2 0 0 +192.33 259.59 2.94 -2.670 + 3 16 29 117 71 1 0 1 18 117 60 5 1 0 1 4 3 117 80 0 + 0 0 2 2 0 87 44 0 0 4 4 0 4 2 1 44 66 12 0 2 + 98 24 3 2 6 4 6 48 22 50 29 3 30 30 17 23 0 102 117 18 + 25 6 0 0 8 15 42 25 15 6 6 20 99 40 3 2 3 2 21 49 + 37 23 1 2 38 30 38 43 0 2 15 14 44 110 117 11 6 7 14 1 + 0 0 104 117 10 1 0 0 1 23 117 97 40 4 0 0 0 6 55 117 + 17 10 6 1 1 56 117 64 +175.73 146.77 3.18 3.105 + 0 2 9 2 2 15 89 22 3 4 7 0 0 16 131 16 131 4 0 0 + 0 16 68 53 131 1 0 0 0 0 0 10 8 22 78 51 14 8 6 4 + 128 55 34 0 1 8 24 25 129 0 0 0 15 44 36 34 131 1 0 0 + 0 0 0 8 47 13 17 22 103 35 0 1 131 33 5 0 6 2 1 7 + 118 10 0 0 45 19 17 18 107 24 10 0 1 1 6 12 34 1 0 2 + 96 44 0 1 131 27 4 1 3 4 1 10 64 17 81 12 3 5 40 36 + 10 9 108 4 0 1 18 20 +144.07 72.75 2.97 2.376 + 113 34 19 84 9 0 0 8 117 45 38 115 12 0 0 8 64 18 28 117 + 18 1 1 5 19 26 60 46 1 0 0 2 29 36 60 68 9 5 13 3 + 117 19 9 49 29 3 1 45 83 10 10 82 117 10 0 17 59 17 25 26 + 36 6 3 25 9 1 5 2 1 64 117 12 117 73 24 11 8 43 37 13 + 53 37 36 73 112 7 9 6 66 15 13 45 49 5 4 13 0 0 3 7 + 5 70 78 12 1 4 5 3 3 116 71 1 3 3 9 12 11 45 82 10 + 10 1 6 19 16 15 22 29 +143.06 179.44 3.14 2.119 + 5 6 2 11 62 47 12 1 20 22 18 3 4 37 75 7 0 4 10 7 + 15 81 95 0 7 29 1 1 7 75 42 5 2 3 3 16 128 61 2 0 + 21 48 121 60 76 19 0 1 107 65 66 13 13 21 19 20 11 6 1 2 + 39 87 24 10 0 1 6 15 105 50 2 2 54 9 8 17 128 97 1 9 + 128 36 11 7 16 13 4 40 23 6 6 28 105 42 4 7 7 7 6 10 + 35 27 23 18 21 3 0 0 110 128 32 6 100 103 32 4 13 53 6 4 + 11 56 30 20 25 21 4 1 +136.23 302.55 3.13 2.973 + 150 50 0 0 4 3 0 0 29 25 12 20 37 18 5 8 79 76 8 3 + 2 0 0 4 12 3 0 0 101 19 0 0 150 77 0 0 5 0 0 0 + 46 19 3 11 128 21 1 2 150 59 3 4 21 5 1 11 39 6 0 0 + 96 24 0 1 150 98 0 0 1 0 0 0 61 22 4 16 54 45 7 9 + 150 16 2 4 10 16 10 59 41 2 0 0 43 17 0 6 150 75 0 0 + 0 0 0 0 77 23 4 16 12 20 16 8 101 30 2 4 4 9 10 15 + 34 10 0 0 16 5 0 0 +134.53 115.68 3.23 -2.959 + 42 9 9 37 73 3 1 20 152 75 13 19 25 0 0 0 140 60 27 5 + 3 0 0 0 9 19 15 11 45 47 10 1 38 2 1 60 144 4 1 15 + 152 7 0 12 26 0 0 14 148 28 16 21 16 0 0 6 60 76 11 3 + 3 11 9 6 29 4 9 72 87 24 5 9 152 0 0 4 9 1 2 54 + 109 1 0 4 11 8 31 48 15 29 6 9 3 4 22 37 10 0 0 4 + 19 69 34 16 152 2 1 0 0 8 19 90 77 8 27 12 1 0 12 23 + 15 8 13 42 11 0 3 6 +129.39 57.50 2.98 -2.728 + 25 42 62 19 29 27 17 22 7 16 111 81 1 5 79 78 40 93 54 12 + 1 8 55 59 60 93 9 0 0 0 4 33 6 41 36 23 20 43 51 16 + 13 51 111 75 12 43 53 46 111 108 61 36 3 9 19 53 75 32 6 0 + 1 2 6 40 2 45 59 15 4 39 50 3 40 37 47 13 20 90 64 45 + 111 30 8 8 8 20 75 111 61 63 13 2 5 11 6 13 7 41 26 1 + 1 22 34 24 80 16 8 1 2 16 61 76 52 15 7 30 22 7 21 41 + 51 26 5 6 5 1 4 77 +105.85 88.38 3.41 2.887 + 28 37 13 29 48 2 1 4 75 62 3 1 39 79 10 4 1 2 1 40 + 123 96 27 3 3 5 39 39 23 7 33 26 34 18 15 27 28 12 9 16 + 123 67 0 0 51 28 5 24 13 4 1 9 123 123 1 3 6 6 32 19 + 49 95 11 11 91 13 0 3 8 31 28 41 123 48 4 5 33 31 15 26 + 19 18 1 21 123 75 2 1 0 1 2 73 123 63 12 3 75 48 4 8 + 14 9 4 7 43 65 12 22 37 19 16 10 25 31 2 52 123 5 3 4 + 15 9 1 60 99 8 40 38 +105.85 88.38 3.41 0.008 + 45 12 57 16 7 4 3 102 119 1 3 3 12 6 1 125 35 17 19 17 + 76 37 7 35 16 22 13 25 54 18 5 16 111 73 5 3 0 1 8 83 + 125 34 0 5 19 6 0 55 43 19 7 45 118 36 4 19 20 25 13 38 + 100 12 3 12 97 44 12 8 3 13 31 36 125 34 0 15 38 4 0 33 + 32 20 10 84 125 14 0 3 10 23 19 50 28 6 17 14 39 37 36 8 + 1 4 22 60 125 85 6 3 30 4 0 33 29 12 2 6 125 36 4 17 + 23 0 2 4 10 8 36 47 +104.46 43.00 3.25 2.993 + 61 52 9 5 7 7 15 48 76 28 10 6 27 13 3 13 122 26 0 0 + 43 22 2 22 61 6 0 0 57 22 0 4 57 47 27 5 6 7 15 122 + 68 29 8 13 80 39 15 36 122 49 0 0 61 15 0 9 54 23 0 1 + 106 32 2 2 94 122 107 11 3 1 7 74 87 34 18 17 49 25 8 37 + 122 9 0 1 26 16 3 30 30 8 1 9 86 55 5 5 60 46 3 1 + 1 3 47 122 48 13 1 1 31 31 18 43 122 18 0 1 20 3 3 14 + 25 8 0 12 112 4 0 1 +95.09 204.32 3.07 2.063 + 3 23 12 16 29 31 6 1 14 57 20 17 6 2 3 2 135 135 4 7 + 2 2 5 4 65 118 26 24 21 0 0 0 18 12 13 46 135 23 0 0 + 135 31 11 8 4 6 24 33 113 68 1 2 4 13 48 33 54 120 75 33 + 1 0 0 1 28 2 0 3 135 81 0 2 135 13 0 1 16 10 4 21 + 53 19 1 7 18 30 14 11 14 33 33 23 3 1 1 0 17 0 0 46 + 135 14 0 4 135 0 0 0 14 7 5 56 39 1 0 0 21 83 18 26 + 0 4 15 30 30 31 0 0 +90.42 171.92 3.14 -1.021 + 19 8 5 53 79 10 0 2 126 10 1 3 4 1 3 59 37 0 0 0 + 31 59 30 45 0 1 3 3 112 108 2 1 28 3 0 10 68 126 23 10 + 126 13 0 0 9 19 6 72 56 5 1 1 19 50 26 40 0 0 0 0 + 122 126 4 0 15 8 15 24 126 53 9 7 126 55 0 0 38 15 2 17 + 65 62 14 3 3 14 6 7 3 3 1 3 101 105 3 1 2 52 83 15 + 28 7 1 1 88 66 14 1 9 6 2 8 90 75 3 0 0 1 4 15 + 7 9 5 6 61 46 10 8 +84.12 115.96 3.55 2.901 + 20 27 45 25 42 6 0 0 149 78 16 2 1 2 1 3 97 38 2 3 + 6 8 4 8 28 36 7 15 24 12 5 4 49 8 3 8 93 67 8 6 + 149 34 0 0 9 12 2 8 119 27 0 0 10 24 9 21 50 27 1 3 + 10 28 55 23 55 13 0 2 116 61 5 7 149 10 0 0 20 19 4 30 + 131 20 0 0 23 35 27 26 71 38 14 22 9 4 16 23 31 21 9 7 + 22 33 44 37 149 0 0 1 5 14 35 149 99 0 0 1 12 16 37 55 + 5 2 21 52 59 28 15 10 +79.35 68.96 3.15 1.353 + 16 54 29 29 3 0 13 17 16 46 69 85 5 0 6 19 10 74 84 20 + 3 0 1 6 3 41 69 14 0 0 0 0 50 111 47 59 5 3 2 2 + 111 31 26 92 16 6 19 102 52 33 28 63 111 19 21 39 47 46 54 92 + 53 0 0 1 39 25 7 9 2 46 69 15 111 92 49 45 8 17 17 14 + 66 20 39 111 68 5 6 11 48 6 2 30 99 36 8 7 1 0 0 0 + 0 55 106 15 7 13 8 5 0 58 111 10 17 3 6 12 2 18 111 30 + 9 0 0 1 10 35 59 24 +77.14 161.68 3.31 2.451 + 0 0 2 23 117 15 1 0 23 5 4 31 75 54 11 12 15 16 0 0 + 1 117 45 11 20 87 2 0 1 54 12 1 3 8 9 107 117 12 1 0 + 117 28 5 58 78 2 6 71 45 10 7 17 30 117 45 50 6 18 5 7 + 16 117 69 24 3 5 8 117 117 1 1 3 117 117 12 37 40 2 2 43 + 39 61 41 57 31 4 0 8 3 22 45 52 38 7 12 9 20 1 9 82 + 36 2 2 19 60 4 0 3 9 8 22 117 11 6 5 19 30 15 15 11 + 6 0 2 25 49 2 0 6 +75.09 108.59 2.97 2.936 + 141 10 0 0 1 3 1 7 89 11 0 0 6 24 6 18 65 22 1 2 + 7 27 39 27 21 6 0 3 27 23 54 22 141 2 0 0 4 4 1 17 + 123 13 0 0 34 33 9 14 121 76 2 0 6 8 15 26 24 12 6 30 + 62 10 21 4 141 0 0 0 2 8 8 114 122 0 0 0 7 32 66 66 + 37 5 22 49 36 16 55 51 9 8 93 103 19 0 0 2 56 0 0 0 + 1 2 57 141 88 0 0 0 7 6 10 54 2 0 3 28 115 78 8 2 + 1 8 25 29 32 49 15 1 +67.17 236.30 3.42 -1.806 + 24 36 38 4 3 21 5 3 44 9 6 7 3 21 42 38 42 1 0 1 + 1 24 81 51 32 4 4 27 44 7 2 12 75 4 0 3 96 69 6 12 + 112 16 1 0 1 8 43 112 10 4 2 5 14 105 92 28 1 1 2 32 + 48 95 9 1 39 3 0 8 75 57 112 40 112 88 16 2 5 35 81 36 + 22 46 42 38 17 31 6 10 13 5 8 4 13 112 35 17 49 2 3 14 + 17 29 108 112 4 16 13 70 112 89 71 10 11 77 65 18 14 2 0 3 + 12 42 72 2 4 9 2 6 +53.05 223.66 3.32 2.844 + 14 7 11 14 13 14 11 32 0 2 9 45 36 14 10 5 0 0 6 45 + 61 44 42 2 0 4 36 15 6 20 58 0 15 32 126 47 5 0 0 3 + 126 29 36 36 8 6 42 79 22 6 4 3 9 126 126 43 1 1 0 0 + 0 48 126 15 19 6 46 5 0 4 92 48 126 110 30 1 0 4 30 41 + 24 116 121 6 5 21 20 8 2 34 81 1 0 6 35 9 19 1 2 3 + 1 25 89 42 6 19 8 5 4 36 88 9 0 44 94 31 44 21 19 0 + 0 64 126 11 6 0 2 0 +45.56 189.63 3.39 0.590 + 0 0 4 51 38 22 2 0 61 33 3 30 37 11 0 0 118 34 2 0 + 5 19 5 4 1 35 27 2 18 65 7 1 0 0 0 9 14 110 87 3 + 56 10 0 6 21 121 45 5 121 28 0 0 1 13 10 39 17 0 0 0 + 20 109 28 24 8 7 55 41 7 30 59 22 17 7 33 121 99 115 30 5 + 121 101 8 13 14 13 5 42 34 30 2 1 30 44 13 18 1 7 105 68 + 3 15 7 0 1 8 48 120 22 30 1 0 69 121 13 12 5 5 0 0 + 41 121 8 1 6 5 0 0 +45.87 150.32 3.44 1.980 + 104 13 31 37 1 1 21 112 47 64 96 108 1 0 0 38 13 112 93 0 + 0 0 0 2 0 42 38 0 0 0 0 0 25 13 103 78 34 7 11 32 + 70 34 73 79 1 5 19 39 4 112 110 16 19 28 29 9 3 112 112 8 + 11 2 0 4 15 2 2 9 76 37 1 2 103 48 22 13 6 5 2 10 + 13 9 36 112 29 9 4 3 59 28 18 32 19 3 3 40 1 4 4 22 + 99 22 3 0 14 62 38 29 15 0 0 0 40 12 24 103 13 0 0 5 + 110 7 3 11 2 0 0 32 +42.28 227.29 2.97 -2.343 + 3 6 3 3 32 49 57 22 1 2 0 0 81 120 23 8 25 37 0 0 + 2 23 88 120 10 24 17 2 11 41 70 46 25 53 13 9 39 20 2 2 + 30 1 0 4 93 68 12 20 120 13 1 2 4 8 53 120 20 7 3 12 + 120 76 51 33 30 67 62 16 11 14 3 3 35 33 90 64 49 23 0 1 + 120 98 9 5 4 1 0 2 30 20 2 7 60 51 2 1 0 2 26 18 + 42 112 1 0 29 37 69 33 24 34 0 1 120 120 6 1 0 0 0 0 + 66 26 2 1 6 12 2 2 +38.83 165.03 3.28 -2.056 + 8 5 2 99 119 1 1 3 73 60 1 35 48 1 14 44 93 119 19 0 + 0 0 4 16 2 68 46 19 8 2 0 0 12 1 0 33 119 91 4 12 + 91 4 0 3 17 20 44 119 38 41 2 0 0 11 79 66 4 64 46 1 + 0 17 15 2 4 0 0 0 41 119 16 2 119 27 0 0 4 117 22 22 + 94 21 0 0 0 13 38 38 11 2 4 3 10 99 46 16 1 2 0 0 + 57 119 7 1 26 10 0 0 18 119 11 4 94 50 8 2 5 18 5 18 + 13 10 17 30 14 17 29 41 +28.67 183.71 3.14 0.803 + 0 70 47 3 21 14 0 0 4 130 38 0 0 0 0 0 1 130 11 0 + 2 9 0 0 0 26 1 0 8 130 0 0 6 21 11 53 71 16 0 0 + 130 93 11 7 10 2 1 7 27 130 15 2 16 14 2 5 0 130 16 1 + 4 12 0 0 18 1 3 54 40 61 2 2 130 4 1 7 4 6 1 24 + 51 11 5 2 44 69 9 15 0 130 27 4 38 39 0 0 9 0 1 10 + 53 130 17 5 130 0 0 0 10 21 5 74 41 0 0 0 16 60 28 50 + 0 20 4 2 101 96 2 0 +23.45 242.38 3.03 1.690 + 25 0 2 10 11 20 14 47 17 2 2 15 43 75 23 21 139 2 0 0 + 1 2 5 60 28 0 0 23 104 0 0 6 13 3 2 26 54 10 10 32 + 50 17 10 74 96 3 0 2 139 17 4 3 3 0 0 24 21 0 0 38 + 139 0 0 3 3 35 77 62 45 2 0 1 101 6 17 77 87 0 0 10 + 139 3 0 3 7 0 0 36 13 0 0 52 139 0 0 1 0 15 61 30 + 5 11 5 1 133 6 22 35 2 3 2 31 139 2 0 4 9 0 0 34 + 3 0 0 54 139 0 0 0 +199.93 300.93 2.58 2.923 + 8 6 31 12 0 0 108 80 2 8 49 6 0 0 65 52 2 5 42 10 + 0 0 53 34 0 0 22 4 3 1 46 39 77 27 8 9 10 1 4 30 + 21 27 75 75 80 6 12 24 123 114 56 12 7 0 19 29 24 3 0 0 + 16 6 18 32 139 73 0 0 18 2 0 0 71 16 7 18 139 29 0 9 + 139 42 6 4 34 4 0 48 46 7 0 0 7 3 0 8 139 87 0 0 + 5 0 0 0 57 17 0 0 139 60 1 3 139 49 0 0 31 19 3 14 + 47 13 0 0 1 0 0 1 +198.07 307.85 2.45 -0.172 + 4 6 3 12 113 16 0 0 87 48 5 7 39 5 0 0 11 3 0 0 + 123 37 0 0 0 0 0 0 141 75 0 0 5 1 0 21 141 16 0 0 + 141 19 0 8 61 6 0 3 33 2 0 0 110 37 0 1 0 0 0 0 + 141 108 0 0 3 0 0 22 121 43 15 3 121 5 1 7 31 19 34 45 + 29 2 1 8 75 18 0 5 0 0 0 0 141 101 0 0 0 0 22 14 + 9 20 16 1 3 0 12 15 3 11 36 17 2 0 9 26 14 5 17 9 + 0 0 3 13 141 59 5 5 +190.59 215.61 2.78 -1.066 + 75 28 0 2 19 8 0 1 120 120 6 0 0 0 0 0 22 55 43 47 + 21 0 0 1 5 0 2 46 120 10 2 18 47 23 0 9 29 0 0 3 + 120 74 2 0 0 0 0 19 61 21 26 52 21 0 0 16 25 0 6 37 + 87 15 9 84 24 0 0 7 4 0 1 81 120 20 14 11 8 6 9 97 + 43 15 76 82 13 3 0 24 94 3 13 16 3 0 1 120 38 0 0 0 + 0 0 3 120 11 0 0 17 75 23 29 118 75 2 6 17 66 10 2 120 + 64 0 0 1 4 0 0 111 +173.57 308.47 2.59 -0.224 + 13 9 1 10 108 17 0 0 85 40 1 2 26 7 0 0 4 1 0 0 + 131 63 0 0 0 0 0 0 131 72 0 0 7 3 0 4 131 36 0 0 + 131 34 0 2 47 10 0 7 21 3 0 0 131 55 0 1 0 0 0 0 + 131 114 0 0 2 0 0 3 107 48 8 4 95 12 4 4 33 25 16 36 + 21 9 1 1 108 20 0 1 0 0 0 0 131 106 0 0 0 0 0 2 + 44 24 2 0 22 34 12 20 68 17 5 3 32 31 2 1 46 15 0 0 + 0 0 0 0 131 73 0 0 +173.23 269.79 2.44 2.483 + 6 4 0 0 4 25 23 5 14 12 11 14 23 11 9 2 149 16 5 4 + 1 0 1 49 45 5 0 0 0 9 36 50 5 15 15 13 37 100 4 1 + 31 20 20 93 67 11 1 2 149 44 4 12 5 0 0 15 110 16 8 5 + 1 3 13 22 0 0 4 9 91 149 0 0 50 2 6 54 74 109 8 31 + 149 21 0 3 1 0 1 44 101 20 6 8 5 0 0 0 0 0 0 0 + 31 121 0 0 15 0 0 0 35 149 24 17 149 20 0 0 0 24 13 37 + 70 32 2 4 3 1 0 0 +162.00 302.44 2.44 3.023 + 90 11 0 10 50 1 0 1 82 16 9 55 138 6 0 13 138 27 3 3 + 1 0 0 29 15 3 1 0 22 2 0 2 138 19 0 1 58 11 0 0 + 105 19 0 5 138 45 1 10 138 56 0 0 4 1 0 16 18 4 0 0 + 12 4 0 6 138 25 0 0 36 8 0 0 70 3 0 0 138 73 12 35 + 138 9 0 0 5 5 5 65 30 1 0 0 5 1 0 5 138 24 0 0 + 6 4 0 0 26 8 17 24 46 51 17 19 81 78 30 5 2 3 7 30 + 30 15 0 0 1 0 0 4 +158.95 244.06 2.52 2.351 + 8 14 9 21 52 10 2 1 0 0 0 20 145 16 2 0 2 0 0 3 + 79 31 75 17 55 20 0 0 0 8 90 18 19 14 1 15 79 7 15 7 + 13 3 1 37 145 4 2 2 113 5 1 6 23 8 71 89 15 1 0 0 + 7 64 138 39 2 2 5 33 104 11 10 3 28 8 1 31 145 0 0 0 + 145 44 1 5 25 0 0 15 51 11 0 0 17 36 6 8 0 0 2 12 + 79 3 0 0 10 10 1 22 145 1 0 0 145 97 1 6 29 0 0 0 + 71 26 0 0 4 6 1 4 +158.95 244.06 2.52 -0.850 + 2 3 1 3 84 44 0 0 48 0 0 0 144 109 1 5 144 8 0 0 + 3 6 1 6 60 6 0 0 1 2 3 12 12 29 4 6 58 20 0 0 + 34 0 0 6 144 65 1 3 144 6 0 0 20 7 1 12 96 14 13 6 + 3 2 4 25 7 58 118 39 19 1 0 0 21 7 59 85 129 8 1 4 + 144 9 2 2 12 4 1 18 84 7 12 7 18 18 1 9 0 8 98 25 + 46 26 0 0 59 31 83 28 4 0 0 0 144 24 3 0 0 0 0 6 + 63 14 2 1 5 10 8 22 +153.68 127.20 2.67 -1.763 + 0 3 29 0 0 13 90 26 106 56 15 2 5 10 55 52 124 58 0 1 + 49 39 7 4 10 0 6 4 28 30 61 38 2 11 107 38 5 20 49 18 + 78 33 98 54 14 9 21 34 124 76 7 11 34 9 0 12 54 9 0 5 + 35 8 2 10 0 2 70 18 0 0 70 69 36 6 42 8 0 0 105 124 + 124 22 7 11 6 0 24 124 27 3 2 10 9 0 8 54 0 0 5 0 + 0 0 116 98 10 9 4 0 0 0 85 120 6 2 3 0 0 0 41 80 + 0 0 3 0 0 1 10 22 +148.54 172.02 2.54 -2.657 + 3 14 77 38 2 1 0 0 0 7 113 96 5 0 3 2 7 34 55 46 + 9 1 7 13 0 3 21 111 79 1 0 0 10 27 123 96 0 0 0 1 + 93 57 52 20 3 1 19 38 13 4 1 18 51 8 46 49 0 0 0 62 + 123 3 2 2 22 13 43 30 1 12 123 39 123 39 18 5 3 4 52 83 + 19 13 23 50 88 1 3 5 6 0 0 72 123 0 0 14 0 5 8 14 + 6 18 123 8 10 5 10 45 50 16 43 16 15 12 14 69 60 0 0 1 + 20 0 0 68 102 0 3 86 +144.31 108.58 2.47 -2.638 + 127 6 1 24 6 0 0 83 127 13 5 0 0 0 0 74 39 18 11 19 + 21 0 0 13 0 0 13 123 58 5 0 0 127 0 0 2 1 0 0 127 + 111 24 33 40 7 0 0 54 72 90 42 16 26 11 0 6 9 4 0 14 + 93 127 6 2 127 0 0 10 3 0 0 127 40 3 2 70 31 0 3 24 + 127 45 3 8 3 3 4 27 28 17 1 1 24 91 11 6 69 0 0 5 + 8 20 12 74 5 1 0 12 13 26 43 59 40 58 3 2 4 23 30 18 + 9 69 19 13 24 2 5 2 +141.62 27.96 2.29 2.911 + 0 0 1 2 71 17 0 0 14 13 4 18 132 33 0 1 132 52 3 6 + 12 0 0 8 94 34 0 0 0 0 0 1 0 8 119 58 38 3 0 0 + 30 15 28 73 132 16 2 2 132 42 1 8 34 2 2 15 124 32 3 2 + 0 0 0 3 6 20 82 53 7 8 47 40 11 10 31 38 68 76 83 23 + 132 22 28 6 9 17 50 105 56 37 20 13 11 0 0 11 4 34 90 14 + 2 9 42 16 10 25 71 28 18 15 40 32 30 47 91 55 50 10 11 13 + 80 68 31 2 15 1 0 2 +133.72 192.63 2.40 -0.226 + 13 14 6 19 44 21 16 11 13 0 0 11 128 34 3 18 119 1 0 0 + 5 3 6 137 33 0 0 0 1 27 36 87 2 4 3 30 32 52 35 6 + 46 7 1 52 104 60 2 10 137 45 0 3 5 2 2 74 59 17 0 3 + 20 34 13 28 1 0 26 137 14 7 5 2 52 3 8 137 33 3 0 77 + 137 63 4 3 1 0 0 78 45 70 50 29 10 1 0 0 16 0 15 111 + 19 14 8 30 62 0 3 12 0 0 0 137 46 10 5 0 0 3 7 81 + 4 17 39 15 6 10 11 10 +126.40 33.85 2.40 0.051 + 12 0 0 34 110 0 0 0 120 9 3 17 44 0 0 12 44 6 7 78 + 120 7 0 1 24 12 1 18 104 13 2 7 23 3 2 88 120 1 0 2 + 120 19 10 27 38 8 0 14 25 5 16 100 120 85 11 3 30 7 5 34 + 39 43 51 11 15 0 1 30 96 75 42 20 120 15 40 25 17 27 39 56 + 8 28 120 28 26 83 47 1 2 45 35 4 14 79 85 4 1 6 21 65 + 37 25 19 3 17 56 41 19 8 19 33 16 5 20 41 13 9 61 64 7 + 3 23 19 9 8 33 44 7 +111.22 258.18 2.53 -1.736 + 50 21 5 2 0 0 0 19 69 60 4 0 0 0 0 26 31 42 12 10 + 16 5 7 20 0 0 1 35 93 71 45 4 39 32 9 0 1 0 0 19 + 120 17 0 0 0 0 8 91 46 5 0 0 0 3 68 120 6 1 0 0 + 4 71 120 64 22 92 14 6 34 5 0 0 120 120 0 0 0 0 0 10 + 120 87 7 2 0 0 8 42 20 58 30 1 0 27 18 15 2 20 1 1 + 53 13 20 17 76 120 0 0 0 0 32 50 84 120 111 20 2 6 8 12 + 0 99 120 13 0 2 0 0 +106.89 175.68 2.49 2.467 + 3 0 4 47 47 32 4 1 158 2 0 9 27 7 0 37 158 50 2 0 + 0 5 13 46 8 19 12 11 36 99 12 3 9 11 24 67 59 28 4 2 + 158 11 0 18 32 5 0 66 148 29 6 3 6 4 15 73 2 15 32 37 + 40 8 2 0 20 25 25 43 30 0 0 0 158 54 1 13 16 0 0 10 + 152 63 6 10 8 2 6 12 3 4 0 7 40 29 21 8 30 15 3 16 + 17 0 0 0 158 27 1 6 8 0 0 5 112 71 7 0 0 0 1 8 + 7 39 22 30 28 8 4 4 +104.09 102.78 2.35 2.953 + 64 37 20 69 13 0 0 1 43 11 41 62 15 3 1 14 50 20 3 5 + 62 23 3 14 124 59 0 0 13 4 0 37 69 41 8 22 24 3 0 3 + 124 12 0 9 14 14 24 94 57 2 0 1 35 124 48 54 124 11 0 0 + 10 13 6 50 124 41 0 0 21 12 1 3 124 52 0 0 20 14 3 14 + 92 24 4 14 104 69 7 9 96 88 10 10 22 9 1 5 124 14 0 0 + 12 17 3 10 91 77 4 1 17 23 5 14 41 65 22 36 72 15 6 14 + 71 57 9 19 44 13 4 4 +96.34 192.94 2.68 2.476 + 32 33 8 5 4 9 6 1 73 22 6 22 40 1 0 2 174 50 1 4 + 9 0 0 8 66 71 8 3 2 1 5 7 46 34 36 15 3 2 3 19 + 92 32 13 56 21 18 8 14 174 46 3 9 3 1 1 20 83 46 12 16 + 11 2 8 18 111 5 2 4 3 7 11 114 59 1 1 9 19 92 40 61 + 174 79 9 0 0 7 9 50 48 70 70 75 16 0 1 1 86 0 0 12 + 11 6 2 96 41 6 6 28 21 16 5 21 77 56 33 2 0 1 1 15 + 2 27 96 58 1 0 0 0 +96.20 103.02 2.38 -3.080 + 109 8 1 4 15 1 0 11 111 0 0 5 14 6 15 76 28 0 0 2 + 54 81 32 50 99 0 0 0 10 12 5 99 115 2 0 1 32 8 3 49 + 115 23 2 4 26 5 1 59 63 14 7 33 115 24 3 19 115 35 4 8 + 15 5 1 26 80 3 0 1 40 33 7 44 112 73 8 9 18 15 11 64 + 33 36 20 83 91 22 7 12 115 55 7 24 18 1 1 15 50 1 0 5 + 59 15 5 25 115 12 0 2 19 20 14 62 24 4 0 3 38 115 63 27 + 68 2 0 23 28 18 40 41 +91.55 308.76 2.33 -0.275 + 7 22 26 17 45 13 3 4 22 52 12 1 18 7 0 1 1 1 0 0 + 129 76 0 0 0 0 0 0 129 102 0 0 8 15 9 8 127 57 0 1 + 118 65 8 3 13 10 0 5 20 3 0 0 97 65 0 1 0 0 0 0 + 129 129 0 0 5 0 0 0 104 109 14 5 120 3 0 0 14 32 35 56 + 27 1 0 0 63 44 3 10 0 0 0 0 129 129 0 0 0 0 0 0 + 15 46 22 1 3 0 1 3 4 20 60 29 1 0 1 1 46 30 5 6 + 0 0 0 0 129 78 0 0 +84.69 163.77 2.51 2.217 + 0 0 4 19 80 39 0 0 1 7 9 14 83 58 6 0 28 22 7 4 + 5 97 68 4 2 9 0 0 0 115 86 2 1 0 0 2 66 57 16 5 + 16 8 3 34 137 38 0 0 137 27 3 15 25 6 16 46 23 0 0 1 + 12 88 82 27 4 23 26 36 59 26 7 5 25 9 4 72 137 24 0 1 + 137 122 19 12 35 0 1 29 28 32 43 43 28 11 6 13 1 7 13 46 + 60 2 1 2 2 7 3 68 137 10 0 0 83 129 14 7 35 8 1 24 + 38 52 32 11 1 0 0 8 +84.69 163.77 2.51 -1.003 + 0 0 1 13 49 46 23 7 42 15 2 26 73 108 13 5 139 17 0 0 + 0 5 2 49 59 3 1 2 2 8 14 36 23 6 2 6 21 45 54 49 + 36 0 0 11 139 139 29 9 139 35 0 0 26 13 4 50 64 35 7 5 + 3 19 25 32 23 68 71 23 20 0 0 7 18 4 17 40 139 31 3 8 + 139 46 0 0 29 13 3 24 72 70 15 4 0 0 0 1 0 101 118 2 + 1 5 1 0 2 79 93 7 37 24 5 2 66 55 14 0 5 13 12 15 + 79 57 1 0 0 0 1 12 +85.78 103.12 2.33 3.138 + 85 3 0 1 28 15 3 29 115 60 5 7 17 4 1 24 34 30 16 59 + 91 5 0 3 96 69 8 14 12 0 0 2 82 3 0 1 41 43 9 35 + 109 46 4 4 18 25 19 95 30 18 8 36 90 97 34 31 115 23 2 20 + 27 12 17 36 75 2 0 8 87 17 4 24 115 55 1 3 34 14 7 27 + 55 34 0 0 10 115 95 20 25 1 0 23 61 38 89 34 34 1 0 6 + 69 39 14 24 97 49 1 3 21 12 16 83 78 40 6 13 6 2 6 42 + 3 0 1 80 96 6 5 0 +73.75 206.31 2.31 -1.791 + 3 98 92 19 10 0 0 0 15 115 120 8 0 0 0 3 3 101 120 24 + 2 0 0 1 0 39 78 22 39 38 0 0 30 120 68 33 17 0 0 0 + 119 86 52 0 0 0 9 59 19 54 30 2 1 4 46 39 8 26 55 21 + 10 32 25 3 117 27 2 12 22 0 0 36 120 42 0 0 0 0 2 44 + 57 30 1 0 0 2 23 32 10 0 0 0 1 59 54 35 116 2 0 1 + 4 5 13 41 120 18 0 0 0 0 0 46 120 10 0 0 0 0 1 45 + 43 0 0 0 0 11 46 113 +70.49 102.51 2.51 -1.326 + 0 6 82 22 1 4 2 0 0 33 44 18 13 30 10 0 0 3 32 79 + 43 79 22 0 0 15 42 8 5 96 58 0 9 45 123 64 11 11 6 3 + 103 123 69 15 22 10 2 11 19 15 23 53 96 123 27 8 1 27 54 6 + 4 36 104 12 48 18 23 18 8 24 28 41 123 47 1 0 0 11 16 64 + 53 31 2 1 12 92 61 24 0 0 8 47 17 33 119 27 79 25 27 42 + 2 2 11 48 68 82 46 28 0 2 10 29 9 123 56 8 4 2 4 0 + 0 19 26 67 59 21 11 0 +61.32 144.99 2.50 1.445 + 48 21 5 9 38 19 12 23 138 63 1 4 33 3 0 0 28 24 52 36 + 64 3 0 0 4 12 138 17 0 0 0 0 46 16 73 46 23 3 7 23 + 138 53 7 26 46 0 1 32 37 11 45 117 138 0 0 5 17 7 99 20 + 7 0 29 29 14 1 14 4 2 4 112 122 114 17 49 106 18 5 14 90 + 32 21 24 138 65 7 3 3 65 60 3 4 2 0 5 11 2 0 0 3 + 17 49 46 20 0 0 8 27 28 73 5 1 5 3 2 14 15 61 10 2 + 17 48 6 1 0 8 3 1 +61.32 144.99 2.50 -2.168 + 1 27 38 3 0 1 0 0 25 50 43 0 1 0 1 19 13 23 26 83 + 25 2 2 17 0 0 5 126 8 0 5 9 6 4 10 2 7 61 24 4 + 126 21 8 1 13 28 11 106 31 4 0 49 126 126 14 45 22 6 0 36 + 29 28 28 75 4 1 3 26 24 67 10 5 126 78 0 6 14 24 13 52 + 83 51 0 0 90 126 3 11 25 34 4 3 49 126 5 11 0 0 9 38 + 4 0 36 94 26 6 0 3 2 9 77 126 42 45 1 0 15 63 12 16 + 2 11 3 1 34 126 21 0 +57.45 262.97 2.60 -1.963 + 2 0 29 92 112 18 15 16 69 5 22 106 94 2 0 32 74 4 11 14 + 1 0 1 39 0 0 6 38 69 6 2 1 8 3 7 118 118 3 2 12 + 118 14 4 53 83 0 0 37 50 8 24 87 9 0 0 14 0 0 25 118 + 34 10 5 0 2 12 37 118 64 0 0 0 51 106 58 37 15 0 1 1 + 13 38 105 65 8 0 0 0 28 14 7 21 10 23 35 13 0 2 9 43 + 17 14 118 11 0 26 27 5 5 75 118 1 42 32 44 2 4 37 6 1 + 110 15 1 0 0 0 5 34 +44.71 199.59 2.54 0.843 + 11 0 0 0 44 122 7 4 125 0 0 0 4 9 1 39 51 0 0 0 + 2 20 16 42 0 1 0 0 59 91 7 1 12 3 20 75 120 58 5 10 + 125 11 1 2 11 10 12 125 41 1 0 0 10 25 49 77 0 0 0 0 + 106 80 8 2 19 26 78 68 9 2 0 1 125 125 9 2 1 0 1 18 + 75 42 3 6 45 14 6 7 0 0 0 3 125 31 1 0 15 10 5 4 + 26 14 0 0 125 125 1 0 0 0 0 0 72 112 9 7 6 0 1 1 + 3 2 0 2 50 26 3 1 +38.26 308.55 2.58 3.104 + 153 13 0 0 0 0 0 0 122 7 0 6 26 5 0 0 32 12 21 28 + 76 26 6 24 98 24 6 0 0 0 1 44 153 15 0 0 0 0 0 0 + 153 9 0 1 14 11 0 2 43 7 4 9 45 54 27 34 88 18 1 0 + 0 0 5 43 153 12 0 0 0 0 0 1 153 4 0 7 13 1 0 5 + 26 26 15 50 51 6 3 3 91 62 6 2 0 0 0 3 153 13 0 0 + 0 0 0 0 153 4 0 1 17 3 0 1 24 7 1 12 69 27 25 7 + 102 17 0 1 0 1 12 20 +31.19 174.60 2.89 1.238 + 0 3 6 17 52 15 0 0 34 96 8 6 80 13 0 0 74 110 4 8 + 22 1 0 0 78 73 0 2 10 1 0 0 1 11 73 37 22 6 0 0 + 32 46 26 53 110 5 0 2 110 110 5 8 12 1 0 11 110 110 1 2 + 9 2 0 0 0 0 46 39 81 39 0 0 55 4 46 58 25 1 0 65 + 110 11 0 4 22 7 2 110 108 96 1 4 33 8 1 4 1 0 2 14 + 110 91 3 6 88 0 1 2 21 7 2 110 44 0 0 4 36 10 5 82 + 49 54 3 17 65 8 0 0 +27.46 181.97 2.67 0.831 + 0 122 37 3 17 14 0 0 4 139 16 4 9 2 0 0 5 139 4 0 + 5 8 0 0 2 35 1 0 7 74 0 0 14 55 14 24 76 31 0 0 + 139 112 9 2 8 11 2 8 20 139 4 1 20 38 2 3 6 139 4 0 + 4 10 0 0 42 2 12 67 32 9 0 3 139 4 0 4 4 4 0 33 + 32 17 3 2 72 59 2 7 4 139 14 5 36 26 0 0 40 0 0 2 + 29 91 3 7 139 0 0 0 0 3 1 35 26 0 0 0 19 62 22 24 + 0 31 4 3 76 94 2 0 +194.86 230.48 2.05 1.988 + 9 0 2 91 59 0 0 8 31 16 6 84 62 2 11 27 15 1 0 3 + 6 1 24 95 0 0 0 25 64 13 8 16 14 5 3 132 132 0 0 3 + 132 31 9 62 24 0 0 30 65 2 3 12 11 3 5 37 0 0 0 16 + 44 66 13 3 24 12 2 132 132 2 0 1 132 55 1 14 7 0 0 20 + 67 5 0 1 0 1 20 95 0 0 0 0 19 83 46 34 10 1 0 40 + 67 27 29 11 132 8 0 0 1 4 12 93 91 0 0 0 0 0 14 132 + 1 0 0 3 60 42 24 30 +193.60 268.25 2.06 -3.038 + 2 21 137 128 84 4 7 15 10 86 137 2 0 0 17 26 1 59 137 0 + 0 1 22 4 0 40 137 0 0 2 21 2 13 2 6 39 137 9 15 56 + 18 20 56 27 10 0 21 57 74 35 53 2 0 2 46 36 11 8 41 0 + 4 39 80 20 22 0 0 19 137 8 1 28 31 5 9 21 67 27 4 14 + 137 74 7 2 1 3 4 26 31 60 8 1 14 57 9 8 51 4 0 17 + 72 13 3 17 8 0 8 14 40 49 14 8 23 56 25 9 1 2 7 12 + 22 102 21 2 3 2 0 16 +191.72 308.42 2.30 -0.068 + 2 3 8 25 52 28 16 5 48 46 18 15 24 2 6 12 11 6 1 3 + 96 5 0 0 1 0 0 0 149 28 0 0 5 2 1 14 149 9 0 0 + 149 28 4 10 62 4 0 3 37 3 0 0 111 11 0 1 4 0 0 0 + 149 33 0 0 8 1 0 54 135 6 0 2 149 10 0 17 49 3 1 26 + 41 1 0 0 105 10 0 4 7 0 0 0 149 41 0 0 6 0 2 22 + 71 39 23 5 86 9 2 5 14 9 33 41 22 3 1 5 69 4 0 5 + 8 0 0 0 149 32 0 1 +187.76 308.33 2.24 0.005 + 3 0 3 16 57 44 22 10 52 19 10 9 12 8 19 45 11 5 1 13 + 75 0 0 2 1 1 0 3 153 1 0 0 1 2 6 37 108 7 2 0 + 114 48 19 26 44 1 1 5 31 7 0 4 109 0 0 2 4 0 0 3 + 153 1 0 0 4 0 0 30 153 4 0 1 153 6 0 12 59 2 1 19 + 43 0 0 2 110 2 0 4 5 0 0 3 153 3 0 1 12 0 0 63 + 87 11 5 6 126 5 0 13 22 1 4 43 23 0 0 5 84 2 0 5 + 6 0 0 0 153 6 0 1 +184.35 303.16 2.07 2.926 + 60 23 0 2 70 13 0 0 87 17 1 7 123 41 1 12 123 49 0 0 + 1 0 0 18 10 8 0 0 0 0 0 1 93 34 0 0 46 15 0 0 + 69 14 0 1 123 101 11 15 123 55 0 0 6 8 7 31 34 9 0 0 + 0 0 0 3 113 31 0 0 11 9 1 0 36 8 4 18 70 100 40 19 + 89 75 75 35 18 13 24 49 56 52 9 0 0 0 0 3 113 26 0 0 + 1 3 1 1 42 7 1 25 123 13 0 0 123 32 28 51 115 4 0 12 + 123 26 2 0 0 0 0 12 +184.35 303.16 2.07 0.124 + 0 0 0 16 41 6 0 0 9 0 0 63 123 66 32 30 105 0 0 12 + 14 7 19 123 20 0 0 24 67 0 0 13 0 0 0 15 36 7 0 0 + 7 14 32 105 101 57 27 8 90 76 34 24 20 5 17 37 14 5 1 38 + 99 0 0 2 0 0 0 16 66 3 0 0 47 5 8 99 123 1 1 7 + 123 22 7 19 44 0 0 42 17 1 0 24 122 0 0 5 0 0 0 69 + 61 1 0 0 64 3 0 112 123 1 1 31 123 1 0 8 42 0 1 60 + 11 0 0 18 110 0 0 5 +179.07 272.79 2.06 -1.080 + 2 55 57 12 61 24 0 0 16 127 107 3 6 0 0 3 1 127 100 0 + 0 0 1 1 0 61 36 0 0 0 0 0 15 2 0 5 127 92 0 2 + 127 43 8 3 22 7 22 57 13 127 53 0 1 23 71 20 0 127 94 0 + 1 16 8 0 6 0 0 0 127 127 5 4 108 46 3 0 21 59 15 28 + 22 45 44 13 4 16 18 6 0 24 39 10 5 29 5 0 0 0 2 6 + 124 81 1 0 17 4 0 0 62 58 6 12 16 7 11 10 9 10 13 11 + 5 15 22 4 2 20 14 3 +174.12 180.42 2.01 1.818 + 1 1 102 91 2 1 1 3 64 11 67 51 27 13 6 49 65 1 2 2 + 9 26 43 131 0 0 0 2 31 86 41 4 38 13 66 108 9 0 0 4 + 136 22 24 7 0 0 0 77 96 17 34 24 2 6 8 43 0 0 21 43 + 23 47 26 5 74 25 4 25 17 0 0 1 136 66 0 0 0 0 0 12 + 98 17 5 7 0 0 25 117 0 0 7 11 17 72 78 47 28 26 10 11 + 6 0 0 0 136 116 1 0 0 0 0 7 136 54 2 14 5 0 0 52 + 8 3 14 27 24 8 2 17 +169.58 196.74 2.09 2.421 + 0 0 24 100 0 0 0 0 40 16 25 13 0 0 0 9 154 4 0 0 + 0 0 0 154 43 0 1 0 0 1 38 136 0 0 15 27 0 0 14 4 + 102 26 9 7 0 2 23 10 154 49 0 0 0 0 1 97 67 11 20 17 + 0 0 21 82 5 0 0 1 0 1 53 70 47 2 0 0 0 25 111 56 + 154 60 2 0 0 1 11 72 70 54 45 15 2 0 7 13 28 0 0 0 + 4 13 16 66 57 6 3 2 9 22 16 37 126 33 2 0 0 1 31 109 + 16 39 38 2 0 8 36 24 +166.70 256.16 2.12 -1.259 + 51 48 2 3 6 1 0 2 19 9 7 2 9 43 4 7 0 0 1 0 + 54 122 6 1 25 5 0 0 59 122 10 6 102 122 4 0 0 0 0 1 + 56 26 13 4 4 6 15 58 3 1 4 11 62 96 23 18 0 0 0 0 + 96 122 6 0 122 122 0 0 1 4 0 0 107 86 31 17 5 5 3 16 + 3 13 77 73 38 25 8 4 0 4 26 38 102 44 5 0 97 108 0 0 + 15 22 4 4 122 122 1 1 3 12 4 8 10 12 10 12 19 74 31 3 + 0 1 6 9 8 54 59 4 +161.49 208.04 2.18 2.411 + 20 0 0 0 0 0 10 57 7 1 0 0 1 12 53 38 120 21 0 0 + 0 5 19 72 66 60 32 2 0 0 4 12 68 0 0 0 0 8 12 93 + 38 5 1 2 20 84 26 30 120 30 1 0 1 9 25 100 25 24 10 1 + 4 19 75 55 120 3 0 0 0 3 9 56 56 2 0 0 21 120 53 39 + 120 120 3 0 25 88 7 12 30 101 55 11 9 9 9 7 120 28 0 0 + 0 0 0 3 101 27 2 1 31 65 4 7 29 36 1 2 108 117 0 0 + 82 58 8 0 5 2 1 20 +161.49 208.04 2.18 0.058 + 26 31 11 3 5 16 12 20 6 7 6 49 126 53 8 5 99 0 0 51 + 75 1 0 83 57 0 0 22 31 15 15 72 8 61 69 47 45 17 0 0 + 15 31 85 126 88 3 0 1 126 32 15 57 34 0 0 47 46 11 18 126 + 21 0 0 13 3 15 76 126 34 1 0 0 30 16 50 93 9 3 2 11 + 122 51 70 42 1 0 0 15 4 10 56 126 3 0 0 0 9 50 23 63 + 9 0 0 0 10 54 56 5 0 0 0 1 5 10 92 61 0 0 0 0 + 0 0 41 66 8 0 1 2 +160.01 126.29 2.21 -1.723 + 63 12 4 9 36 38 41 53 142 63 0 2 51 20 1 2 44 5 0 0 + 95 52 27 30 21 1 0 0 0 1 77 33 47 18 112 64 29 4 5 21 + 142 69 7 19 38 4 0 23 96 15 1 18 130 13 0 3 59 7 0 0 + 1 1 1 3 18 2 24 4 0 0 106 142 142 19 21 22 6 0 30 142 + 47 6 13 54 37 0 16 78 31 0 0 0 0 0 4 30 2 2 1 0 + 0 0 84 91 3 2 3 0 0 0 63 84 0 0 1 1 0 1 28 55 + 0 0 0 0 0 2 3 6 +160.11 76.50 2.18 2.341 + 13 28 28 40 67 1 1 10 122 114 12 3 4 2 7 14 45 18 8 72 + 24 18 22 3 30 33 28 45 9 6 6 3 28 26 10 31 76 5 13 25 + 128 32 7 26 11 2 3 83 59 8 8 128 114 0 0 14 128 27 15 66 + 22 0 0 24 50 10 1 23 77 15 16 46 102 110 36 61 37 6 3 9 + 33 14 24 128 93 10 0 10 128 1 0 8 26 5 0 54 25 12 6 26 + 33 9 25 9 10 20 17 18 17 21 39 20 42 10 18 23 24 30 18 18 + 128 42 11 3 8 3 0 19 +160.11 76.50 2.18 -1.364 + 4 47 37 36 21 11 3 5 20 12 26 34 11 18 19 20 58 49 9 10 + 32 43 12 6 92 88 2 6 27 15 0 0 25 25 6 2 53 76 8 12 + 121 21 1 1 6 59 54 64 19 23 13 16 75 124 37 10 82 68 5 17 + 23 17 16 5 27 19 1 1 124 124 0 1 124 38 0 0 26 35 3 13 + 47 4 0 0 124 124 15 7 29 22 2 3 27 54 54 15 28 3 2 2 + 61 124 10 8 124 7 6 1 12 52 24 52 37 4 23 19 10 85 17 4 + 1 0 3 11 7 48 73 13 +156.71 228.31 2.11 0.669 + 7 3 32 19 1 0 21 114 0 0 25 110 44 15 17 15 9 2 4 116 + 47 8 2 26 28 3 1 10 2 0 5 91 4 7 125 65 0 0 0 5 + 13 5 125 125 2 0 0 0 125 8 24 71 5 0 1 100 33 0 0 0 + 0 1 30 105 0 0 125 49 0 0 0 0 57 13 80 59 0 0 1 1 + 125 81 12 4 0 0 0 22 38 46 65 5 0 0 9 20 0 0 6 4 + 0 2 74 4 22 4 2 0 0 0 82 24 95 65 17 5 1 1 25 23 + 4 27 125 20 3 4 15 1 +155.79 202.80 2.28 2.869 + 2 0 0 1 19 19 36 57 15 2 1 2 10 30 34 71 125 16 1 0 + 0 6 21 125 52 24 24 7 0 1 15 33 15 0 0 1 96 102 33 53 + 125 8 0 1 32 24 49 125 64 32 3 0 4 49 118 79 14 50 42 10 + 3 12 16 11 34 1 0 3 125 46 6 27 125 75 4 1 68 10 7 34 + 41 70 35 31 28 40 25 11 4 18 13 28 17 14 12 10 23 13 16 66 + 125 1 0 4 125 15 1 11 42 0 5 59 19 24 18 12 2 13 77 51 + 2 5 5 33 35 19 26 7 +153.87 261.96 2.23 -0.908 + 48 31 17 1 5 1 5 21 114 13 0 0 0 0 7 112 14 0 0 0 + 1 74 39 73 0 29 4 2 19 97 18 0 114 50 10 4 41 11 0 3 + 147 35 0 0 0 0 0 48 57 8 4 7 6 31 9 33 2 2 0 3 + 100 108 2 1 139 19 0 0 82 77 0 3 147 49 0 0 0 0 0 10 + 66 23 5 7 6 3 5 15 8 5 3 1 77 63 4 7 71 4 0 0 + 113 102 2 3 147 34 0 0 3 3 0 5 76 26 6 1 1 1 14 48 + 2 3 4 8 46 28 22 14 +154.35 209.86 1.95 2.907 + 33 0 0 0 2 12 23 125 5 0 0 1 90 83 24 26 62 0 0 1 + 17 10 24 128 31 7 0 0 0 16 71 62 81 0 0 0 17 11 7 119 + 23 0 0 1 128 65 9 20 128 40 0 0 35 8 10 60 44 37 9 7 + 14 40 40 20 97 30 5 9 25 1 0 29 27 3 3 48 128 2 0 6 + 128 35 1 4 35 0 1 23 23 61 31 16 4 1 12 10 31 51 38 36 + 5 0 0 0 30 3 20 108 73 0 0 12 128 0 0 4 7 0 6 111 + 11 2 0 0 0 12 77 65 +154.35 209.86 1.95 -0.212 + 0 14 78 48 7 5 3 1 5 0 9 108 121 2 0 3 84 0 0 14 + 37 2 16 104 9 0 0 0 29 48 39 41 8 3 5 5 22 65 33 20 + 26 0 0 22 128 47 2 3 128 2 0 8 31 2 1 44 35 1 0 37 + 89 22 3 9 13 50 58 26 36 24 5 5 27 9 17 89 128 29 0 0 + 128 73 11 22 24 0 0 2 20 14 9 128 69 0 0 0 0 11 60 70 + 38 8 0 0 16 8 25 128 46 1 0 1 89 72 25 25 4 0 0 2 + 2 12 27 126 26 0 0 0 +149.46 191.44 2.24 -0.776 + 124 51 1 18 84 8 1 7 124 124 35 11 2 0 0 3 19 17 65 81 + 12 4 15 17 7 1 1 17 41 96 58 12 124 9 1 40 60 0 0 26 + 124 23 2 2 2 3 9 41 48 20 14 18 8 13 36 34 21 38 74 42 + 23 44 33 13 124 31 1 12 22 12 35 53 124 78 5 0 0 0 1 41 + 29 23 19 24 8 7 43 38 0 5 40 36 40 72 71 7 23 4 1 2 + 20 42 86 48 101 42 3 1 2 0 2 57 77 6 5 9 1 4 25 84 + 2 0 7 19 75 41 33 19 +147.97 79.79 1.81 2.309 + 65 96 32 48 16 1 0 2 6 8 19 120 93 11 0 3 128 0 0 6 + 24 8 0 50 117 0 0 20 105 16 1 18 15 37 32 23 14 9 21 14 + 18 19 37 45 25 27 19 13 128 36 9 12 10 6 0 30 89 67 16 3 + 82 38 0 9 4 2 0 0 2 38 82 68 19 1 1 2 76 122 53 52 + 128 50 26 7 19 31 20 27 28 128 56 35 28 5 0 0 5 2 0 0 + 1 13 80 40 3 0 0 0 29 82 70 10 5 2 1 2 8 75 68 20 + 2 32 23 16 5 56 45 5 +144.15 309.45 2.17 -0.016 + 9 6 12 42 97 2 0 1 112 36 10 5 13 0 0 10 14 3 0 1 + 85 2 0 1 0 0 0 0 171 5 0 0 16 3 0 17 140 22 2 18 + 151 15 0 1 15 2 1 36 22 1 0 3 107 3 0 1 0 0 0 1 + 171 3 0 0 4 3 1 5 72 52 46 3 82 21 2 2 13 9 37 40 + 17 1 0 6 111 0 0 3 0 0 0 3 171 1 0 0 1 3 10 41 + 46 14 12 0 46 45 19 17 16 2 9 10 9 3 0 2 91 1 0 1 + 0 0 0 1 171 2 0 0 +138.26 251.97 1.94 2.422 + 67 30 1 19 110 0 0 0 166 96 0 0 0 0 0 3 56 22 0 2 + 5 2 3 20 1 0 0 19 33 19 1 2 68 6 0 15 102 17 2 5 + 166 44 0 0 0 0 0 5 126 29 0 0 2 2 1 4 10 3 0 4 + 26 54 5 2 32 0 0 3 43 36 21 11 166 8 0 0 0 2 6 27 + 153 7 0 0 20 10 4 23 50 3 0 0 24 38 6 13 8 6 28 31 + 8 12 5 1 166 89 9 4 0 1 1 4 147 40 0 0 45 8 0 5 + 77 12 0 1 37 11 1 8 +136.64 37.60 2.15 -1.893 + 42 1 1 4 28 16 33 108 78 17 7 12 45 28 9 39 58 27 4 8 + 36 39 11 69 28 22 1 0 0 0 6 61 108 35 3 14 101 7 2 25 + 108 42 4 21 101 14 8 33 58 66 16 15 65 69 14 23 98 79 8 1 + 4 4 1 12 101 8 1 1 83 46 15 76 108 51 6 5 91 52 17 35 + 46 30 21 37 90 32 7 23 57 37 108 21 10 4 3 18 12 1 75 57 + 13 23 9 29 31 28 95 28 16 37 23 18 31 20 12 23 73 42 25 14 + 0 6 53 15 17 15 92 33 +134.80 24.40 1.86 -1.921 + 39 20 13 10 59 90 29 20 47 39 13 21 53 9 11 27 10 20 87 66 + 85 14 14 9 3 15 122 24 0 0 38 21 13 23 122 72 8 21 26 9 + 122 78 52 8 36 42 17 30 9 2 6 18 65 108 122 42 0 1 10 4 + 1 8 122 78 13 5 24 12 0 11 122 44 122 28 13 2 0 7 78 98 + 14 9 15 17 4 20 63 36 0 0 2 4 0 3 77 45 0 0 21 10 + 0 4 71 25 2 0 71 26 0 0 54 43 13 45 82 21 0 0 23 28 + 19 31 4 0 0 0 20 16 +131.50 256.12 1.97 2.536 + 57 0 0 5 38 20 9 20 161 1 0 0 0 0 1 58 73 8 0 0 + 3 4 2 16 9 0 0 1 34 44 2 4 64 7 13 13 10 23 12 14 + 161 15 0 0 9 2 2 65 111 3 0 3 45 7 3 31 40 0 0 2 + 56 45 5 16 61 37 61 18 1 0 7 3 161 118 3 1 10 1 0 5 + 138 26 0 3 47 10 2 19 58 3 0 15 90 7 0 10 24 5 5 0 + 0 10 117 35 161 69 2 0 0 0 19 67 61 111 34 5 3 3 2 14 + 12 17 22 53 27 0 0 6 +131.53 186.81 1.99 2.289 + 0 0 0 7 123 24 0 0 117 2 0 2 60 13 2 56 123 0 0 1 + 0 1 1 83 3 0 0 8 29 21 2 6 1 0 0 5 123 15 0 0 + 123 5 1 1 65 2 0 58 123 13 33 23 0 0 0 42 0 0 23 70 + 21 2 1 0 2 0 0 0 118 123 12 0 123 50 16 1 37 60 5 8 + 64 64 97 22 0 0 0 6 30 13 21 24 6 16 34 21 2 1 0 0 + 29 123 17 0 4 14 7 2 90 123 4 1 32 106 18 2 16 5 0 1 + 32 84 30 15 2 2 4 7 +132.60 65.54 2.16 2.343 + 36 3 3 74 108 8 0 6 59 18 22 32 17 16 25 23 51 19 47 27 + 12 15 12 13 3 37 72 14 4 3 1 6 25 23 4 8 116 59 0 2 + 116 58 0 5 64 33 11 10 34 6 15 50 106 83 9 8 15 49 35 16 + 37 9 16 29 14 55 29 75 98 9 2 11 116 13 4 67 63 4 1 60 + 54 5 4 116 79 5 1 64 21 1 2 44 23 17 34 112 3 10 13 22 + 7 16 59 42 20 0 1 84 44 4 18 73 44 0 1 81 20 0 1 116 + 14 0 4 116 11 1 0 61 +132.60 65.54 2.16 -1.275 + 85 19 1 21 72 0 0 10 95 14 6 31 83 1 0 15 64 9 11 68 + 64 4 5 23 35 10 16 7 1 35 54 32 85 1 1 20 112 2 0 46 + 112 2 0 12 108 23 3 46 79 47 0 3 112 112 3 15 73 112 0 0 + 3 32 27 9 36 12 28 62 68 8 3 13 112 82 17 22 40 9 1 10 + 22 50 37 11 48 112 2 4 57 112 5 5 19 81 2 3 1 1 7 17 + 27 61 41 5 24 34 6 4 3 8 75 63 12 18 24 14 29 44 15 40 + 34 2 13 10 18 20 17 53 +130.76 92.73 2.15 -2.418 + 8 1 1 12 14 40 45 70 68 41 2 2 19 57 29 19 63 110 7 3 + 4 4 3 1 0 10 3 50 106 12 0 0 14 33 41 60 14 20 18 31 + 66 32 35 48 34 54 48 18 46 103 12 22 17 65 52 7 8 23 11 110 + 101 5 0 0 16 12 32 108 21 4 0 30 110 21 24 32 6 14 8 93 + 24 6 19 110 61 41 9 8 4 2 2 110 94 18 6 7 41 0 1 25 + 7 0 1 110 23 0 0 33 29 20 13 110 5 4 15 81 92 30 6 9 + 7 26 56 21 82 72 9 13 +124.67 167.00 1.89 2.395 + 0 19 13 3 10 60 18 1 4 28 28 2 13 53 9 1 44 27 2 0 + 1 39 98 54 34 14 1 2 9 59 33 42 0 0 0 1 62 100 9 3 + 21 40 17 13 107 53 0 1 138 101 8 10 8 1 17 33 14 12 14 24 + 4 9 60 46 0 0 4 54 86 12 0 0 38 5 0 32 138 14 0 11 + 138 22 0 2 17 3 12 114 68 5 0 1 0 6 112 138 0 0 14 81 + 22 11 9 0 43 3 0 45 78 16 3 2 138 20 0 2 9 1 0 13 + 114 69 0 0 0 0 2 14 +125.27 160.05 2.16 2.591 + 1 29 10 1 33 47 1 0 70 53 1 0 38 110 20 4 87 65 0 0 + 88 89 10 8 4 4 0 0 51 56 2 3 5 27 12 6 53 43 1 0 + 71 35 7 4 8 41 70 32 49 15 5 5 34 62 72 51 5 3 0 0 + 68 117 18 21 20 6 2 45 116 11 0 9 117 31 5 11 17 2 25 89 + 18 10 15 14 6 29 117 50 4 7 1 0 65 117 24 7 48 1 1 44 + 46 4 0 19 117 5 0 1 4 0 15 117 46 9 0 0 3 45 97 62 + 0 0 0 0 48 117 18 1 +125.27 160.05 2.16 1.152 + 0 0 5 2 0 0 91 45 13 14 5 1 0 0 110 107 15 8 6 8 + 1 0 94 100 10 0 0 0 0 0 83 111 11 7 111 55 0 0 79 51 + 85 51 58 11 3 2 38 49 110 26 17 10 18 11 10 31 111 38 22 2 + 0 0 13 70 10 1 43 21 2 0 72 93 51 24 72 31 6 5 13 37 + 33 111 111 13 5 12 12 3 29 111 111 3 0 0 1 1 0 0 5 31 + 7 3 26 26 0 0 5 19 6 13 80 31 0 19 21 3 1 71 85 2 + 0 47 62 1 1 37 28 2 +124.11 305.20 2.14 1.513 + 0 37 89 3 0 0 0 0 0 23 55 13 0 0 0 0 0 10 62 24 + 0 0 0 0 0 9 80 23 0 0 0 0 52 98 112 6 2 1 29 34 + 43 80 103 116 62 16 4 16 76 99 95 66 28 17 9 14 18 20 60 36 + 17 16 26 38 17 3 28 3 4 10 116 76 23 6 26 24 85 112 49 54 + 101 19 35 3 9 31 48 93 7 1 51 4 2 14 46 30 0 1 116 12 + 0 0 4 1 0 1 116 25 3 7 5 2 2 5 116 11 0 1 4 6 + 0 0 116 19 0 0 0 0 +124.11 305.20 2.14 -1.272 + 0 5 14 4 0 29 58 0 0 3 7 10 3 60 76 0 1 4 7 3 + 0 87 112 1 1 0 0 0 0 112 112 0 13 39 59 33 9 15 16 12 + 20 43 47 112 76 24 13 13 106 76 53 39 9 13 31 24 9 18 50 12 + 0 29 53 2 7 3 2 4 7 49 108 33 13 4 2 17 71 112 112 47 + 61 11 19 47 76 56 83 80 3 54 112 52 32 34 14 0 0 0 0 0 + 0 12 16 0 0 0 0 0 0 25 41 1 0 0 0 1 35 103 47 2 + 0 4 3 2 13 112 110 0 +124.16 27.34 1.69 0.055 + 23 0 0 6 37 0 0 1 17 1 0 50 137 0 0 2 137 4 0 10 + 34 0 0 30 64 9 18 24 18 0 0 5 16 2 2 32 54 0 0 1 + 30 5 2 101 137 0 0 0 137 17 1 15 22 2 0 9 45 2 25 50 + 48 36 1 3 5 0 0 46 107 4 0 1 42 2 1 120 137 9 4 15 + 137 13 12 14 7 2 1 53 42 11 71 20 26 86 3 4 3 0 0 10 + 67 39 17 4 20 0 1 22 42 101 102 40 79 5 15 28 17 16 34 70 + 3 16 98 43 16 24 44 3 +122.80 63.47 1.94 1.689 + 2 4 66 67 14 15 3 1 27 79 64 9 0 1 4 19 28 73 30 61 + 3 4 14 8 6 25 35 56 4 5 7 6 15 3 2 7 68 104 33 5 + 117 10 3 1 31 23 27 74 45 16 23 64 87 17 18 21 67 10 9 21 + 45 12 5 37 28 49 3 9 117 34 4 0 117 25 0 10 96 9 2 7 + 93 4 0 35 117 5 1 14 117 0 0 8 102 3 0 29 52 28 1 6 + 98 5 0 3 117 15 0 3 79 9 0 2 86 7 0 6 117 31 0 6 + 84 10 3 29 71 1 0 7 +122.80 63.47 1.94 -1.523 + 48 11 1 2 92 22 4 17 114 49 1 1 80 12 0 1 85 14 0 1 + 114 24 0 2 68 12 0 2 58 55 2 4 85 4 0 13 114 1 0 3 + 114 8 1 4 89 15 0 18 102 22 1 3 114 39 0 3 114 46 10 1 + 13 82 7 6 49 12 2 29 97 4 5 19 107 25 22 22 47 13 13 41 + 30 35 19 56 114 12 2 1 50 107 47 2 7 4 2 10 6 5 5 8 + 9 19 28 66 4 2 11 10 25 79 28 62 1 3 4 19 24 65 70 14 + 16 14 3 0 1 2 54 76 +121.47 11.78 1.86 -0.019 + 155 1 0 0 11 1 0 1 24 5 2 10 120 12 0 0 100 22 2 2 + 21 1 0 0 14 1 0 1 30 1 0 0 155 2 0 2 14 1 0 0 + 34 3 1 30 155 10 0 0 155 10 1 5 28 1 0 1 17 1 0 7 + 40 0 0 0 155 7 0 1 13 2 0 0 34 1 0 10 155 26 2 4 + 152 2 0 1 30 5 2 18 12 0 1 19 52 0 0 1 155 7 0 5 + 11 0 0 0 32 1 0 40 99 5 0 4 108 0 0 4 20 1 0 22 + 6 0 0 8 56 12 4 1 +121.47 11.78 1.86 -3.111 + 65 10 2 0 1 0 0 22 22 1 0 30 101 0 0 3 100 2 0 10 + 36 0 0 45 22 0 0 9 152 1 0 12 53 0 0 0 7 1 2 27 + 27 2 2 23 152 1 0 3 152 21 2 7 36 1 0 16 26 3 0 16 + 152 0 0 2 44 0 0 0 16 1 0 8 28 0 0 4 152 4 1 6 + 152 4 0 1 36 2 1 39 20 0 0 22 152 0 0 4 32 0 0 0 + 15 1 0 3 20 0 0 0 104 23 3 4 124 6 0 1 25 6 3 17 + 13 1 0 21 152 0 0 0 +120.65 184.90 1.98 2.916 + 61 25 3 11 68 14 2 66 59 82 44 0 0 0 1 100 3 28 85 18 + 0 0 2 15 0 1 30 101 21 0 0 0 85 43 6 40 60 2 0 6 + 112 59 19 0 1 9 20 96 7 16 57 28 33 87 23 21 3 0 43 95 + 33 20 0 5 112 22 1 21 15 8 3 4 112 112 47 4 1 3 4 21 + 6 19 90 88 45 51 5 5 32 0 3 87 76 17 0 73 36 11 0 1 + 7 23 6 6 56 72 21 6 1 0 0 7 14 11 51 110 9 0 0 9 + 112 0 3 48 4 0 1 112 +120.23 53.57 1.91 2.336 + 5 85 118 16 9 3 0 2 27 67 88 18 0 2 7 14 5 0 17 39 + 9 34 13 13 23 30 9 9 1 3 1 11 18 42 16 15 45 13 41 72 + 122 82 19 1 0 12 31 51 39 11 53 15 16 100 19 16 3 8 11 11 + 9 43 23 3 28 0 1 70 29 27 45 122 50 32 120 78 23 22 24 49 + 36 57 122 18 10 11 14 25 71 37 14 2 3 27 31 18 17 0 5 122 + 15 0 0 65 6 3 11 94 15 0 15 122 65 8 7 82 41 6 23 68 + 122 8 8 20 5 10 5 51 +120.23 53.57 1.91 -2.416 + 2 122 23 0 0 64 20 0 2 69 33 31 49 122 29 0 19 8 30 11 + 42 71 30 57 119 10 5 2 0 3 7 89 9 87 21 0 12 122 12 2 + 122 73 21 17 19 50 53 33 28 3 0 16 27 42 122 77 75 29 1 6 + 10 17 26 45 5 82 47 5 19 63 84 9 122 22 12 11 15 25 42 60 + 59 20 17 105 19 10 21 10 8 29 8 37 13 13 6 1 11 31 4 10 + 5 44 122 8 8 1 2 29 35 21 80 34 9 9 6 36 33 4 3 9 + 11 9 1 1 0 8 21 45 +116.34 240.13 2.20 2.449 + 0 0 0 2 57 52 0 0 16 0 0 4 133 48 0 7 133 12 0 0 + 26 5 0 50 84 42 20 2 1 0 0 16 2 0 0 8 99 50 1 1 + 42 1 0 30 133 52 2 7 133 23 1 4 19 6 1 36 127 39 10 15 + 2 0 0 20 5 2 4 19 68 30 6 2 20 4 5 35 111 133 21 8 + 133 72 22 9 21 28 5 13 25 73 96 55 2 0 0 0 2 8 29 52 + 18 0 0 0 1 8 28 133 89 7 1 0 6 106 29 32 22 1 0 0 + 0 26 41 33 6 0 0 0 +116.34 240.13 2.20 -0.576 + 5 0 0 0 0 23 56 40 9 1 0 1 20 105 24 23 65 8 1 1 + 3 16 29 126 13 0 0 0 2 7 34 59 0 0 0 5 62 78 73 34 + 18 25 5 29 126 49 12 7 124 126 12 11 19 3 4 41 59 24 5 2 + 5 3 6 28 0 0 0 44 126 21 3 4 33 4 0 86 126 6 0 11 + 126 36 0 7 21 0 0 59 95 32 0 2 5 0 0 15 0 0 0 39 + 126 36 11 1 57 5 0 78 126 1 0 3 126 33 0 2 1 0 0 15 + 54 39 0 1 1 0 0 2 +106.79 15.98 1.89 -0.003 + 83 3 3 17 95 26 3 4 88 51 9 11 32 14 9 42 29 8 3 11 + 66 13 2 8 3 11 41 49 47 39 10 3 110 1 2 16 99 66 4 5 + 117 36 6 10 45 47 21 67 47 6 0 3 76 17 3 17 18 2 2 10 + 117 52 2 4 104 3 6 51 115 13 0 3 112 84 21 34 50 8 4 14 + 53 17 1 9 66 2 0 3 24 1 0 7 117 26 0 4 81 1 0 12 + 117 11 0 1 117 22 2 8 83 4 0 0 72 4 0 2 49 1 0 0 + 19 1 0 18 117 0 0 1 +103.32 141.04 2.06 2.954 + 32 21 3 5 65 26 3 12 81 42 1 3 60 48 2 17 115 63 24 27 + 35 19 5 24 21 21 14 36 51 28 2 1 38 23 4 7 92 50 8 32 + 52 45 5 31 115 40 5 16 115 79 36 31 15 24 23 48 5 24 34 41 + 67 87 19 8 5 23 26 17 115 59 0 0 46 24 48 60 64 6 0 5 + 115 64 62 29 10 13 12 45 5 6 77 60 99 68 15 6 7 14 6 6 + 115 69 0 0 26 12 14 10 38 15 0 0 115 51 9 6 1 7 24 20 + 27 2 13 20 33 86 82 20 +98.79 183.98 1.88 2.501 + 10 6 7 36 48 1 0 0 167 30 0 11 18 0 0 10 167 60 5 8 + 2 0 1 8 1 3 2 28 12 4 10 9 24 4 0 14 63 4 0 3 + 167 10 0 3 19 2 0 35 167 60 20 1 0 0 0 8 18 57 14 1 + 2 1 9 18 27 11 8 59 33 0 0 0 167 24 3 11 7 0 0 7 + 161 24 13 0 0 0 14 23 10 61 16 2 2 4 14 6 23 3 4 29 + 15 40 10 12 167 13 1 3 1 2 3 41 148 35 1 0 0 1 5 13 + 5 6 4 25 22 9 7 2 +98.29 15.80 2.04 -0.102 + 96 15 0 15 121 14 0 0 121 15 2 9 75 13 0 11 54 2 2 28 + 74 25 3 3 18 14 13 26 30 30 21 16 121 21 0 10 121 33 4 3 + 121 15 3 7 63 27 14 74 50 4 3 9 73 35 9 12 10 17 42 45 + 25 52 39 20 121 26 2 8 84 45 1 3 93 71 13 14 59 46 13 27 + 55 21 1 5 65 27 4 10 17 9 16 24 121 76 4 1 121 27 0 12 + 41 26 0 1 51 31 13 25 48 41 15 24 47 22 1 2 45 5 0 11 + 17 1 0 0 121 36 0 2 +88.63 89.61 2.30 3.081 + 34 5 5 8 83 23 4 8 109 44 9 4 10 3 3 12 29 15 0 19 + 115 1 1 3 12 8 36 48 51 34 40 13 16 35 25 36 98 10 7 9 + 115 77 16 16 39 2 0 10 61 22 6 65 115 0 1 10 10 7 54 115 + 56 45 18 12 32 7 2 4 45 94 48 22 115 10 1 11 34 43 86 49 + 37 8 7 86 115 20 5 7 26 15 22 102 95 46 32 35 41 56 5 0 + 0 16 19 9 6 3 0 23 52 18 59 9 0 0 11 76 115 31 7 2 + 12 42 48 50 41 52 32 5 +88.63 89.61 2.30 -0.291 + 45 59 88 3 1 14 40 48 120 35 8 2 0 0 2 28 32 13 67 20 + 7 11 2 2 0 19 26 5 43 62 13 0 71 85 19 22 23 28 23 49 + 120 38 9 7 22 12 4 30 33 33 80 49 117 39 2 4 44 82 49 26 + 22 13 7 4 77 31 38 38 17 10 21 120 120 17 2 4 29 17 7 42 + 44 4 0 1 120 120 15 7 100 24 1 2 10 29 27 23 30 46 50 6 + 4 4 29 120 120 33 10 9 12 13 7 16 45 9 0 1 54 74 5 2 + 28 31 6 11 42 23 6 3 +86.43 103.30 2.17 -3.111 + 33 7 3 6 48 20 6 22 107 99 13 8 16 4 7 43 20 33 26 57 + 106 4 2 4 89 62 16 12 14 0 0 7 36 6 4 11 68 45 10 25 + 110 47 9 6 16 25 48 104 20 14 9 26 114 100 45 25 114 13 1 16 + 31 15 22 48 51 5 2 29 114 24 1 17 114 68 4 6 23 18 4 25 + 32 34 1 0 18 108 77 9 30 2 0 21 40 39 100 31 22 2 0 13 + 98 30 12 20 73 67 2 2 8 4 16 92 52 45 3 7 4 1 9 40 + 2 0 1 73 68 5 5 0 +87.22 95.72 2.23 3.029 + 116 48 9 4 28 4 0 14 18 23 24 28 104 15 2 3 95 93 15 8 + 17 0 0 3 16 13 3 24 116 2 2 5 51 76 20 6 10 12 22 63 + 23 21 17 24 116 60 27 17 116 41 4 14 42 10 13 24 29 8 7 68 + 116 8 1 4 116 49 5 4 21 19 11 30 36 22 2 0 21 115 93 16 + 52 7 1 13 48 34 116 44 6 3 7 61 116 26 5 3 66 63 5 4 + 25 9 2 21 50 78 10 0 0 1 9 32 8 3 0 42 82 5 13 2 + 0 2 13 55 102 41 9 0 +87.22 95.72 2.23 1.174 + 7 7 12 9 6 41 112 29 4 1 7 9 4 25 112 58 11 5 3 2 + 2 20 112 53 6 1 0 0 2 20 112 25 0 0 39 103 10 3 69 18 + 10 17 112 112 6 4 57 14 112 80 41 18 1 1 31 28 14 10 19 26 + 7 2 40 4 2 5 31 74 31 15 34 22 15 10 27 38 24 19 112 71 + 111 33 36 26 3 0 16 109 11 10 49 112 44 0 0 2 4 4 44 32 + 1 2 48 58 4 19 49 84 60 12 36 14 17 55 85 67 15 3 9 17 + 4 1 51 71 5 3 37 42 +84.19 221.04 2.37 2.026 + 113 3 0 1 55 24 1 4 141 3 0 1 11 23 7 24 18 5 1 4 + 44 79 34 17 9 34 13 6 21 11 2 2 132 0 0 8 67 10 0 10 + 141 8 0 0 11 17 8 75 19 2 0 2 116 95 32 40 0 9 15 8 + 70 95 19 13 141 1 0 22 30 0 0 10 141 87 7 0 4 7 0 15 + 21 56 63 53 39 71 27 13 2 1 18 42 60 77 15 10 77 1 0 5 + 5 3 31 44 141 52 4 0 0 0 1 16 24 28 39 32 10 34 33 12 + 6 2 13 19 25 25 28 22 +77.66 164.28 2.12 2.389 + 0 0 0 49 118 13 0 0 114 18 4 40 36 1 1 29 62 5 0 0 + 0 60 38 38 0 0 0 0 2 124 48 0 9 1 2 86 124 9 0 2 + 124 19 2 24 38 0 0 112 66 7 14 16 9 19 28 87 0 1 10 27 + 60 53 14 0 10 9 4 108 124 1 0 0 124 124 19 13 22 0 0 18 + 43 84 108 37 2 0 0 12 3 1 21 43 46 4 1 3 3 1 0 22 + 108 12 2 9 85 28 1 1 16 7 5 100 51 23 18 4 0 0 1 35 + 5 2 21 35 10 4 3 2 +74.09 212.80 1.83 -0.601 + 56 12 56 8 0 0 0 37 124 28 11 0 0 0 0 52 124 24 2 2 + 0 0 5 41 9 9 21 21 5 20 60 22 43 0 0 0 0 1 84 124 + 109 49 6 0 1 24 30 66 124 70 10 1 0 2 5 44 68 45 29 2 + 0 16 87 60 12 1 0 0 1 8 117 124 30 3 0 0 33 114 64 42 + 124 35 28 4 3 12 6 55 124 56 56 11 0 0 0 54 21 4 0 0 + 6 11 9 31 16 2 0 2 65 30 5 14 79 31 12 6 6 4 2 40 + 84 29 18 26 1 0 0 40 +69.00 309.44 2.13 -0.081 + 5 19 56 32 39 12 15 3 28 43 37 1 20 2 10 10 5 2 0 0 + 97 11 0 1 0 0 0 0 154 34 0 0 12 23 22 20 152 35 2 5 + 116 100 21 6 20 5 2 18 18 5 0 0 97 22 1 2 0 0 0 0 + 154 47 0 0 4 4 7 9 123 75 49 20 83 20 12 3 15 14 58 119 + 14 2 1 2 95 13 1 9 0 0 0 0 154 38 0 0 1 8 30 34 + 69 14 10 6 23 47 53 4 6 1 11 21 9 9 3 3 70 5 0 1 + 0 0 0 0 154 28 0 0 +69.03 303.48 2.14 -0.081 + 0 0 2 23 73 12 0 0 12 36 94 54 74 19 19 6 43 60 45 1 + 30 3 9 12 4 1 0 0 110 13 0 1 0 0 0 1 114 28 0 0 + 23 42 36 34 120 61 6 11 120 120 27 8 28 8 5 33 16 3 0 0 + 109 25 1 3 0 0 0 2 75 20 0 0 8 7 15 18 120 120 90 40 + 94 23 22 3 21 15 78 120 10 2 1 3 110 13 0 8 0 0 0 8 + 55 4 0 0 3 16 52 56 120 21 12 11 39 68 66 5 10 1 9 24 + 11 8 2 3 75 7 0 0 +69.03 303.48 2.14 -3.055 + 83 0 0 1 5 4 1 20 12 1 18 24 40 77 42 5 109 10 14 12 + 6 36 56 72 71 0 0 0 0 0 0 24 100 4 1 18 22 1 0 12 + 27 25 119 128 90 26 14 6 128 101 80 18 2 9 17 39 60 5 0 0 + 0 0 0 12 97 3 0 8 41 10 0 8 36 7 6 48 128 125 31 21 + 128 26 4 6 7 17 20 58 64 4 0 0 0 0 0 4 76 0 3 5 + 11 11 3 11 9 6 25 20 35 89 70 10 128 12 4 2 3 19 47 82 + 36 2 0 0 0 0 0 8 +67.59 106.47 2.23 -0.670 + 0 115 101 4 7 2 0 0 8 77 39 0 1 2 0 0 2 5 0 1 + 45 39 0 0 1 5 5 19 115 65 0 0 34 94 46 7 40 25 21 14 + 115 115 28 8 2 0 4 21 24 20 63 79 20 8 0 0 0 28 35 13 + 92 84 0 0 36 5 1 2 34 24 31 115 102 4 0 18 47 5 24 115 + 9 24 40 90 115 27 6 5 27 115 26 8 25 26 3 0 84 24 15 6 + 7 16 14 59 41 10 0 8 40 25 11 34 0 0 1 12 60 87 87 0 + 18 44 10 0 20 100 20 2 +65.28 187.24 2.25 2.493 + 0 4 60 62 4 0 0 0 12 0 10 106 27 0 0 5 86 0 1 17 + 15 9 13 144 9 0 1 1 2 28 21 62 0 7 28 44 9 0 0 0 + 81 4 8 72 42 0 0 7 144 3 1 6 5 11 5 88 16 0 0 2 + 38 53 12 15 0 6 62 50 3 0 0 0 125 20 23 76 17 0 0 0 + 144 61 2 1 4 4 0 8 31 11 5 38 97 26 1 3 0 1 57 20 + 0 0 2 0 89 28 14 12 0 0 1 3 144 144 56 4 0 0 0 1 + 7 40 112 129 32 0 0 0 +61.31 128.39 2.23 1.658 + 3 89 82 0 0 0 1 2 9 84 60 0 0 2 5 5 3 54 34 0 + 0 3 2 0 2 9 6 0 0 0 0 0 49 125 50 9 2 1 5 17 + 146 125 19 4 12 26 17 19 65 51 10 1 44 53 9 4 37 19 1 0 + 0 0 0 0 73 9 2 30 78 18 21 33 146 18 1 13 45 2 0 45 + 97 7 1 17 123 8 0 5 51 10 7 0 0 0 0 0 82 8 38 40 + 51 2 0 16 146 1 0 19 54 0 0 51 28 30 72 74 111 0 1 3 + 10 45 146 1 0 0 4 1 +58.28 150.41 1.98 -2.417 + 0 16 35 13 3 0 0 0 4 27 77 7 0 0 0 0 50 10 43 6 + 12 3 1 42 13 2 2 97 100 5 1 15 3 6 28 9 5 13 11 9 + 58 17 50 22 13 27 4 8 134 27 9 2 29 46 12 105 12 1 0 18 + 134 134 13 19 3 0 0 0 1 59 79 13 42 8 0 1 9 109 41 7 + 134 134 2 0 7 34 9 15 24 115 0 0 8 134 14 2 13 13 2 8 + 7 30 14 2 0 0 1 54 32 43 19 8 41 73 3 18 28 10 9 124 + 40 123 1 0 0 21 13 40 +56.23 93.12 1.78 0.879 + 132 71 0 1 44 13 2 2 93 18 0 1 132 23 0 0 132 34 0 5 + 37 3 0 0 85 14 0 6 30 1 0 0 132 36 0 2 33 77 9 12 + 94 24 1 4 132 33 3 6 132 48 1 8 47 6 2 12 114 19 0 10 + 36 0 0 0 37 5 8 14 31 88 19 22 27 4 24 13 68 81 29 28 + 91 17 36 22 15 16 23 53 121 8 10 15 15 0 0 27 2 2 11 23 + 18 62 30 3 0 2 33 17 16 39 12 2 27 5 34 22 14 4 10 48 + 81 3 7 2 0 0 0 107 +56.23 93.12 1.78 -2.068 + 0 0 0 117 53 3 5 2 6 2 6 76 19 16 47 14 18 21 9 3 + 0 6 34 17 24 87 12 0 0 2 13 15 17 0 0 33 105 2 5 19 + 20 16 21 78 103 11 25 17 83 67 25 33 19 5 26 14 41 56 12 23 + 17 4 17 23 31 0 0 9 101 3 1 28 59 2 2 36 131 3 0 19 + 131 9 2 15 99 6 1 53 50 90 11 29 112 3 0 2 40 0 0 11 + 75 0 0 12 69 0 0 37 131 0 0 13 131 0 0 3 106 8 0 44 + 13 44 4 11 131 10 0 1 +55.07 273.01 1.88 0.884 + 8 0 0 0 24 36 27 19 52 5 0 0 61 39 3 6 148 5 0 0 + 1 0 0 63 38 0 0 12 31 13 4 34 15 2 0 3 57 14 4 14 + 69 6 0 13 147 22 0 2 148 27 8 8 6 0 0 15 43 8 15 83 + 42 1 2 20 6 0 0 5 75 8 3 8 61 1 0 9 148 16 0 21 + 148 50 19 8 2 1 2 80 10 11 23 38 0 0 18 148 0 0 3 11 + 49 3 3 3 14 0 0 1 69 15 33 133 37 4 0 0 0 0 24 148 + 1 0 0 0 0 0 14 123 +46.90 309.45 2.17 0.091 + 0 1 11 36 41 40 7 0 17 35 29 17 11 18 26 37 9 7 0 15 + 79 0 1 12 1 1 0 38 153 0 0 0 2 5 22 100 106 11 1 1 + 117 57 32 25 30 10 4 24 29 7 0 12 108 0 0 4 0 0 0 47 + 153 0 0 1 5 6 18 72 88 80 47 9 129 28 13 10 16 11 49 74 + 27 2 0 16 115 0 0 7 0 0 0 50 153 0 0 0 1 22 42 27 + 21 36 38 4 11 26 18 4 23 7 50 35 3 0 0 12 110 1 0 5 + 0 0 0 39 153 0 0 0 +28.32 309.38 2.01 -0.063 + 0 1 68 31 8 3 39 0 4 28 67 7 12 12 32 0 5 6 2 1 + 84 26 4 0 2 1 0 0 158 29 0 0 3 5 66 38 101 44 2 2 + 126 61 60 3 13 7 3 22 33 10 1 0 118 6 0 3 1 1 0 0 + 158 33 0 0 2 0 1 4 128 50 14 4 128 13 1 1 11 9 16 43 + 36 8 0 1 117 4 0 6 1 2 0 1 158 26 0 0 0 0 6 19 + 34 79 22 4 24 21 23 10 7 12 27 61 9 7 1 1 99 5 0 9 + 1 2 0 0 158 17 0 0 +25.04 168.09 2.11 1.711 + 3 2 2 41 61 2 0 0 130 21 3 20 22 0 0 3 101 7 0 32 + 80 0 0 15 130 0 0 6 20 0 0 38 15 5 11 81 83 1 0 0 + 130 21 3 25 22 0 0 6 130 10 0 46 55 0 0 20 130 2 0 11 + 14 0 0 34 33 7 14 89 35 0 0 9 130 11 1 16 11 0 0 24 + 130 6 1 29 33 0 0 29 130 0 0 10 23 0 0 28 9 1 9 15 + 0 0 24 111 58 0 0 10 19 1 12 109 130 3 0 16 26 0 0 31 + 96 0 0 12 24 0 0 16 +24.75 159.03 2.07 1.706 + 10 3 5 31 69 0 0 0 128 14 1 7 17 1 1 12 68 3 0 21 + 101 9 3 14 128 0 0 5 20 1 0 32 17 7 5 44 70 0 0 0 + 128 22 2 11 25 0 0 6 117 2 0 21 128 2 0 25 128 0 0 5 + 20 0 0 44 31 5 5 57 88 1 0 0 128 31 3 22 20 0 0 3 + 128 8 0 46 73 0 0 27 128 2 0 10 15 0 0 32 46 4 4 63 + 44 0 0 1 128 11 1 15 12 0 0 6 128 2 1 23 28 0 0 24 + 101 1 0 10 17 0 0 16 +5.43 6.31 2.21 -0.313 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 11 0 0 0 0 + 0 0 66 47 0 0 0 0 0 0 125 87 15 0 0 0 0 0 0 5 + 118 5 0 0 0 0 59 139 23 2 0 0 0 0 139 139 1 3 2 2 + 0 0 139 139 20 4 0 0 0 0 0 0 139 104 0 0 0 0 2 36 + 135 52 0 0 0 0 12 41 4 12 3 3 4 0 2 5 1 1 0 0 + 0 0 0 0 139 104 0 0 0 0 0 0 139 100 0 0 0 0 0 0 + 5 5 0 0 1 0 0 0 +5.43 6.31 2.21 -1.301 + 1 0 0 0 0 0 0 0 148 0 0 0 0 0 0 99 148 3 4 3 + 3 0 0 82 1 0 5 4 7 15 3 0 14 1 0 0 0 0 0 3 + 148 61 5 0 0 0 0 96 140 69 41 1 0 0 0 30 0 11 23 1 + 0 0 0 0 7 7 0 0 0 0 0 0 80 148 64 0 0 0 0 3 + 14 148 148 0 0 0 0 0 0 137 148 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 9 8 0 0 0 0 0 0 36 55 0 0 0 0 0 + 0 62 107 0 0 0 0 0 +201.25 277.23 1.65 -0.196 + 42 15 0 1 6 1 5 12 65 26 1 10 70 6 1 1 151 82 0 1 + 7 0 0 0 15 4 1 0 1 2 0 0 8 0 21 43 5 3 38 28 + 50 23 11 132 55 7 30 18 151 92 4 15 6 0 9 43 39 8 4 4 + 1 0 0 1 0 0 27 38 3 2 151 50 11 1 8 41 8 8 151 122 + 121 6 14 6 0 0 114 151 19 1 24 14 1 0 0 9 0 0 32 18 + 0 0 97 25 0 0 59 29 0 0 76 21 0 0 73 21 0 0 37 20 + 0 0 46 20 0 0 33 8 +201.25 277.23 1.65 -1.477 + 0 18 117 0 0 0 1 0 0 20 102 1 3 1 0 0 0 19 27 0 + 6 3 1 0 9 1 0 3 65 2 0 2 0 30 150 2 1 22 31 0 + 16 93 150 10 13 37 7 2 150 150 104 2 8 2 0 8 37 8 0 11 + 77 0 0 2 8 14 21 3 2 23 26 2 59 11 12 3 59 121 16 22 + 150 23 4 1 19 16 3 71 55 0 0 8 81 0 0 8 41 17 15 1 + 0 6 14 8 77 2 0 1 73 20 2 17 150 0 0 0 25 5 1 54 + 33 0 0 1 61 2 0 10 +195.71 161.00 1.56 1.643 + 1 0 0 37 165 0 0 0 47 0 0 5 71 3 0 11 165 8 0 0 + 0 0 0 26 65 23 0 0 1 1 0 9 0 0 0 37 165 3 0 0 + 61 3 0 3 63 10 1 5 165 22 0 0 0 0 0 6 73 40 4 2 + 0 0 0 1 1 0 0 48 165 1 0 0 39 1 0 5 35 6 10 22 + 135 32 0 0 0 0 1 28 27 40 5 0 0 0 10 34 6 1 0 39 + 165 0 0 0 51 2 0 3 15 0 0 22 81 1 0 0 0 0 0 118 + 12 0 0 1 0 0 29 102 +195.20 197.37 1.51 1.732 + 31 13 1 54 130 0 0 1 130 58 0 4 5 0 0 11 21 19 3 17 + 43 1 1 6 0 0 0 44 130 0 0 0 42 17 1 73 130 0 0 1 + 130 51 0 4 4 0 0 18 37 11 3 37 54 0 0 8 0 0 0 49 + 130 0 0 0 73 1 0 53 130 0 0 8 130 19 1 3 2 0 0 16 + 28 12 4 51 71 0 0 1 0 0 0 64 130 0 0 0 64 5 0 26 + 97 0 0 4 127 56 10 3 0 0 0 3 8 15 18 90 31 0 0 0 + 0 0 0 79 74 0 0 0 +187.82 210.43 1.48 -1.130 + 8 12 0 2 6 0 0 2 133 90 0 0 0 0 0 6 133 30 0 0 + 0 0 1 86 31 6 5 18 0 0 1 52 1 0 0 1 2 0 6 25 + 133 29 0 0 0 0 4 36 133 105 11 6 0 0 0 15 15 17 54 99 + 2 0 0 2 8 0 0 0 0 0 3 60 54 3 0 0 0 0 8 133 + 117 28 10 22 18 13 7 126 3 18 62 101 45 23 0 0 30 0 0 0 + 0 0 0 104 34 0 0 0 0 0 16 133 5 0 0 2 35 54 56 97 + 0 2 2 15 121 75 2 0 +185.83 156.01 1.62 1.800 + 119 1 0 0 0 0 1 92 71 6 0 1 0 0 8 119 41 26 20 11 + 2 0 0 35 45 92 46 1 0 0 9 14 119 6 0 0 0 0 0 73 + 119 27 0 2 8 5 3 40 14 9 36 56 113 18 3 9 0 106 119 39 + 23 0 0 0 119 17 0 0 0 0 0 27 119 54 14 15 6 1 0 10 + 9 10 13 83 119 6 0 2 0 9 41 63 119 0 0 0 69 20 0 0 + 0 0 9 65 22 34 11 5 1 7 48 36 0 4 10 42 101 37 13 0 + 0 0 0 23 119 8 4 1 +185.83 156.01 1.62 -1.469 + 125 38 4 7 0 0 0 8 63 52 34 5 1 6 11 23 0 1 33 57 + 26 41 9 2 0 0 1 39 95 27 0 0 125 9 0 0 0 0 12 29 + 125 11 0 1 9 15 15 57 5 1 0 3 114 74 13 11 0 0 0 8 + 125 24 0 0 49 1 0 0 0 47 125 53 125 35 3 5 12 5 30 51 + 10 8 3 23 125 41 0 3 0 0 0 39 125 14 0 0 0 0 1 3 + 20 103 111 4 7 0 0 11 34 37 43 20 1 0 2 94 78 9 0 2 + 0 0 1 73 125 2 0 0 +179.68 176.05 1.55 1.523 + 3 0 2 13 3 2 24 38 0 0 10 44 43 68 12 1 91 2 3 23 + 47 68 16 68 83 0 0 0 5 14 20 68 1 0 24 129 7 0 0 3 + 8 5 87 129 9 0 0 0 129 20 35 57 10 1 0 27 129 14 10 13 + 0 3 4 18 0 0 12 129 69 0 0 0 35 16 29 129 13 0 0 6 + 129 58 4 5 0 0 0 14 80 42 11 18 7 0 0 3 0 0 1 54 + 129 3 0 0 24 34 10 23 20 0 0 1 118 129 0 0 0 0 0 0 + 75 76 6 1 0 0 0 8 +179.68 176.05 1.55 -2.606 + 3 13 1 0 1 11 27 4 52 105 1 0 0 1 10 10 131 103 0 0 + 0 0 0 0 51 18 0 0 16 23 0 1 0 0 0 0 0 61 131 3 + 46 15 0 0 3 93 67 12 131 32 0 0 0 6 5 17 79 15 1 4 + 7 2 0 5 4 4 0 0 0 67 126 13 10 0 0 0 0 131 106 9 + 131 43 17 2 1 84 29 25 33 36 111 26 3 1 0 1 38 20 2 2 + 20 9 8 7 20 1 1 5 3 109 37 8 3 9 15 11 46 131 31 0 + 0 30 108 25 72 48 0 0 +176.51 78.59 1.52 -0.971 + 23 11 22 34 31 38 23 13 163 1 0 10 13 10 1 25 114 0 0 3 + 70 0 0 4 43 0 0 0 4 0 0 2 66 18 6 25 99 45 19 22 + 163 9 0 6 45 12 1 16 134 3 0 2 90 1 0 3 54 0 0 1 + 4 0 0 2 23 18 11 32 36 75 132 14 163 17 1 9 19 6 72 116 + 109 8 2 15 68 0 0 13 52 1 0 0 3 1 0 2 0 2 36 4 + 1 34 118 7 18 8 58 6 1 2 86 65 38 6 35 29 12 0 12 30 + 37 1 0 0 0 0 0 12 +175.05 256.03 1.77 1.926 + 34 100 22 10 11 3 2 2 21 95 96 35 1 0 2 5 30 72 80 12 + 3 3 8 18 30 38 15 6 63 61 1 4 37 83 30 22 7 2 0 3 + 104 43 21 5 1 12 38 87 39 50 49 8 4 66 114 59 34 42 33 17 + 17 32 58 41 75 99 7 13 14 3 0 0 125 125 3 7 1 2 6 20 + 97 38 11 24 8 20 35 48 36 10 15 52 45 28 51 50 23 46 12 19 + 31 21 6 0 100 125 18 6 5 0 0 0 75 125 14 7 3 1 2 9 + 13 15 32 62 10 3 13 10 +175.02 74.50 1.53 -1.061 + 28 5 4 31 102 23 17 22 113 8 3 7 50 66 25 16 142 26 0 0 + 24 4 0 1 39 3 0 0 37 4 0 0 52 36 6 11 89 129 21 6 + 95 36 11 38 111 27 37 16 142 59 0 2 27 2 8 30 50 8 0 1 + 47 3 0 1 1 3 32 15 13 142 84 0 12 4 23 11 10 53 142 47 + 104 11 37 13 8 1 68 125 45 8 14 24 23 0 1 10 0 0 47 14 + 1 9 47 2 0 0 39 5 0 3 82 11 1 2 44 8 0 0 74 13 + 15 7 13 6 0 0 22 40 +169.52 278.38 1.54 -0.017 + 0 0 16 101 60 3 0 0 30 9 56 72 18 2 0 0 176 25 5 13 + 3 0 0 1 43 4 1 2 1 0 0 1 0 0 43 145 46 4 0 0 + 66 18 46 103 19 4 1 3 176 34 6 6 0 0 0 5 56 3 0 1 + 1 0 0 1 1 0 51 117 5 0 21 36 75 5 26 27 1 3 41 72 + 176 7 1 0 0 0 3 42 56 2 0 0 0 0 0 3 6 0 0 4 + 4 10 72 94 51 0 0 0 34 50 44 30 176 2 0 0 4 3 0 12 + 40 0 0 0 1 0 0 2 +169.55 203.16 1.62 0.725 + 0 19 134 117 1 2 0 0 3 45 134 93 3 0 0 0 26 77 123 50 + 8 0 0 1 37 73 134 51 1 0 0 0 14 7 134 83 1 0 0 1 + 109 57 89 6 0 0 1 43 20 53 70 16 11 4 10 28 6 10 104 39 + 12 5 23 58 21 3 1 1 3 17 0 0 134 66 5 1 0 0 0 10 + 37 46 26 10 4 2 5 17 34 38 25 0 3 2 22 89 3 1 0 0 + 8 26 0 0 23 69 5 0 1 4 0 0 7 78 63 2 0 0 0 0 + 7 61 104 4 0 0 0 0 +168.98 247.20 1.70 -0.809 + 140 7 0 2 28 4 0 15 140 23 1 0 0 0 2 55 45 62 37 13 + 2 2 14 65 2 6 24 50 40 9 15 8 140 17 1 2 14 13 16 32 + 140 33 0 0 2 7 25 30 16 43 48 30 70 40 36 10 9 92 60 35 + 20 12 9 4 140 13 13 3 1 4 5 35 140 15 1 5 9 1 2 47 + 30 5 9 24 86 59 20 3 4 24 18 11 41 81 38 2 140 10 0 0 + 0 0 0 20 140 27 29 15 1 0 0 26 13 5 34 46 7 2 22 74 + 0 1 5 2 23 54 66 25 +163.28 92.90 1.41 -0.964 + 17 19 17 22 3 11 29 7 3 7 40 31 9 10 19 5 11 74 17 17 + 7 4 57 18 45 116 6 0 0 0 21 16 5 6 85 52 5 17 26 12 + 23 40 97 26 13 18 20 9 141 63 15 1 5 9 85 52 60 5 0 0 + 14 18 53 34 106 3 23 18 29 22 18 81 92 12 15 10 141 63 14 23 + 141 19 3 0 21 5 0 43 51 0 0 0 45 10 1 9 141 27 2 10 + 51 9 1 14 104 5 1 27 141 3 0 4 141 0 0 0 21 1 0 16 + 37 0 0 0 41 3 0 3 +162.55 265.01 1.58 2.553 + 140 17 2 4 0 0 0 49 140 22 5 3 1 1 6 32 36 43 82 16 + 2 4 9 40 0 2 52 106 27 24 10 3 140 22 0 0 0 0 0 107 + 140 43 4 4 2 7 6 24 9 10 53 30 9 38 35 8 0 2 30 37 + 28 18 32 5 140 74 3 0 0 0 0 50 140 35 1 10 10 3 0 19 + 22 7 18 60 42 20 8 22 15 4 11 27 78 7 5 26 88 23 0 0 + 0 2 6 95 137 76 3 1 5 2 0 12 13 15 6 12 21 15 7 22 + 5 0 1 96 77 1 1 15 +160.98 81.58 1.53 2.668 + 2 0 0 121 75 0 6 18 35 25 13 30 14 16 24 31 38 11 17 30 + 12 2 11 121 81 0 1 11 1 0 2 121 37 0 0 79 47 2 9 121 + 48 5 1 37 101 41 31 69 121 18 7 15 12 4 4 107 21 3 21 121 + 1 0 1 53 78 14 20 67 17 2 3 77 58 4 6 121 83 1 3 32 + 121 43 62 65 4 0 0 16 8 5 38 121 17 6 5 7 10 14 17 25 + 4 27 56 4 7 1 6 43 21 24 44 30 25 15 37 38 3 7 26 22 + 21 12 23 38 19 5 6 15 +157.78 269.38 1.64 2.775 + 62 18 0 2 1 1 6 122 122 15 0 0 0 0 0 97 80 8 10 14 + 4 19 7 39 0 14 44 14 4 24 20 0 67 16 0 0 7 15 26 122 + 122 17 0 0 0 0 6 120 70 6 13 40 41 10 5 30 10 7 22 30 + 25 8 10 38 86 61 0 0 43 42 12 51 122 69 1 0 1 0 4 26 + 50 33 13 13 20 7 7 16 1 0 9 122 33 3 6 29 45 68 0 0 + 103 82 0 0 122 92 5 3 0 0 0 0 42 24 60 75 3 0 0 0 + 0 3 39 122 68 0 0 0 +154.71 261.68 1.73 -0.886 + 121 51 12 1 0 0 0 24 150 37 0 0 0 0 15 74 34 1 0 2 + 6 35 17 60 1 0 0 1 25 113 12 0 150 61 1 0 1 0 0 38 + 150 38 0 1 3 0 0 88 54 21 7 28 32 4 3 22 17 19 3 3 + 62 62 5 7 150 41 0 0 9 10 0 6 150 52 1 2 2 0 0 11 + 49 20 12 19 27 6 16 28 23 13 19 6 34 21 5 27 150 15 0 0 + 30 37 1 4 150 33 6 0 0 0 0 9 39 19 27 11 0 0 18 62 + 3 6 13 8 13 14 53 35 +150.31 302.70 1.52 -1.792 + 0 1 36 15 0 0 66 18 0 16 36 11 3 1 56 16 0 2 56 70 + 10 0 26 12 0 0 114 50 0 0 9 3 10 16 114 93 29 0 1 5 + 114 89 81 29 26 9 1 31 16 8 28 93 112 90 31 5 0 0 72 46 + 10 32 104 13 28 37 37 35 27 7 65 45 114 83 1 5 7 10 50 82 + 46 17 0 0 14 99 91 28 0 0 0 0 0 32 114 31 3 2 0 0 + 0 8 114 90 17 3 0 0 0 6 114 74 11 0 0 0 0 3 18 25 + 1 0 0 0 0 2 8 2 +148.74 216.37 1.78 -0.483 + 0 1 2 44 124 19 0 0 19 13 13 20 27 1 4 20 22 6 1 0 + 19 40 16 32 20 49 5 4 35 53 1 0 6 1 1 52 124 16 0 0 + 124 9 1 5 45 9 21 82 32 0 0 0 10 82 59 70 6 13 0 0 + 78 124 2 0 4 0 1 26 124 36 3 0 124 53 0 0 68 18 2 12 + 89 28 0 8 45 52 12 9 0 0 0 14 124 53 0 0 0 0 0 1 + 81 87 19 0 124 64 0 1 73 30 0 0 94 68 4 18 52 2 0 0 + 0 0 0 49 124 1 0 0 +147.16 265.67 1.66 -0.963 + 7 5 3 0 0 0 36 93 25 8 1 0 0 0 66 113 43 0 0 0 + 0 4 50 130 5 10 2 0 0 93 64 22 26 32 54 11 0 0 1 19 + 133 54 12 0 0 0 10 57 108 6 0 0 0 3 38 133 27 0 0 0 + 8 107 24 33 43 53 35 8 16 5 0 3 133 133 1 0 0 0 0 36 + 133 43 0 1 3 0 6 72 17 11 4 9 11 27 11 20 44 30 3 1 + 55 35 0 0 133 61 0 0 0 0 0 32 133 44 1 4 11 0 0 26 + 22 17 6 15 29 3 4 13 +145.62 246.85 1.55 2.659 + 53 6 1 87 98 0 0 5 172 10 0 3 2 0 0 70 114 15 0 0 + 1 1 0 35 12 9 2 12 57 23 0 2 98 8 0 60 89 0 0 1 + 172 18 0 0 0 1 1 32 90 33 3 0 7 25 12 32 23 30 0 1 + 31 43 5 17 106 0 0 25 47 2 0 19 172 17 0 0 0 0 0 52 + 109 24 1 0 3 12 10 24 11 3 3 34 20 5 6 24 90 0 0 1 + 13 13 6 37 172 1 0 0 0 0 0 99 61 12 3 2 0 0 0 23 + 8 5 2 9 25 22 2 3 +144.29 32.78 1.71 -0.382 + 22 20 42 27 11 20 60 37 27 39 40 10 16 33 30 38 11 28 80 71 + 29 29 37 14 22 22 51 41 19 12 27 29 9 34 83 65 97 39 4 1 + 111 82 84 17 14 22 25 37 19 9 74 62 13 79 123 55 48 5 14 19 + 1 8 78 123 29 10 2 5 123 105 1 3 123 66 1 0 26 17 8 29 + 68 25 0 0 0 13 73 17 0 0 0 0 0 1 26 21 7 9 4 13 + 93 63 6 3 123 65 0 0 26 35 12 17 86 73 0 0 0 0 1 1 + 2 1 0 0 1 1 1 0 +142.28 160.21 1.58 0.028 + 74 1 0 60 148 0 0 24 148 12 0 25 72 0 0 13 68 2 0 0 + 28 18 4 17 47 19 1 1 28 11 1 14 64 0 0 79 148 0 0 20 + 148 3 0 15 59 0 0 33 81 3 0 7 38 14 3 22 30 15 0 1 + 32 27 17 17 38 0 0 84 148 0 0 8 148 37 0 4 31 0 0 4 + 66 46 3 3 4 5 4 2 9 1 0 0 1 13 20 24 8 1 0 39 + 148 4 0 2 135 51 0 0 13 1 0 0 73 63 2 0 0 0 0 2 + 29 21 3 0 0 1 5 12 +140.42 202.32 1.77 1.171 + 0 4 3 5 4 48 50 2 0 2 0 0 0 73 123 20 0 0 0 0 + 0 25 123 123 0 0 1 1 0 27 123 79 12 24 12 17 12 28 22 2 + 103 25 1 0 0 7 37 87 20 3 18 25 3 1 52 123 6 8 28 25 + 3 10 30 24 9 8 3 46 53 26 20 1 123 115 18 5 3 1 0 8 + 28 72 64 26 7 3 15 16 4 4 30 114 3 0 8 11 0 6 90 63 + 15 0 1 0 4 64 123 16 0 0 4 0 1 98 123 11 0 0 2 1 + 1 42 118 40 0 0 0 0 +137.70 56.11 1.62 2.357 + 0 15 77 49 11 11 4 0 28 16 25 62 24 10 14 30 37 15 48 13 + 1 2 22 70 0 1 41 53 4 3 30 14 30 35 89 44 13 41 22 32 + 113 78 32 10 9 28 25 36 21 15 80 30 9 60 30 15 10 14 49 19 + 0 5 30 53 113 46 0 1 17 72 31 30 89 13 42 84 35 67 35 38 + 6 70 113 93 20 26 13 1 7 113 110 6 2 1 4 4 113 80 0 0 + 18 18 5 5 38 7 0 43 72 113 31 3 3 10 9 69 100 41 21 28 + 24 86 11 4 7 13 16 38 +137.70 56.11 1.62 -2.002 + 7 43 33 32 2 54 100 0 1 5 44 65 17 37 112 2 21 14 50 49 + 32 71 54 18 112 51 5 10 7 8 1 35 13 112 81 79 8 4 0 1 + 112 65 43 54 17 52 37 19 21 3 27 30 24 96 112 58 62 42 14 9 + 8 6 14 66 17 39 21 11 16 13 27 112 112 20 15 27 6 4 6 112 + 50 7 24 49 28 39 31 27 33 31 6 5 30 76 20 18 30 1 1 6 + 11 5 51 87 35 1 1 7 36 22 12 68 103 9 2 10 36 13 2 20 + 29 4 1 7 60 21 3 18 +137.29 63.95 1.51 2.603 + 8 0 3 127 80 0 0 3 47 3 28 70 18 12 13 50 44 41 21 1 + 28 35 15 30 57 16 7 2 3 13 15 30 19 3 0 26 131 14 0 0 + 131 21 0 5 36 20 5 22 48 4 9 14 42 73 30 42 29 20 98 46 + 8 10 3 21 16 3 0 56 131 8 0 3 131 17 0 5 32 5 1 39 + 62 1 2 28 63 91 8 13 0 7 17 63 52 57 10 1 13 0 5 103 + 43 0 3 54 120 1 8 31 4 0 0 128 24 1 14 131 19 9 0 15 + 0 0 1 104 19 4 13 52 +136.07 188.45 1.72 2.181 + 0 0 0 5 79 40 3 0 24 0 0 0 137 44 0 6 141 0 0 0 + 9 4 0 53 62 0 0 2 4 2 2 26 1 0 0 5 114 33 0 0 + 43 0 0 0 141 21 0 5 141 5 2 1 15 2 0 41 55 7 20 35 + 7 0 0 9 3 0 0 0 89 71 12 4 37 3 0 0 141 75 6 1 + 141 70 27 12 15 8 2 2 33 25 63 73 0 0 0 5 0 4 2 0 + 9 104 77 4 4 1 0 0 26 141 57 1 24 37 26 3 16 111 17 2 + 25 65 29 8 3 2 0 2 +135.81 29.72 1.48 1.044 + 2 3 27 26 0 0 12 39 1 12 17 15 86 30 25 24 1 17 64 43 + 109 51 36 12 2 13 43 30 0 0 60 55 6 20 109 109 0 0 4 13 + 68 109 73 13 48 26 1 7 12 9 13 16 73 91 82 54 6 37 42 8 + 0 0 109 91 29 8 43 53 0 4 82 32 109 30 15 12 3 4 16 57 + 16 6 22 67 41 53 27 16 46 109 67 30 42 64 6 3 2 0 0 4 + 27 21 109 41 59 33 14 26 43 14 24 23 46 19 7 10 28 34 24 39 + 44 23 0 10 109 75 5 1 +134.60 24.99 1.73 -1.908 + 32 18 13 8 84 102 37 15 49 51 24 18 16 15 34 51 7 13 33 76 + 89 16 13 13 5 26 117 27 7 1 24 13 2 12 117 71 6 29 22 5 + 117 72 93 30 22 26 17 23 34 6 3 31 92 115 97 25 0 1 20 12 + 5 8 117 91 3 3 32 16 3 42 117 53 117 27 29 4 1 34 80 82 + 38 9 51 38 3 29 54 26 0 0 29 28 0 1 70 39 0 0 8 12 + 2 8 61 31 3 2 25 8 0 4 72 45 2 13 45 25 0 0 45 38 + 7 22 9 1 0 0 31 21 +130.62 218.74 1.51 2.383 + 18 6 2 10 14 12 15 10 161 54 1 1 1 0 1 9 73 64 22 0 + 1 0 5 11 3 73 64 7 7 0 3 3 28 10 31 40 7 1 0 0 + 161 30 3 5 1 0 0 31 120 25 2 2 4 0 2 22 6 7 12 15 + 41 6 7 11 42 31 63 38 2 0 0 0 161 66 6 2 0 0 0 16 + 93 12 0 0 0 0 26 93 1 1 0 1 5 11 114 44 54 33 37 11 + 31 11 0 0 161 41 2 0 0 0 0 38 133 0 0 0 0 0 19 161 + 1 0 0 5 16 19 70 52 +130.00 80.51 1.65 1.118 + 9 118 53 1 9 44 10 0 23 86 5 0 59 118 0 0 62 118 0 0 + 16 79 10 14 39 69 12 8 1 66 45 8 37 58 15 15 65 118 17 3 + 118 100 1 3 26 87 9 13 34 15 3 26 19 111 90 59 27 18 27 31 + 1 0 23 75 15 5 70 56 54 28 22 75 118 12 21 33 11 5 8 104 + 22 9 23 61 5 9 15 63 21 23 3 6 0 0 22 86 16 6 6 13 + 1 7 36 72 3 1 3 18 6 1 25 88 17 6 2 3 2 6 43 53 + 17 19 10 22 9 6 23 10 +127.94 38.97 1.78 1.373 + 18 13 18 21 38 22 23 16 16 47 22 6 6 22 123 26 5 5 9 30 + 6 1 114 53 15 12 14 9 0 0 58 20 13 9 17 29 80 46 22 17 + 123 77 22 23 73 19 4 11 56 36 18 123 95 0 3 2 51 49 80 46 + 4 0 0 2 23 17 19 65 100 17 4 11 123 2 0 34 109 13 0 36 + 52 16 5 67 123 28 3 17 40 31 31 26 19 11 5 19 32 4 2 18 + 85 18 5 31 123 8 6 29 71 11 1 47 33 5 4 56 123 18 5 20 + 25 14 3 4 8 23 48 31 +127.94 38.97 1.78 -2.053 + 37 12 18 27 47 23 26 14 118 32 1 3 73 18 6 36 75 57 4 9 + 118 22 1 5 36 27 8 13 32 24 18 14 25 29 17 19 35 30 7 9 + 118 105 3 7 66 25 2 11 117 41 1 1 118 72 0 10 98 48 13 14 + 21 16 11 25 11 7 1 4 23 53 56 79 118 5 0 1 27 64 21 73 + 57 23 6 7 111 118 30 15 43 59 20 13 10 23 34 40 0 0 4 7 + 17 24 37 27 24 0 27 54 9 17 16 50 6 0 97 107 5 23 13 6 + 33 29 78 36 4 11 18 9 +126.37 250.68 1.61 2.532 + 115 2 1 2 10 8 5 34 62 11 2 3 12 12 4 12 7 0 0 8 + 67 65 6 5 1 4 3 11 61 54 4 0 123 4 0 8 89 8 5 41 + 123 17 1 9 71 15 7 43 25 1 3 12 102 83 11 17 0 1 5 27 + 78 79 8 0 123 52 0 3 98 15 0 2 123 30 0 5 90 18 2 24 + 45 8 3 22 123 21 3 4 0 0 5 42 111 50 9 0 123 102 7 0 + 21 13 2 5 88 31 14 16 35 18 7 59 19 2 4 77 87 2 0 8 + 9 5 7 16 21 36 20 24 +126.23 108.70 1.68 1.390 + 53 20 19 8 8 11 39 55 7 6 17 21 58 36 106 15 45 16 3 12 + 43 31 53 37 3 26 21 10 80 47 10 5 58 43 111 51 4 1 0 7 + 95 74 80 27 41 26 27 12 51 14 3 52 54 21 46 31 6 3 2 19 + 66 69 42 19 11 8 22 22 5 5 89 27 117 22 42 37 10 3 27 66 + 24 9 59 113 33 1 8 7 14 13 114 31 4 12 18 20 1 1 72 39 + 0 2 48 14 5 3 117 92 2 4 16 11 0 1 117 110 1 0 10 2 + 2 1 117 86 0 0 4 4 +125.23 275.99 1.67 3.048 + 0 0 0 0 124 44 1 0 3 0 0 0 110 90 73 23 0 7 2 0 + 0 124 83 2 2 16 16 0 0 46 18 2 1 0 0 0 124 36 0 0 + 74 3 0 0 124 49 25 42 12 0 0 0 4 124 49 9 1 0 0 0 + 0 124 94 14 0 0 0 0 124 24 0 0 100 27 0 0 124 26 3 22 + 29 12 1 0 6 52 42 20 0 0 0 2 7 41 85 4 0 0 0 0 + 123 20 0 0 84 21 2 1 124 25 4 34 33 15 18 30 13 12 33 26 + 0 5 9 39 26 7 3 0 +125.23 275.99 1.67 0.733 + 32 99 64 21 0 0 0 0 47 71 2 0 0 0 3 9 21 40 18 10 + 3 9 27 20 1 4 11 56 57 36 20 22 137 52 5 1 1 1 0 1 + 137 38 4 9 1 0 0 11 15 23 42 97 25 1 0 31 24 3 31 65 + 9 0 1 137 135 65 0 0 11 3 0 0 121 71 44 35 0 0 0 21 + 22 3 18 80 8 0 0 137 17 0 0 2 1 0 0 137 53 34 0 0 + 17 8 1 28 78 42 18 3 0 0 0 137 30 0 2 1 0 0 0 137 + 1 0 0 1 1 0 0 26 +125.52 77.22 1.68 1.657 + 81 104 2 2 37 14 0 0 68 22 1 3 122 14 0 0 122 26 0 5 + 83 5 0 0 76 1 0 6 122 9 0 3 122 15 0 8 64 15 0 32 + 88 9 0 0 122 34 4 11 122 28 0 0 61 31 4 11 63 13 1 0 + 106 104 4 2 51 5 18 10 15 5 18 111 20 2 21 11 71 77 47 28 + 92 21 28 2 8 21 46 55 15 12 33 8 21 106 22 2 2 4 23 3 + 0 4 41 15 12 5 22 7 1 5 50 27 3 4 17 1 0 1 104 12 + 0 3 18 3 0 4 80 6 +125.52 77.22 1.68 -1.303 + 5 29 55 0 0 9 25 4 0 17 96 3 2 14 20 0 1 11 68 18 + 14 3 19 2 1 15 42 8 3 6 14 1 74 115 7 7 29 13 17 3 + 17 25 48 71 100 17 18 1 76 67 44 28 10 4 30 12 6 4 39 95 + 15 14 28 5 123 32 0 13 66 1 0 10 78 9 4 42 123 0 0 7 + 123 13 4 40 75 1 0 30 59 4 10 92 85 1 5 31 123 0 0 9 + 52 0 0 51 75 0 0 22 123 0 0 16 123 0 0 4 85 27 1 38 + 66 32 0 5 99 35 0 3 +124.17 135.49 1.78 1.548 + 2 1 1 0 0 26 63 16 5 4 2 0 3 20 35 10 58 20 2 0 + 1 5 27 67 18 27 42 4 1 16 34 20 57 49 8 1 8 116 116 43 + 40 5 2 3 117 117 70 11 117 10 1 5 66 19 34 88 63 12 13 18 + 53 43 60 27 15 117 117 28 13 16 3 1 27 45 89 88 117 34 2 1 + 117 95 74 23 47 6 1 4 36 19 117 73 30 9 9 10 0 9 39 8 + 0 2 1 0 3 13 38 15 1 0 0 0 36 24 33 4 0 2 11 33 + 14 5 36 14 9 31 50 35 +124.17 135.49 1.78 -1.482 + 6 27 47 21 5 5 67 17 1 7 20 40 29 34 51 4 1 0 0 1 + 7 17 32 13 1 3 1 0 0 12 29 3 44 11 7 20 54 21 106 57 + 57 3 1 20 118 78 65 21 118 19 1 4 36 50 80 93 13 11 1 0 + 11 118 118 23 39 56 70 30 41 14 17 14 57 18 45 118 118 3 0 8 + 118 118 64 11 27 7 2 7 12 118 81 44 67 62 8 2 0 10 20 44 + 33 31 24 1 1 4 20 54 45 10 0 0 3 31 42 5 2 4 2 0 + 1 42 70 24 4 0 0 0 +123.32 16.26 1.76 -0.055 + 14 4 1 14 127 28 0 0 127 27 1 5 44 10 0 2 59 4 0 1 + 68 6 0 0 28 3 0 15 127 8 0 1 19 3 0 41 127 40 0 0 + 127 23 1 14 53 13 0 3 72 9 1 4 94 3 0 0 28 9 2 30 + 127 5 0 0 20 1 0 14 127 31 0 2 127 2 0 4 69 14 2 23 + 50 4 1 9 100 10 0 3 10 5 4 70 118 17 1 3 25 2 0 47 + 114 9 1 3 127 12 0 12 32 3 2 32 31 1 0 5 83 10 3 6 + 13 0 2 34 39 66 63 12 +121.40 31.62 1.49 0.038 + 15 1 0 27 129 4 0 2 129 6 1 6 29 1 0 33 81 7 9 4 + 3 0 0 9 0 1 3 47 88 20 0 0 24 4 2 42 129 0 0 2 + 129 15 2 7 20 1 0 24 60 12 41 28 30 6 0 5 0 10 54 40 + 112 10 0 0 20 6 2 60 129 5 0 0 129 29 0 4 15 2 0 8 + 68 4 12 10 51 95 5 5 0 4 69 42 41 129 23 0 23 2 7 72 + 54 17 8 16 129 7 7 16 5 0 1 73 39 13 103 43 5 23 4 6 + 0 31 79 2 2 98 35 0 +120.64 103.36 1.57 -1.632 + 22 110 50 2 1 1 28 19 18 61 49 41 12 11 56 20 24 6 16 17 + 14 7 33 101 7 5 15 49 110 17 19 29 37 51 18 4 18 53 23 16 + 110 85 22 7 6 10 5 45 63 29 45 39 90 17 5 51 57 33 25 12 + 63 59 59 28 28 21 42 13 11 99 53 38 110 66 50 23 9 46 24 18 + 38 49 110 58 50 11 4 16 57 63 110 10 5 4 12 30 3 25 94 17 + 6 11 8 9 1 23 78 38 3 4 44 9 16 19 74 51 3 5 64 20 + 26 27 64 8 3 4 34 105 +120.22 16.23 1.73 -0.006 + 12 4 5 14 120 26 0 1 127 33 7 7 39 8 0 4 64 3 0 1 + 70 2 0 1 31 1 0 14 119 10 0 1 16 2 0 48 127 16 0 1 + 127 17 2 18 59 9 0 7 86 3 0 2 90 2 0 1 36 2 0 26 + 127 3 0 1 17 1 0 22 127 46 0 1 127 7 0 8 60 15 1 20 + 68 7 1 7 95 1 0 2 20 8 3 47 127 4 0 0 17 0 0 40 + 124 3 0 3 127 0 0 9 43 2 0 38 28 1 1 11 84 5 0 5 + 7 1 4 71 75 22 8 5 +119.54 303.65 1.48 1.702 + 7 15 50 20 0 0 0 0 0 32 61 5 0 0 0 0 1 14 43 27 + 0 0 0 0 0 14 65 6 0 0 0 0 27 28 112 121 63 0 0 2 + 121 121 107 34 15 1 0 4 38 43 72 121 81 14 3 7 35 64 96 31 + 7 6 5 12 28 5 5 32 121 87 45 34 121 15 3 6 21 19 28 121 + 42 4 2 17 82 120 56 36 31 5 1 3 5 17 60 73 1 10 48 2 + 12 52 57 19 21 20 52 0 0 5 34 74 3 16 51 0 0 22 23 4 + 0 4 36 0 0 3 31 15 +119.24 78.34 1.71 -0.830 + 15 30 76 12 7 20 3 9 6 113 12 1 4 14 5 1 1 93 15 0 + 0 5 8 1 0 12 5 1 2 35 5 0 6 34 52 29 28 21 58 67 + 114 96 10 11 17 27 19 10 22 76 28 10 12 74 12 3 0 90 35 9 + 3 8 2 0 18 1 0 114 60 7 13 68 114 13 2 69 32 4 1 96 + 40 31 51 114 43 22 2 11 37 58 32 6 1 23 18 13 20 0 0 89 + 10 0 0 114 42 0 0 114 49 0 0 112 44 7 6 114 42 0 0 97 + 51 10 27 65 3 3 2 64 +117.15 111.54 1.70 -0.653 + 18 43 9 6 13 27 5 12 21 34 2 0 9 99 5 2 7 14 27 6 + 65 141 5 3 4 19 139 21 27 64 2 1 17 14 8 36 37 23 16 12 + 141 39 3 3 5 66 18 51 12 4 3 2 52 141 12 7 0 4 30 5 + 53 141 0 0 16 6 4 18 87 21 27 64 116 39 18 3 3 9 38 87 + 11 17 32 16 52 105 36 5 3 11 0 0 32 141 15 0 31 35 11 6 + 19 6 19 67 20 24 25 47 4 4 57 58 20 23 30 36 3 26 68 11 + 2 11 36 26 14 91 28 2 +117.15 111.54 1.70 -3.062 + 143 1 0 0 3 1 0 10 143 35 3 2 8 2 4 15 32 76 10 13 + 17 22 33 7 6 25 32 27 25 19 45 12 143 1 0 0 4 47 11 29 + 143 6 1 8 10 12 7 45 28 50 38 53 36 36 10 13 4 50 106 26 + 14 12 27 5 143 4 2 5 14 54 13 57 143 26 21 53 15 0 0 11 + 15 11 55 143 46 5 6 7 22 22 68 20 5 3 12 81 143 9 7 14 + 8 1 0 12 76 5 4 22 44 4 1 3 20 8 12 20 29 8 23 30 + 23 35 11 4 5 14 61 37 +116.85 276.13 1.65 -3.116 + 0 0 0 10 129 0 0 0 93 10 0 7 129 6 3 19 20 4 0 0 + 16 98 16 8 0 0 0 0 3 97 81 5 2 0 0 5 129 5 0 1 + 113 12 1 4 129 8 17 82 20 5 3 12 16 33 64 31 0 4 4 15 + 19 28 33 1 3 1 0 21 129 0 0 0 109 93 35 25 129 1 3 15 + 14 24 101 93 15 8 9 5 3 20 31 58 12 1 0 0 0 0 0 13 + 129 0 0 0 31 65 26 22 129 0 0 3 14 19 53 23 9 5 2 4 + 2 21 35 21 7 0 0 0 +115.28 16.30 1.69 0.036 + 9 3 20 51 58 20 3 2 65 57 30 16 16 13 11 35 46 9 0 11 + 74 0 0 8 34 0 0 14 120 19 0 4 14 4 5 18 129 26 0 2 + 129 36 8 10 53 8 0 11 86 3 0 5 94 0 0 4 44 1 0 24 + 129 9 0 2 16 2 1 64 129 14 0 1 129 10 2 19 56 7 0 16 + 85 1 0 6 96 0 0 5 38 2 0 38 129 2 0 3 16 1 0 21 + 129 34 0 3 129 3 0 6 42 7 1 26 48 5 1 11 77 0 0 3 + 19 6 3 45 126 1 0 0 +115.07 170.50 1.60 2.395 + 11 1 0 15 105 9 0 4 155 16 0 0 24 4 3 71 94 10 0 0 + 1 3 64 109 10 0 0 0 0 40 75 58 17 3 6 40 75 11 2 1 + 155 24 0 7 21 2 0 16 155 72 5 0 0 0 0 11 32 63 3 0 + 0 5 4 6 21 0 1 13 97 45 21 1 155 2 0 2 31 5 0 18 + 112 40 7 0 0 0 25 32 18 87 28 0 0 2 12 5 16 1 4 34 + 102 3 1 0 155 10 0 4 28 0 0 24 95 6 0 0 0 1 36 55 + 0 3 4 7 5 15 34 3 +113.31 73.22 1.39 1.816 + 27 0 0 45 119 0 0 2 119 0 0 13 39 0 0 59 66 0 0 48 + 119 0 0 28 83 0 0 26 72 0 0 18 34 0 0 9 119 20 0 6 + 119 10 2 13 40 4 0 45 51 4 2 111 119 0 0 15 95 0 0 26 + 48 0 0 54 26 2 2 0 105 117 3 6 91 48 27 29 22 62 20 6 + 16 11 22 118 53 3 26 60 43 0 0 24 39 1 5 103 3 14 36 6 + 15 44 13 1 1 4 11 6 7 67 59 3 4 11 8 5 2 7 84 74 + 2 2 4 10 52 28 18 39 +113.31 73.22 1.39 -1.831 + 0 1 22 37 9 5 30 4 2 12 76 39 2 2 7 10 5 96 79 2 + 2 4 16 17 1 41 10 9 59 45 8 2 17 18 10 107 70 1 3 2 + 70 5 37 51 16 31 28 56 11 102 45 3 48 97 18 9 47 116 6 0 + 24 28 0 0 46 15 0 16 116 10 0 0 116 55 0 3 36 22 5 19 + 37 19 0 0 116 116 4 4 104 101 0 0 35 25 0 0 43 5 0 0 + 80 42 1 1 116 77 0 0 35 19 0 0 59 35 0 0 116 66 0 0 + 70 32 0 0 69 36 0 0 +113.27 247.19 1.88 -1.093 + 61 18 0 0 0 2 2 0 121 31 0 0 0 0 3 41 57 19 0 0 + 4 11 12 45 21 1 0 2 15 27 82 29 44 10 0 0 0 55 62 6 + 121 32 2 2 2 9 31 91 59 11 5 9 23 12 42 65 91 21 0 1 + 28 17 10 15 10 1 0 0 17 75 75 21 121 121 78 10 40 49 13 15 + 58 121 119 19 13 1 1 5 58 76 8 1 4 8 1 5 2 1 0 0 + 28 77 36 27 19 37 28 5 121 121 3 1 121 114 28 0 10 11 0 1 + 39 57 29 0 0 0 1 5 +109.32 245.45 1.54 -1.117 + 6 4 0 1 0 8 10 0 112 40 0 0 0 1 1 1 122 40 0 0 + 0 0 5 31 49 21 0 0 0 3 7 27 0 0 0 0 0 55 92 1 + 111 20 0 0 0 45 53 12 122 24 1 1 1 2 28 109 27 4 1 7 + 22 13 42 57 8 1 0 0 0 25 83 20 38 6 0 0 17 113 91 16 + 122 122 66 8 15 19 7 18 20 74 105 24 16 2 1 4 14 1 0 0 + 0 19 53 61 1 1 0 1 50 104 34 27 9 74 66 10 92 98 0 0 + 103 103 61 0 1 3 0 0 +109.47 23.53 1.49 -3.064 + 3 0 0 41 136 4 1 1 136 3 1 14 38 3 1 47 88 1 0 7 + 60 0 0 22 56 0 0 6 67 0 0 5 8 4 0 25 136 11 1 3 + 136 20 1 7 34 4 2 53 96 2 0 9 87 0 0 18 62 0 0 7 + 82 6 0 8 16 4 1 54 136 0 0 3 136 36 1 12 37 0 0 42 + 96 6 0 11 79 0 0 16 56 0 1 17 41 24 1 14 18 5 0 39 + 136 14 4 5 136 75 2 6 16 2 5 40 68 17 3 15 39 0 0 8 + 44 1 1 31 66 4 0 2 +108.64 52.78 1.72 2.212 + 18 9 58 26 6 47 14 3 4 15 20 9 4 43 34 8 2 2 4 6 + 13 19 43 10 3 36 11 7 13 12 23 2 12 22 101 48 14 8 21 65 + 125 85 23 8 13 18 23 13 30 2 0 3 13 90 39 8 1 0 0 14 + 29 46 24 1 23 1 2 107 74 5 11 109 125 15 3 50 29 3 3 68 + 61 10 34 125 18 39 6 12 18 35 35 25 21 57 12 2 41 0 0 125 + 47 0 0 66 125 1 11 120 5 0 0 105 34 12 23 125 15 0 0 12 + 124 46 33 30 0 5 3 19 +107.34 78.72 1.58 0.724 + 5 115 17 0 11 63 2 0 20 115 0 0 8 115 5 1 41 115 2 1 + 0 59 31 6 17 25 9 24 8 64 46 10 29 80 5 2 31 115 7 1 + 115 89 0 2 6 88 39 13 45 46 9 25 12 42 79 48 8 12 23 40 + 4 2 6 90 16 43 58 34 58 51 22 40 115 16 11 24 14 10 10 80 + 18 3 11 58 11 4 10 107 9 0 0 3 1 0 2 115 2 9 10 17 + 9 10 115 51 10 0 2 15 14 3 17 110 2 0 4 8 2 0 3 115 + 2 2 18 13 1 0 0 20 +106.73 146.09 1.60 -0.070 + 6 3 2 58 113 21 22 14 27 14 2 6 20 5 50 42 92 18 1 5 + 15 26 56 10 122 35 0 1 39 9 1 8 15 6 8 54 92 63 9 8 + 120 38 8 7 16 17 26 75 65 18 9 27 67 65 33 17 122 42 0 2 + 22 7 0 4 16 4 4 79 122 52 35 11 122 55 28 24 31 13 7 27 + 49 19 36 89 59 32 7 5 122 37 1 9 13 2 0 0 9 5 14 50 + 86 103 5 2 79 47 13 11 21 20 9 27 36 8 10 23 48 41 21 14 + 122 12 0 2 17 5 0 2 +103.08 23.71 1.50 -3.003 + 2 1 0 48 123 1 0 0 123 27 2 19 46 0 0 30 96 5 0 15 + 60 0 0 21 50 0 0 6 42 7 0 17 12 1 0 91 123 0 0 6 + 123 34 1 16 38 0 0 89 100 10 1 20 68 0 0 29 63 0 1 35 + 37 8 0 17 7 4 0 26 123 102 51 2 123 103 3 5 10 23 86 49 + 90 35 7 23 21 3 5 21 55 0 0 24 95 15 0 7 0 9 58 72 + 14 56 44 0 13 81 52 8 7 18 94 32 56 9 4 7 20 9 10 25 + 29 0 6 41 43 15 0 7 +102.49 16.59 1.66 -0.013 + 9 2 5 33 92 44 26 14 110 9 4 5 19 6 24 83 32 5 2 6 + 86 10 4 10 9 9 44 26 13 67 54 10 10 22 33 42 102 64 11 5 + 110 104 27 5 26 11 10 30 34 10 2 5 110 14 2 9 10 7 51 46 + 74 95 6 7 10 3 8 20 95 95 14 11 110 29 9 4 29 32 23 91 + 63 4 0 4 110 8 0 12 39 1 0 25 110 48 2 5 7 9 25 57 + 84 24 2 2 108 73 27 13 20 5 4 14 56 8 0 6 85 1 0 2 + 37 1 0 11 110 27 0 2 +100.40 55.37 1.64 -1.766 + 6 10 0 0 90 40 22 9 67 43 28 7 12 22 7 2 136 22 3 1 + 44 59 0 10 57 30 0 0 79 118 1 2 56 0 0 0 116 58 17 33 + 90 11 1 0 54 136 21 18 136 41 0 0 11 40 9 22 35 11 0 0 + 45 136 10 2 47 2 8 3 48 54 48 69 30 2 20 12 15 136 81 49 + 131 22 38 5 0 24 60 87 20 9 64 23 7 51 4 1 2 5 32 11 + 6 8 8 6 5 5 47 37 10 14 7 6 3 30 61 19 6 8 4 3 + 9 20 42 24 0 0 0 0 +96.30 54.69 1.42 2.199 + 14 3 24 70 15 41 5 3 3 27 36 20 29 76 12 0 24 8 5 2 + 17 49 27 20 12 6 13 40 6 9 12 26 17 19 50 140 24 0 0 3 + 140 140 69 47 2 12 6 15 45 17 28 8 6 75 42 5 9 3 3 2 + 7 45 17 14 58 3 3 140 18 4 1 33 140 28 43 62 0 0 0 75 + 71 74 137 79 3 7 1 36 43 29 7 1 2 46 17 26 44 18 4 10 + 24 15 2 18 62 29 44 42 0 0 0 97 38 8 15 30 0 0 8 140 + 29 2 25 8 1 20 10 81 +96.03 23.95 1.52 1.767 + 0 17 63 0 0 18 28 0 0 24 77 0 1 12 32 6 0 23 54 0 + 2 53 50 1 0 10 31 0 0 65 104 0 2 42 113 60 5 18 22 0 + 73 59 66 45 7 10 18 16 11 22 76 93 19 16 19 6 16 60 85 11 + 1 2 4 4 18 30 94 34 0 36 82 27 113 30 24 46 52 17 16 108 + 42 10 33 113 107 36 17 50 42 65 44 22 16 7 28 39 2 0 0 0 + 0 58 113 27 22 0 0 0 21 51 59 108 18 4 1 2 37 113 65 18 + 10 6 10 21 26 54 76 7 +96.03 23.95 1.52 -2.042 + 0 11 88 23 1 0 1 0 0 25 49 73 107 17 0 0 9 0 72 109 + 74 25 8 28 7 0 44 39 0 0 81 100 15 36 103 57 37 30 8 5 + 109 109 58 12 75 66 2 11 56 7 2 6 69 109 55 89 45 5 25 17 + 0 1 53 109 21 15 10 31 36 48 63 38 109 20 9 13 22 17 32 106 + 28 7 15 30 13 34 46 45 3 2 17 19 1 0 39 70 0 0 8 14 + 7 26 50 30 4 1 20 16 0 4 55 76 0 5 70 39 0 0 34 43 + 0 12 41 72 27 3 9 13 +94.62 11.12 1.55 2.981 + 24 9 0 5 57 28 0 0 30 47 5 8 48 54 30 12 65 62 1 0 + 20 5 6 17 2 1 0 0 144 73 0 0 46 9 0 10 35 16 0 0 + 12 17 39 68 65 33 25 11 101 70 23 5 10 3 5 22 11 4 0 0 + 144 79 0 0 53 14 1 3 62 4 0 0 36 15 7 25 144 11 0 11 + 144 41 3 2 7 1 0 34 16 2 0 0 144 58 0 2 44 11 0 2 + 34 5 1 5 27 10 1 8 144 36 1 3 144 41 0 0 8 5 0 13 + 23 3 0 0 144 37 0 2 +91.66 80.35 1.59 -1.001 + 27 38 66 10 6 10 6 16 14 99 21 2 11 16 2 1 8 118 0 0 + 3 16 4 0 1 14 0 0 6 34 35 1 9 29 31 42 61 48 52 20 + 118 92 11 9 19 26 12 14 29 105 3 6 16 69 14 5 2 118 8 0 + 0 6 6 0 24 1 1 118 53 5 7 50 118 13 23 71 11 2 0 94 + 73 32 58 73 15 27 9 28 15 68 9 5 10 51 16 12 8 0 1 64 + 5 0 15 118 48 1 9 118 13 0 0 74 118 7 13 71 5 0 0 105 + 24 12 22 95 18 15 3 17 +88.34 77.92 1.63 -1.081 + 32 16 23 30 1 0 16 66 22 49 75 8 9 18 3 6 7 111 11 0 + 5 13 5 1 0 75 5 0 3 16 7 0 0 0 12 45 31 20 67 73 + 32 56 42 35 72 50 41 15 120 81 8 7 9 32 17 11 4 84 11 7 + 9 44 10 1 0 0 0 120 35 21 49 40 58 3 0 120 82 7 6 61 + 120 18 23 86 9 2 0 58 66 24 30 51 8 19 10 27 0 0 2 120 + 6 0 6 39 19 0 0 72 14 0 8 120 64 2 4 120 26 0 0 52 + 113 4 4 58 11 0 0 56 +88.08 16.65 1.64 -0.070 + 1 5 47 51 22 0 0 0 12 66 89 18 25 0 0 0 37 10 4 3 + 87 9 0 4 29 1 0 3 128 36 1 4 11 7 16 76 128 11 0 1 + 128 78 37 24 42 4 0 29 66 17 6 13 79 12 0 12 21 10 13 61 + 123 15 9 4 13 3 0 33 128 42 1 2 128 21 0 8 55 18 3 32 + 68 3 3 13 127 21 2 6 9 28 27 47 61 64 26 5 9 1 2 34 + 111 43 19 9 128 8 4 8 19 10 25 75 46 5 1 1 88 10 3 10 + 11 8 32 27 17 62 49 8 +87.02 212.50 1.57 -0.326 + 15 0 0 22 54 7 4 30 46 6 18 12 4 2 12 70 50 15 48 24 + 1 0 29 134 70 12 15 44 35 2 1 73 7 8 23 49 27 6 16 33 + 92 50 25 13 0 0 6 67 51 27 42 30 0 0 9 79 8 12 92 134 + 5 0 0 11 10 7 16 85 51 11 32 48 134 38 20 35 2 1 15 117 + 22 6 35 134 1 0 0 4 0 0 25 134 5 0 0 0 24 3 2 8 + 9 6 38 68 7 0 4 116 16 0 16 52 0 0 16 134 9 0 0 0 + 12 1 5 134 3 0 0 9 +82.71 252.98 1.78 -2.006 + 39 0 0 27 85 0 0 8 138 0 0 0 0 1 6 83 48 0 0 0 + 3 81 75 50 0 0 1 0 81 132 33 0 81 2 0 40 38 2 1 5 + 138 20 0 0 0 0 0 88 65 16 19 22 19 25 9 63 3 7 8 3 + 116 138 2 1 54 0 0 3 4 85 88 16 138 64 3 1 0 6 17 34 + 66 61 17 23 18 2 9 21 11 7 7 18 93 37 3 18 7 0 0 1 + 0 59 85 12 54 12 0 0 0 15 88 38 53 44 15 17 2 2 12 10 + 0 1 32 81 32 1 0 2 +82.42 113.54 1.61 2.982 + 142 11 0 1 4 0 0 4 75 7 0 2 30 28 3 5 10 8 15 16 + 33 37 43 18 55 20 8 1 0 2 34 51 142 2 0 0 7 2 0 18 + 137 4 0 3 37 24 1 16 30 18 12 29 99 93 4 5 142 63 5 2 + 3 12 3 7 142 2 0 4 12 1 0 16 142 14 1 14 42 8 0 7 + 23 5 6 50 111 53 4 4 61 73 21 5 4 10 6 14 142 0 0 1 + 15 1 0 26 140 0 0 2 40 10 0 18 17 0 0 3 110 51 9 4 + 41 9 2 3 5 7 18 31 +82.42 113.54 1.61 0.121 + 0 1 24 36 30 46 5 0 82 18 6 8 8 4 4 20 86 8 1 55 + 58 0 0 14 19 0 0 81 93 0 0 14 7 11 5 34 117 45 5 1 + 101 34 4 10 18 6 15 74 47 2 0 59 114 1 1 36 16 0 0 117 + 117 0 0 12 9 8 12 33 117 18 14 7 117 41 4 17 27 7 15 44 + 32 6 1 76 112 0 0 11 5 0 0 117 117 0 0 5 4 11 55 31 + 17 27 12 2 71 36 18 12 19 2 8 12 16 2 1 66 117 0 0 5 + 1 1 1 93 117 0 0 0 +82.19 16.94 1.57 3.085 + 57 18 7 2 11 20 23 74 99 10 0 7 53 5 5 16 40 10 1 28 + 125 25 0 5 125 35 0 2 14 5 0 24 125 19 3 4 36 4 5 33 + 88 14 0 12 67 23 6 6 29 1 0 23 125 125 92 32 125 1 0 1 + 7 11 50 120 125 79 6 8 35 0 0 3 125 11 2 7 38 5 3 4 + 42 1 0 0 0 46 80 11 7 0 0 0 0 5 55 37 95 89 8 5 + 5 2 3 53 125 14 4 4 4 2 2 8 47 1 0 0 0 0 1 1 + 0 0 0 0 1 0 1 0 +82.19 16.94 1.57 0.975 + 0 7 89 55 0 0 12 35 20 79 58 10 0 0 0 1 6 10 1 3 + 0 0 0 0 0 0 12 28 0 0 0 0 11 14 115 119 1 0 28 64 + 119 111 50 14 0 0 29 83 37 17 38 79 0 0 0 3 1 2 45 112 + 2 2 3 2 2 0 8 31 2 1 109 119 29 2 20 68 1 1 64 103 + 7 1 34 102 1 1 32 48 0 2 28 119 56 10 21 16 0 1 30 82 + 7 1 16 24 12 35 78 59 3 0 5 17 2 7 85 119 6 2 16 27 + 2 0 42 119 15 2 20 43 +78.28 223.55 1.69 -2.382 + 6 0 0 0 3 15 63 26 2 1 0 0 1 37 82 24 0 0 0 0 + 0 85 117 20 0 0 0 0 0 117 117 0 4 7 35 65 27 17 40 8 + 88 27 22 19 8 7 19 101 13 4 61 37 2 11 117 104 0 10 55 15 + 22 108 83 2 14 7 23 42 60 52 11 9 117 75 20 18 9 16 10 35 + 21 31 98 91 54 74 2 7 1 74 117 24 17 43 3 0 6 32 30 5 + 8 23 6 2 22 46 45 24 4 14 3 3 1 23 117 51 11 32 0 0 + 3 15 90 20 10 30 5 4 +77.43 135.48 1.47 1.413 + 3 0 0 0 0 4 23 25 5 1 1 0 2 29 39 22 46 7 1 0 + 1 8 37 85 23 11 3 16 40 13 16 15 102 1 0 0 6 76 37 75 + 76 2 0 0 109 113 51 43 113 13 0 2 37 45 35 85 8 2 0 8 + 113 71 16 8 81 31 41 19 36 89 8 11 64 32 64 41 113 66 6 8 + 113 62 93 33 35 23 6 12 6 11 67 70 95 16 0 0 1 20 113 33 + 6 1 0 0 1 12 113 43 4 0 0 0 0 9 105 24 1 0 0 0 + 0 2 66 23 0 0 3 2 +77.43 135.48 1.47 -1.400 + 15 1 0 1 5 9 76 34 1 0 0 0 4 68 113 8 0 0 0 0 + 1 28 103 6 0 0 0 0 0 25 54 0 113 9 0 3 7 4 22 73 + 42 10 5 64 113 63 59 33 113 15 4 21 40 45 101 49 26 9 1 12 + 39 77 107 22 92 42 48 29 12 1 1 26 64 33 54 113 112 0 0 3 + 113 62 36 71 60 1 0 15 76 81 16 81 72 5 3 5 3 4 26 43 + 51 9 2 5 6 18 35 38 9 3 1 0 16 57 74 32 4 0 0 0 + 18 52 29 37 7 0 0 0 +76.80 82.81 1.57 1.175 + 22 39 45 59 66 0 0 0 36 29 20 37 128 0 0 0 128 5 0 7 + 62 0 0 0 57 1 0 24 128 0 1 10 47 35 28 64 67 1 4 29 + 66 12 1 22 128 28 11 21 128 33 1 17 67 8 9 21 96 7 1 40 + 128 11 4 11 13 12 22 9 1 8 59 108 11 4 22 7 34 95 72 48 + 62 14 10 4 16 30 70 87 34 7 10 10 37 55 38 33 1 4 11 3 + 1 2 88 17 3 5 18 4 1 3 95 18 2 5 7 1 0 2 111 11 + 0 3 8 2 0 9 86 1 +75.79 230.79 1.55 -0.241 + 18 10 15 7 3 8 32 53 75 75 16 1 0 0 2 48 23 60 82 52 + 6 2 3 9 0 1 31 113 92 8 1 0 8 20 71 34 16 50 32 7 + 113 113 63 16 5 7 8 28 25 15 41 113 55 1 0 3 0 1 27 109 + 34 0 0 0 23 14 6 5 25 113 113 20 79 21 19 15 40 78 56 44 + 11 8 19 108 76 19 1 1 2 5 24 59 20 9 1 0 78 17 6 21 + 78 26 5 43 0 0 5 51 113 27 2 0 0 0 20 113 31 7 0 0 + 3 12 46 113 9 2 0 0 +73.71 175.14 1.66 1.814 + 9 36 8 2 113 63 0 0 22 123 123 6 10 6 0 0 61 84 77 27 + 0 0 0 4 30 17 9 23 6 0 0 5 0 0 0 2 116 123 0 0 + 62 38 5 0 20 118 4 5 123 49 1 0 0 3 3 39 31 4 2 10 + 13 10 8 15 0 0 0 5 106 53 0 0 32 4 0 3 52 123 7 8 + 123 58 0 1 10 16 11 36 39 8 0 0 1 22 57 21 0 0 0 13 + 76 23 0 0 3 3 0 11 95 13 0 0 123 123 0 2 33 6 0 1 + 71 98 0 0 0 8 15 4 +73.48 63.26 1.51 -2.018 + 33 1 0 0 138 17 0 1 138 25 1 0 28 2 2 3 48 15 36 10 + 9 2 14 9 0 3 12 6 138 26 1 1 34 1 0 0 138 25 0 2 + 138 29 1 3 54 6 0 0 56 38 70 55 81 16 0 0 0 52 72 47 + 105 5 0 1 21 1 0 1 138 62 18 5 138 12 0 0 37 27 39 67 + 62 9 7 6 109 121 7 12 0 18 32 19 30 59 70 28 2 1 12 6 + 16 39 28 3 16 5 6 1 1 12 56 46 10 5 14 7 13 31 17 11 + 0 0 1 1 4 26 66 16 +72.13 82.44 1.42 1.243 + 19 14 10 40 130 0 0 1 130 0 0 7 36 0 0 20 58 0 0 45 + 130 0 0 9 25 0 0 5 48 37 15 35 49 9 1 34 127 1 0 4 + 130 9 0 16 42 0 0 15 85 3 1 72 130 0 0 10 124 0 0 4 + 56 35 5 47 20 1 2 9 67 76 46 26 130 14 2 13 30 17 35 75 + 69 4 1 43 119 47 22 32 130 1 0 1 54 17 7 52 0 3 17 3 + 2 23 55 8 6 13 13 1 3 11 54 31 7 8 16 5 9 38 44 18 + 26 21 26 7 15 9 13 23 +72.13 82.44 1.42 -2.124 + 2 5 35 15 15 13 24 5 4 27 44 16 7 4 17 10 1 10 50 56 + 20 7 12 1 7 43 45 22 5 1 13 7 23 22 11 30 125 20 4 1 + 125 59 27 23 58 17 2 10 34 13 22 46 125 66 1 5 100 48 23 14 + 34 10 0 0 40 63 4 9 125 17 0 0 125 9 0 1 86 18 1 6 + 67 3 0 0 125 77 0 3 125 15 0 0 54 24 3 6 24 88 13 17 + 40 1 0 0 125 19 3 12 42 2 0 0 70 5 0 0 125 48 0 0 + 120 24 0 0 67 17 1 2 +68.96 63.12 1.75 1.273 + 3 13 33 1 0 1 19 3 0 3 36 4 1 6 26 1 0 7 38 0 + 0 4 23 2 0 6 29 0 0 7 21 0 80 106 44 6 8 8 11 7 + 28 30 61 96 85 8 7 2 87 89 64 21 13 3 12 10 12 20 40 56 + 34 11 14 2 96 21 1 3 22 59 60 45 80 12 7 55 141 1 3 14 + 141 23 7 21 67 0 0 36 31 21 17 88 141 0 0 3 24 2 12 9 + 40 18 37 13 59 0 1 33 141 4 4 10 141 0 0 22 71 0 0 26 + 13 2 0 47 141 8 4 1 +68.96 63.12 1.75 -2.083 + 137 12 3 2 54 12 0 1 96 16 0 0 137 42 0 0 137 51 19 14 + 13 1 2 2 1 22 60 26 71 12 1 1 137 13 0 0 49 15 2 8 + 83 11 0 0 137 70 7 6 137 44 4 10 59 35 6 18 6 33 57 29 + 86 80 17 3 106 9 8 1 16 24 37 63 24 3 10 6 85 106 63 24 + 89 11 9 2 11 28 56 80 7 2 7 6 25 86 52 10 2 3 19 2 + 0 2 34 7 0 1 24 6 1 3 36 6 0 2 22 7 0 0 34 10 + 0 0 23 8 0 1 24 6 +68.04 184.01 1.67 2.342 + 0 0 4 69 54 1 0 0 9 0 1 66 71 10 1 4 123 0 0 10 + 27 14 10 163 24 0 0 2 8 24 19 71 0 0 25 93 14 1 0 0 + 61 2 3 88 66 0 0 7 163 5 0 9 6 7 5 103 36 0 0 1 + 12 71 30 24 0 6 6 19 32 7 0 0 80 16 2 44 95 1 0 0 + 163 63 0 3 3 0 0 6 73 8 0 1 25 55 6 8 0 10 17 38 + 17 0 0 0 48 15 4 63 53 0 0 0 163 112 0 1 1 0 0 0 + 97 45 0 0 14 16 1 1 +62.93 124.82 1.61 1.910 + 1 125 34 0 0 23 6 0 1 127 31 0 0 21 12 0 1 94 19 0 + 0 1 3 0 0 13 6 0 0 0 0 0 28 128 22 7 6 5 8 35 + 98 128 12 4 3 29 35 9 25 93 15 0 14 85 32 6 26 84 10 0 + 5 6 0 0 39 12 9 69 22 6 8 27 128 46 3 20 7 4 3 112 + 72 6 0 18 111 70 7 28 94 21 0 3 38 13 0 14 71 0 0 45 + 33 1 0 57 128 0 0 10 11 0 0 128 30 0 0 73 102 0 0 20 + 62 0 0 8 14 0 0 29 +59.78 67.21 1.69 -2.139 + 4 14 1 0 82 41 18 5 95 45 22 7 8 17 5 0 128 28 1 0 + 88 31 0 1 74 22 0 0 128 50 0 0 54 1 0 1 108 60 18 28 + 115 13 1 0 40 128 22 18 128 40 0 0 69 26 6 17 50 11 0 0 + 128 91 18 10 49 2 3 1 42 59 49 70 33 2 8 4 10 128 95 54 + 107 14 17 3 13 24 52 80 9 2 12 8 34 74 52 16 1 2 16 2 + 1 5 33 7 1 2 25 4 0 5 39 8 1 2 26 4 0 1 44 7 + 0 0 21 5 0 0 26 7 +56.41 93.35 1.73 0.933 + 135 47 0 0 25 22 0 1 77 14 0 1 135 14 0 0 135 17 0 4 + 56 3 0 0 69 6 0 8 61 2 0 0 135 32 0 1 52 84 4 7 + 95 23 0 9 135 21 5 5 135 32 0 5 75 6 5 13 97 9 0 9 + 79 0 0 0 42 8 25 20 40 79 17 22 31 9 49 12 67 69 41 24 + 80 12 51 22 28 17 43 60 89 4 14 21 44 0 0 29 0 2 25 21 + 10 61 36 4 1 4 48 15 13 24 19 16 16 3 45 24 22 6 10 44 + 44 2 11 6 0 0 0 110 +56.41 93.35 1.73 -2.138 + 0 0 0 113 34 2 8 4 17 5 8 70 17 4 49 19 17 17 19 12 + 1 5 43 16 14 75 28 3 0 2 22 13 39 0 0 36 92 2 10 20 + 29 12 37 60 80 10 54 23 59 68 43 25 23 9 54 12 37 58 17 24 + 29 8 37 22 70 0 0 3 101 3 0 17 69 4 5 15 137 9 0 11 + 137 17 6 8 100 12 0 26 64 75 6 13 137 16 0 3 61 1 0 3 + 69 2 0 13 59 0 0 7 137 2 0 6 137 0 0 1 83 9 0 10 + 25 28 0 2 137 25 0 1 +55.45 67.19 1.47 1.929 + 42 10 33 51 6 13 4 58 7 55 36 14 12 23 2 0 5 53 0 0 + 4 34 1 0 2 52 1 0 8 28 0 0 20 27 79 133 2 0 0 18 + 133 133 70 30 1 6 3 20 35 48 20 4 10 32 5 3 9 39 0 0 + 9 40 0 0 78 5 16 133 5 2 0 59 133 33 83 67 0 0 0 83 + 78 97 130 41 5 5 2 32 26 47 2 0 4 21 5 10 59 24 8 6 + 13 4 1 34 32 18 43 52 0 0 21 133 59 15 16 34 0 0 32 133 + 20 13 35 27 15 22 4 31 +55.04 273.35 1.71 0.806 + 2 2 0 0 41 47 13 7 64 22 1 3 49 28 0 2 145 25 0 0 + 0 0 0 37 31 1 1 13 43 13 0 16 6 8 1 7 61 25 5 4 + 65 16 0 20 119 36 0 3 145 51 8 17 4 1 0 11 38 6 12 141 + 24 7 0 27 7 2 0 7 73 19 5 4 57 5 0 12 137 29 1 20 + 145 49 42 29 3 1 0 77 9 5 23 73 0 0 4 145 1 1 1 9 + 45 9 1 0 19 2 0 3 95 15 8 82 38 13 4 0 1 0 4 145 + 1 0 1 0 0 0 3 140 +46.63 247.81 1.70 2.074 + 3 0 5 60 5 0 0 2 49 0 0 9 2 0 0 131 37 0 0 0 + 4 17 25 131 7 0 0 0 1 23 60 68 27 3 0 17 7 9 0 3 + 131 30 3 2 1 0 1 131 78 10 7 29 51 11 14 113 76 0 0 3 + 17 8 13 90 14 7 0 0 40 37 1 0 131 131 15 2 4 0 0 4 + 113 131 38 28 10 0 0 15 106 29 15 21 15 0 0 21 0 1 0 13 + 60 7 6 1 16 86 1 0 5 1 23 9 37 131 21 0 0 1 10 3 + 12 123 62 16 1 0 0 0 +45.10 76.01 1.76 -2.240 + 75 9 0 0 77 8 0 0 87 7 0 0 140 27 0 0 140 17 0 0 + 72 24 0 1 10 1 0 0 140 64 11 6 98 12 0 2 90 9 0 0 + 84 8 0 1 140 63 8 6 140 39 0 0 71 21 7 20 45 6 0 0 + 140 64 10 14 71 14 1 0 54 47 6 4 35 12 7 4 70 97 64 20 + 96 15 16 2 14 21 60 82 17 3 14 7 40 64 34 20 5 4 3 4 + 15 43 24 4 3 5 24 4 1 3 45 6 1 5 28 1 0 0 40 9 + 0 0 25 5 0 0 27 6 +43.10 81.46 1.56 1.013 + 4 8 38 54 42 7 7 0 37 67 49 12 10 6 6 3 30 32 11 9 + 63 13 3 0 57 38 1 0 2 0 0 0 33 7 11 32 143 3 0 0 + 143 43 13 9 44 0 0 11 79 8 0 10 131 2 0 8 121 9 0 0 + 4 0 0 7 43 3 0 22 143 0 0 0 143 7 0 5 52 0 0 9 + 88 2 0 8 122 1 0 9 113 1 0 0 2 0 0 12 40 2 0 12 + 143 0 0 2 143 0 0 2 40 1 0 19 70 1 0 6 92 3 0 5 + 88 2 0 0 1 0 0 3 +39.70 89.12 1.48 0.979 + 117 15 0 5 134 4 0 7 137 15 0 2 58 1 0 12 80 8 0 0 + 0 0 0 2 0 1 0 1 1 0 0 0 137 10 0 6 137 3 0 4 + 137 4 0 2 65 2 0 22 94 6 1 0 0 0 0 4 1 2 1 0 + 0 0 0 0 137 1 0 5 137 11 0 9 137 11 0 2 64 3 0 6 + 91 10 0 0 0 0 0 2 2 2 3 1 0 0 0 0 137 8 0 26 + 115 1 0 1 137 5 0 10 43 0 0 6 69 1 0 0 0 0 0 5 + 0 0 4 2 1 0 0 0 +38.56 303.19 1.52 1.750 + 23 83 52 8 0 0 0 0 1 35 42 6 0 0 0 0 1 7 23 17 + 0 0 0 0 0 11 48 8 0 0 0 0 84 74 106 91 25 10 6 14 + 117 117 89 37 12 2 2 20 25 20 74 117 49 1 1 8 8 55 117 40 + 12 11 9 12 17 4 4 16 23 82 117 42 117 13 2 9 31 22 59 117 + 37 12 6 46 117 106 13 16 24 25 25 37 39 36 50 16 0 19 70 0 + 0 13 34 4 2 22 69 0 2 6 18 23 0 16 39 0 10 79 33 1 + 0 7 17 2 1 38 117 10 +37.83 189.37 1.53 0.794 + 39 1 6 28 13 4 0 2 177 5 0 1 0 0 0 38 100 10 1 1 + 2 5 3 16 1 3 1 5 49 31 4 0 44 1 0 0 18 33 0 2 + 177 18 0 0 0 2 1 10 111 12 2 0 0 6 14 21 1 3 1 2 + 13 24 40 23 29 0 0 0 35 68 2 6 177 19 0 0 0 2 1 17 + 151 26 5 0 0 1 4 36 33 2 0 0 4 13 28 64 15 0 0 1 + 93 79 4 7 177 3 0 0 1 6 6 92 113 3 0 0 0 14 81 98 + 56 9 0 0 3 22 27 19 +33.67 225.69 1.69 -0.980 + 32 27 28 68 11 2 2 13 103 7 24 75 6 0 0 62 86 0 0 23 + 20 2 5 121 8 14 6 38 58 9 5 7 21 12 31 79 37 6 5 2 + 122 39 30 15 0 0 0 52 90 13 50 104 20 0 0 26 0 4 34 83 + 45 0 0 0 24 6 5 59 10 0 4 11 121 115 63 4 0 0 6 34 + 14 33 122 68 0 0 30 47 1 9 51 29 1 15 47 19 1 0 0 1 + 0 4 48 61 5 6 2 0 0 0 57 122 1 2 3 0 0 0 122 122 + 1 0 0 0 0 22 122 47 +29.83 255.22 1.72 -2.707 + 4 14 38 5 4 5 1 1 6 8 13 46 16 0 0 4 40 0 0 19 + 31 2 4 128 39 1 0 0 0 2 51 128 2 2 14 26 6 4 0 1 + 54 11 11 78 8 0 0 11 128 33 1 6 1 0 0 126 69 62 17 0 + 0 0 12 54 0 1 8 37 12 57 31 0 88 13 6 40 7 13 7 11 + 128 111 11 0 0 0 0 13 18 95 41 5 3 0 0 0 0 0 0 0 + 2 128 128 0 18 12 0 0 1 128 128 3 22 107 39 0 0 53 46 0 + 0 81 108 2 0 4 4 0 +215.95 3.11 1.39 1.144 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 12 0 0 0 0 + 0 0 54 72 0 0 0 0 0 0 113 125 11 0 0 0 0 0 0 5 + 136 6 0 0 0 0 15 136 29 3 0 0 0 0 129 136 0 0 3 0 + 0 0 82 96 21 6 0 0 0 0 0 1 136 136 0 0 0 0 0 43 + 116 107 3 0 0 0 3 30 1 4 7 0 0 0 0 1 2 1 0 0 + 0 0 0 0 123 126 0 0 0 0 0 0 136 136 0 0 0 0 0 0 + 11 12 0 0 0 0 0 0 +201.56 228.00 1.39 -1.663 + 0 0 0 0 25 156 5 0 105 19 0 0 10 65 2 0 156 43 0 0 + 2 1 0 0 18 1 0 0 47 12 0 0 6 0 0 0 85 106 0 0 + 88 9 0 0 112 108 3 2 156 45 0 0 5 7 1 3 31 3 0 0 + 56 10 0 0 10 1 0 1 97 29 4 3 36 1 0 0 80 119 51 8 + 156 32 0 0 11 31 9 11 44 5 0 0 54 9 0 0 3 4 2 17 + 53 3 1 3 12 12 5 31 71 20 11 3 156 39 0 14 40 8 0 1 + 49 6 0 0 35 7 0 0 +198.62 272.94 1.38 2.041 + 20 0 0 57 33 0 0 18 32 0 0 123 109 0 0 24 50 0 2 37 + 26 0 0 57 6 46 29 25 14 0 0 2 7 1 0 123 117 0 0 6 + 123 11 2 123 70 0 0 32 48 2 1 47 50 7 2 21 2 24 7 23 + 29 24 11 0 8 3 1 123 123 97 20 1 123 66 6 36 23 40 25 5 + 30 40 11 19 15 8 6 9 2 2 1 2 11 38 29 7 1 1 0 0 + 17 123 53 0 11 26 3 0 0 123 123 2 4 75 27 1 0 89 57 1 + 4 45 18 1 1 11 12 5 +196.10 210.99 1.31 2.463 + 0 0 49 133 1 1 3 4 5 0 36 133 7 11 17 20 37 0 6 42 + 1 0 9 133 37 1 1 0 0 0 4 133 11 1 31 133 6 7 25 66 + 24 4 1 15 61 62 38 25 133 36 0 0 5 5 7 63 69 45 45 6 + 0 0 0 37 10 1 0 3 10 22 50 61 5 0 0 0 24 53 133 44 + 37 7 5 16 17 16 93 88 12 12 70 94 6 0 1 11 0 0 0 1 + 6 8 66 57 0 0 0 4 8 8 69 31 0 0 2 44 132 14 27 2 + 0 0 36 85 72 0 0 0 +196.10 210.99 1.31 1.067 + 44 121 3 0 4 6 0 0 3 107 68 29 14 0 0 0 1 12 26 28 + 81 39 0 0 0 0 0 1 90 72 14 0 29 97 11 0 45 87 2 2 + 11 86 121 7 0 0 11 7 88 77 49 5 9 13 10 18 20 2 0 0 + 13 94 103 11 18 7 1 0 118 121 6 15 38 22 14 1 4 13 80 50 + 121 26 3 0 0 0 27 71 55 8 0 0 1 13 16 18 5 5 0 0 + 121 121 0 0 39 68 6 1 48 76 5 7 76 42 4 0 0 1 13 21 + 70 24 0 0 1 3 5 6 +195.51 265.49 1.20 3.025 + 0 4 119 17 0 0 102 65 0 1 119 21 0 2 119 40 4 1 87 13 + 0 3 119 52 1 0 39 6 0 15 119 28 0 2 86 34 3 0 48 37 + 11 20 119 46 0 2 38 13 119 42 31 4 0 4 27 48 15 0 0 0 + 0 62 39 26 0 1 34 44 79 15 5 1 89 20 55 27 15 3 0 32 + 119 100 5 0 0 2 4 37 40 56 8 1 4 49 19 9 1 0 1 9 + 65 43 2 1 85 30 2 1 27 19 2 23 49 95 15 0 0 7 3 9 + 12 119 49 1 1 1 0 0 +193.12 187.22 1.13 -1.777 + 128 61 0 0 0 0 0 0 71 59 2 0 0 11 11 11 9 4 0 4 + 21 100 19 1 4 0 0 1 128 115 5 0 128 85 0 0 0 0 0 4 + 128 49 4 7 1 0 0 42 26 4 3 80 43 11 1 5 0 0 0 20 + 128 56 1 0 128 74 0 0 0 0 0 6 127 109 23 12 0 0 0 6 + 18 12 23 45 16 3 7 5 1 0 0 14 128 23 7 2 128 19 0 0 + 0 0 0 15 93 78 4 0 0 0 0 5 34 29 20 6 4 0 0 2 + 1 2 9 24 101 4 0 0 +191.97 160.39 1.30 1.721 + 26 0 0 9 49 7 2 10 144 3 0 0 0 0 0 80 133 45 10 0 + 0 0 1 35 86 27 3 5 17 17 7 36 42 4 0 4 35 15 5 7 + 144 20 0 0 1 0 0 32 144 24 4 2 8 0 1 17 137 57 15 34 + 17 4 1 12 37 2 0 2 13 24 17 32 144 44 4 0 0 1 3 63 + 80 85 29 0 2 0 2 20 37 69 50 16 3 1 13 9 50 6 0 0 + 0 3 6 30 112 13 0 0 0 0 3 113 33 13 1 0 0 0 57 144 + 3 4 5 0 0 13 122 54 +188.56 244.90 1.36 1.980 + 18 0 0 0 0 67 48 21 144 0 0 0 0 7 12 106 144 0 0 0 + 0 0 1 114 13 0 0 0 0 0 3 78 16 0 0 0 0 65 51 28 + 144 7 0 0 0 8 13 119 144 50 0 0 0 0 0 28 33 23 2 3 + 0 0 0 7 24 9 5 8 3 19 16 12 144 77 4 1 0 2 4 30 + 72 144 6 0 0 0 0 1 15 94 47 30 1 0 0 0 6 1 1 2 + 1 3 81 22 44 27 13 14 16 4 27 20 86 116 19 17 4 0 0 1 + 19 46 66 46 5 0 0 1 +187.17 192.59 1.22 -1.569 + 25 3 0 0 0 0 0 5 166 10 0 0 0 0 0 7 166 15 0 0 + 0 0 0 32 88 6 1 1 4 4 1 34 10 2 0 0 0 0 16 21 + 154 29 0 0 0 0 3 19 166 40 0 0 0 0 0 26 101 12 2 2 + 3 11 10 34 5 3 2 0 0 0 9 11 148 9 3 0 0 0 1 21 + 166 26 0 0 0 0 0 46 117 46 0 3 1 9 3 38 2 1 3 9 + 8 3 3 1 131 10 4 2 0 0 0 19 166 20 0 0 0 0 0 30 + 80 19 13 20 1 0 0 38 +185.72 223.58 1.24 -0.214 + 49 2 0 0 0 0 10 111 104 52 0 0 0 0 13 111 92 27 0 0 + 0 0 20 108 72 8 0 0 0 0 19 111 111 4 0 0 0 0 20 107 + 94 26 0 0 0 0 21 111 111 43 1 0 0 0 5 111 82 52 26 2 + 0 0 0 32 30 3 0 0 0 30 111 111 111 37 0 0 0 26 70 42 + 74 54 9 1 1 4 8 31 21 44 95 12 0 0 3 2 5 2 1 0 + 0 14 48 42 14 5 4 0 0 25 98 53 9 4 12 2 3 43 49 37 + 0 2 21 9 1 8 48 15 +184.38 266.94 1.22 1.757 + 1 8 113 113 5 0 2 5 1 1 19 113 34 5 10 6 2 34 6 17 + 35 20 22 5 64 113 10 6 11 1 0 0 6 62 107 48 3 1 6 10 + 84 26 31 41 12 5 12 23 13 2 1 47 113 30 17 13 56 104 13 28 + 46 2 5 13 8 20 38 6 0 25 113 28 113 19 10 10 14 10 52 69 + 21 3 0 51 113 58 76 11 9 9 9 40 48 70 58 11 4 3 4 0 + 0 13 51 37 14 5 4 0 1 5 72 82 2 1 16 4 5 34 113 54 + 0 0 6 10 97 113 63 1 +184.38 266.94 1.22 -1.631 + 31 57 57 22 0 0 36 46 0 4 57 114 11 4 22 10 0 2 58 101 + 27 3 2 0 2 10 78 56 5 0 0 0 37 116 123 20 3 2 1 10 + 103 52 108 43 25 10 0 10 13 3 44 62 123 60 13 14 1 2 77 36 + 7 29 82 36 53 9 9 22 18 72 32 26 123 49 15 12 12 7 2 18 + 25 12 13 25 68 43 14 32 20 1 1 10 6 21 77 101 9 0 0 1 + 38 123 27 4 53 29 11 4 2 57 24 9 59 14 21 16 1 2 2 57 + 59 1 0 1 0 0 25 123 +179.55 302.49 1.41 -1.495 + 4 41 43 7 0 2 12 0 6 17 27 19 3 8 25 0 4 6 23 19 + 5 7 40 0 0 17 46 6 0 5 47 0 22 122 81 35 14 17 12 3 + 122 82 67 75 26 1 0 4 54 12 43 115 122 23 2 5 2 60 122 42 + 16 10 9 7 5 40 24 5 17 122 122 15 122 35 29 9 9 54 83 106 + 55 0 0 7 87 122 53 18 1 2 5 5 12 70 122 38 0 0 0 0 + 1 32 64 8 9 0 0 1 5 20 66 42 4 0 0 0 2 14 15 8 + 0 0 0 0 1 11 37 5 +179.29 223.43 1.16 -0.870 + 54 3 0 0 0 3 1 13 127 17 0 0 0 0 0 48 127 21 0 0 + 0 0 0 75 127 24 0 0 0 0 0 60 81 13 0 1 13 5 0 7 + 127 25 2 0 0 0 0 78 127 50 17 0 0 0 0 86 125 80 3 0 + 0 0 0 15 73 8 0 3 13 1 0 7 127 86 12 0 0 0 0 21 + 101 104 48 0 0 0 0 23 105 88 16 0 0 0 0 11 47 12 0 1 + 3 0 0 5 127 66 0 0 0 0 0 30 83 63 5 0 0 0 1 30 + 37 79 13 0 0 0 1 9 +176.52 166.72 1.24 0.930 + 0 0 0 0 12 75 9 0 6 0 0 0 17 47 5 17 49 0 0 0 + 1 2 4 131 23 0 0 2 20 10 28 131 0 0 0 0 18 107 31 0 + 60 1 0 0 54 112 20 19 131 26 0 0 4 5 5 131 26 7 0 1 + 22 15 22 46 1 0 0 1 8 32 106 34 20 0 0 0 17 131 131 14 + 131 117 0 0 12 52 47 22 56 110 0 0 1 1 10 11 7 0 0 3 + 5 2 18 36 0 0 0 18 37 37 24 0 19 36 4 40 90 35 6 0 + 82 120 4 2 3 0 0 0 +170.96 244.32 1.09 -0.881 + 134 47 0 0 0 0 0 5 134 41 0 0 0 10 28 25 11 5 1 7 + 59 38 76 16 2 22 21 35 101 40 11 1 134 25 0 0 0 0 0 24 + 134 67 0 2 2 0 1 30 41 13 2 34 95 17 6 4 1 1 1 5 + 52 83 67 5 134 6 0 0 0 0 0 34 134 15 2 0 1 0 0 46 + 35 12 10 41 55 15 1 3 3 7 54 35 13 10 14 11 134 16 0 0 + 0 0 0 10 134 36 26 22 0 0 0 13 14 7 60 109 7 0 0 29 + 7 4 14 32 4 0 32 123 +170.76 214.49 1.31 2.064 + 13 0 1 4 3 0 0 9 89 7 0 0 0 0 0 56 97 12 4 0 + 0 2 20 76 13 37 15 4 8 20 37 16 28 2 0 0 12 4 0 8 + 83 64 6 0 0 2 8 12 138 79 1 0 0 2 18 46 56 2 3 3 + 13 118 78 40 47 13 0 0 33 17 2 13 58 32 8 0 0 4 57 54 + 138 33 1 0 0 0 13 108 138 6 0 0 1 40 41 88 14 20 4 2 + 69 22 0 0 30 95 37 0 0 0 2 4 138 138 4 0 0 0 0 12 + 138 109 0 0 0 0 2 25 +167.16 93.28 1.47 -1.016 + 3 5 71 17 2 8 47 5 13 39 36 16 9 8 107 29 55 73 13 0 + 7 17 89 30 39 13 0 0 0 1 1 4 13 7 88 24 37 45 36 27 + 145 77 52 6 20 10 24 31 104 9 0 0 85 23 26 15 56 1 0 0 + 4 1 0 2 72 3 0 1 145 35 11 26 145 7 0 1 69 6 0 10 + 120 2 0 0 100 14 0 5 50 2 0 0 6 2 0 1 51 34 10 27 + 145 1 0 0 145 9 0 5 57 0 0 0 96 2 0 0 79 6 0 1 + 37 1 0 0 6 1 0 1 +165.79 79.27 1.26 2.064 + 37 3 0 1 123 26 0 3 100 15 2 5 42 37 9 15 84 55 1 5 + 67 34 1 8 117 45 0 0 0 0 0 5 18 14 0 1 123 20 0 0 + 55 75 40 36 31 3 3 4 113 18 12 34 41 4 3 59 123 15 0 3 + 5 0 0 46 12 2 0 0 123 21 0 4 69 11 8 3 20 30 36 59 + 56 93 4 2 24 69 22 12 62 123 4 11 13 0 0 4 19 1 0 0 + 123 22 0 0 123 9 0 0 28 19 5 15 27 16 0 0 123 76 3 4 + 58 91 5 12 25 3 0 0 +164.81 97.10 1.19 -2.524 + 0 0 12 30 3 1 0 0 2 13 82 19 0 0 0 1 0 6 77 0 + 0 0 2 0 0 5 49 0 0 0 1 1 7 4 30 137 31 0 0 0 + 137 48 78 67 6 0 13 38 20 14 70 2 0 5 107 26 0 8 49 0 + 0 1 99 9 17 1 19 107 32 22 19 10 137 43 33 51 23 10 6 17 + 18 55 137 85 22 0 17 5 0 44 137 0 0 0 22 2 13 2 0 2 + 56 24 17 26 85 14 2 19 95 12 1 7 10 10 49 39 104 15 42 32 + 2 11 94 0 0 7 137 19 +163.91 150.30 1.28 -3.074 + 64 0 0 0 0 0 0 27 129 1 0 0 0 0 0 38 129 20 0 0 + 0 0 0 13 25 13 5 3 21 9 2 11 108 3 0 0 0 0 0 8 + 129 3 0 0 0 0 0 28 107 13 30 24 0 0 3 44 11 19 90 39 + 11 4 42 23 111 7 0 0 0 0 0 1 129 29 0 0 0 0 0 6 + 87 20 12 19 1 0 11 128 13 1 12 7 0 4 120 129 87 2 0 0 + 3 2 0 5 129 16 0 0 0 0 0 14 129 8 12 23 1 0 0 107 + 22 5 129 61 1 0 2 31 +164.00 83.74 1.35 2.089 + 10 9 0 1 131 10 0 1 33 48 30 24 23 4 8 10 98 27 8 19 + 18 4 3 50 75 17 0 8 14 0 0 28 21 1 0 0 131 13 0 4 + 104 4 2 1 29 43 32 58 50 106 2 1 50 77 15 8 56 131 7 29 + 30 0 0 1 30 1 0 0 131 20 0 0 131 11 0 1 53 19 2 9 + 42 19 0 4 131 52 1 3 79 72 7 31 34 1 0 3 16 3 0 4 + 131 9 0 0 127 46 12 16 36 2 3 2 22 9 9 53 119 2 8 23 + 37 2 0 17 34 6 4 32 +164.00 83.74 1.35 -0.737 + 10 0 2 26 41 7 6 54 70 0 9 41 19 0 4 83 24 2 9 22 + 89 27 26 60 71 15 12 8 37 6 0 46 11 0 0 3 117 61 10 43 + 117 12 1 13 48 13 0 52 54 4 1 96 117 0 0 20 117 0 0 15 + 28 0 0 81 4 0 0 44 117 60 1 7 78 66 21 35 60 27 3 2 + 58 18 20 103 78 0 0 25 117 0 0 7 12 0 0 89 10 0 1 115 + 67 1 0 12 14 8 7 29 38 28 36 38 83 2 5 18 27 21 5 48 + 112 0 0 7 15 0 0 59 +160.90 88.43 1.28 2.271 + 11 0 0 35 126 0 0 2 126 0 0 9 58 5 4 54 45 9 0 4 + 126 58 9 25 92 91 2 6 31 4 0 0 17 0 0 54 126 0 0 2 + 126 11 3 15 47 0 0 40 55 4 3 75 126 3 0 12 96 22 3 25 + 50 0 0 22 11 2 3 47 126 41 24 2 93 57 28 26 14 10 57 11 + 12 13 26 107 58 5 56 46 23 0 0 34 35 14 17 67 1 6 67 11 + 17 31 29 4 1 17 42 2 0 10 92 6 3 26 45 4 2 10 82 38 + 3 11 26 6 15 65 42 18 +160.90 88.43 1.28 -1.258 + 4 10 16 30 8 5 78 24 1 3 45 55 2 4 58 13 9 22 79 39 + 2 4 28 24 69 65 22 1 5 6 24 23 22 37 55 83 18 1 11 6 + 72 5 38 90 11 19 26 59 36 14 25 21 64 107 27 18 119 78 5 1 + 11 9 0 0 56 6 1 21 74 14 1 9 119 58 0 9 34 15 3 20 + 50 21 0 0 119 103 4 6 119 86 0 0 42 17 0 0 43 0 0 0 + 34 91 11 26 87 91 1 0 17 73 5 0 31 79 20 17 114 32 0 0 + 91 44 1 6 63 15 0 0 +158.33 55.95 1.29 0.420 + 0 0 0 9 73 0 0 0 92 0 0 7 76 0 0 14 78 1 0 18 + 104 0 0 5 110 1 0 1 5 28 8 7 2 0 0 9 101 0 0 0 + 111 0 0 5 92 1 0 10 109 1 0 9 111 3 0 5 111 4 17 30 + 4 0 0 5 3 0 0 6 100 2 0 0 111 2 0 4 87 2 0 3 + 99 6 0 12 111 3 0 2 83 10 26 111 85 32 3 2 2 0 0 8 + 81 0 0 0 100 13 0 5 70 1 0 0 85 8 0 6 111 7 0 2 + 80 5 0 6 43 91 37 6 +158.33 55.95 1.29 -2.751 + 26 76 38 5 86 8 0 1 110 10 0 1 80 11 0 3 69 2 0 0 + 94 18 0 4 81 1 0 0 2 0 0 5 102 50 8 1 75 11 19 110 + 110 5 0 0 95 9 0 8 85 4 0 1 110 5 0 2 99 5 0 0 + 4 0 0 3 4 0 0 1 110 7 23 52 110 7 0 2 110 2 0 4 + 89 2 0 5 110 1 0 2 107 1 0 0 4 0 0 6 2 20 9 3 + 105 2 0 0 106 0 0 2 84 2 0 13 72 1 0 10 99 0 0 4 + 82 0 0 0 2 0 0 6 +158.05 78.96 1.31 2.668 + 16 5 4 5 46 39 26 43 105 8 6 6 12 6 18 110 30 0 2 16 + 0 0 15 130 6 0 12 130 0 0 0 10 29 3 0 92 130 8 3 27 + 130 25 8 22 20 0 0 23 56 9 34 130 0 0 1 16 0 0 17 130 + 11 7 5 3 24 0 3 118 41 0 7 51 130 18 48 83 1 0 0 54 + 24 7 47 130 7 1 10 63 5 0 2 56 54 10 16 33 2 0 6 43 + 17 14 37 42 18 7 21 70 3 10 33 37 43 34 34 43 14 14 13 33 + 29 1 9 57 33 1 1 51 +158.05 78.96 1.31 -1.399 + 15 15 36 56 58 15 7 3 80 9 0 10 53 26 3 9 88 69 0 3 + 45 35 1 1 56 79 2 1 53 48 0 0 47 19 12 11 27 42 36 31 + 128 3 0 1 28 75 22 35 35 31 0 0 13 128 50 10 20 127 33 9 + 17 52 18 0 41 80 7 9 44 14 0 1 128 24 2 6 36 11 5 9 + 79 5 0 0 36 128 41 8 7 7 8 7 107 112 19 5 11 29 10 4 + 32 45 0 0 128 38 9 4 3 0 0 0 96 9 0 0 50 20 0 0 + 8 6 0 5 128 72 0 0 +156.84 233.31 1.34 0.690 + 3 2 56 135 0 0 0 0 135 9 12 82 1 0 0 76 100 0 0 1 + 0 1 13 131 10 0 0 6 17 16 36 29 18 2 34 71 3 0 0 2 + 135 18 2 12 1 0 0 52 135 26 7 0 0 0 0 73 32 7 8 4 + 0 5 24 20 23 3 4 3 1 1 1 3 135 100 5 0 0 0 0 15 + 75 135 55 4 0 0 0 3 14 51 106 25 0 0 0 0 4 1 0 0 + 0 2 51 12 122 53 0 0 0 1 32 16 57 49 46 42 32 0 0 1 + 0 31 135 24 13 1 3 0 +155.57 97.39 1.38 0.699 + 78 56 3 11 26 15 23 63 58 78 8 52 99 5 10 28 49 116 7 0 + 0 0 4 6 1 30 3 0 0 0 0 0 116 40 7 34 52 26 5 7 + 77 24 2 37 78 23 41 37 31 116 7 10 30 56 29 10 72 116 2 0 + 2 0 0 0 116 7 11 19 58 13 28 54 116 27 19 33 57 7 2 11 + 57 16 12 53 51 24 26 26 116 22 0 1 4 3 8 22 9 2 11 23 + 109 29 69 42 28 22 15 15 65 6 23 109 27 2 6 5 3 12 93 79 + 72 0 0 0 1 3 23 45 +153.35 82.38 1.37 -1.443 + 9 30 34 17 11 6 41 23 6 12 55 52 63 20 32 18 21 34 74 73 + 31 2 16 12 67 13 9 62 20 10 12 26 52 116 64 16 18 18 1 2 + 27 33 55 88 116 37 4 2 99 23 6 18 80 30 3 6 102 87 0 5 + 45 31 1 3 30 38 26 2 46 88 1 12 58 26 34 31 25 46 50 43 + 116 8 0 3 28 82 27 29 31 38 0 0 11 116 45 8 16 10 0 0 + 82 116 1 2 48 88 7 6 44 27 2 5 116 30 3 5 38 15 5 6 + 60 7 0 0 19 96 35 6 +152.48 86.96 1.18 1.751 + 38 110 9 6 29 22 0 0 25 45 13 27 113 5 0 6 22 34 39 24 + 23 11 46 58 14 19 2 13 25 67 50 6 78 10 0 5 96 40 1 22 + 80 13 0 5 113 30 15 26 113 44 0 1 18 18 45 94 26 9 1 1 + 76 113 55 13 26 1 8 22 45 7 24 113 20 2 30 19 21 63 113 76 + 80 20 48 21 3 11 78 77 20 12 73 28 12 35 27 14 5 3 54 26 + 1 4 20 58 25 7 100 61 5 12 12 39 25 4 39 18 0 0 56 97 + 0 0 15 3 0 0 87 54 +152.48 86.96 1.18 0.271 + 41 6 15 13 7 23 29 54 57 16 26 5 0 0 93 112 24 7 22 11 + 66 19 27 53 100 36 0 1 25 3 0 0 36 49 20 45 36 24 29 8 + 50 104 112 25 0 3 21 18 74 76 92 18 50 13 4 12 83 77 12 4 + 42 12 0 0 0 5 37 46 10 39 104 1 16 34 75 7 0 13 112 27 + 112 63 12 2 41 18 21 75 11 56 26 9 105 40 5 11 0 0 50 74 + 3 2 48 29 3 40 65 3 0 12 112 25 41 112 13 2 15 20 25 6 + 22 36 3 3 68 23 4 8 +152.10 22.63 1.28 -2.958 + 15 14 16 52 88 10 34 41 30 36 27 40 66 66 87 42 101 53 7 12 + 19 10 7 37 87 0 0 3 3 0 0 32 15 37 59 48 105 35 1 6 + 105 53 51 35 39 14 41 86 72 3 1 10 60 16 38 85 104 0 0 0 + 2 0 0 37 26 12 41 78 75 26 6 26 105 78 15 10 11 6 26 91 + 100 21 8 37 50 4 5 32 88 1 0 0 0 0 0 25 80 8 13 46 + 28 5 4 67 105 3 0 8 44 8 27 105 92 0 0 10 55 6 5 32 + 49 1 0 0 0 0 0 13 +149.30 84.21 1.30 1.786 + 26 43 12 27 112 0 0 1 48 39 27 26 70 37 4 5 84 92 2 16 + 54 18 1 0 70 96 19 31 31 2 0 0 43 40 8 22 99 4 0 9 + 49 32 30 22 31 26 74 85 36 42 2 12 51 112 67 10 88 112 2 4 + 47 18 4 8 52 5 0 4 62 37 44 42 112 36 8 2 21 24 48 80 + 27 11 19 11 85 112 65 13 39 25 18 6 9 29 77 77 7 3 56 29 + 2 21 52 41 22 7 60 22 0 5 59 53 5 4 59 21 3 12 70 32 + 0 0 23 11 0 3 96 22 +149.30 84.21 1.30 -0.725 + 21 45 56 33 21 23 7 7 25 85 55 7 2 26 33 3 7 60 66 1 + 3 46 31 2 0 41 85 25 2 13 10 0 32 12 18 51 115 3 1 28 + 115 94 26 18 22 3 4 59 41 27 47 115 53 38 19 14 14 79 56 23 + 5 44 46 2 15 5 0 64 115 2 6 24 80 115 55 20 16 18 27 38 + 20 34 84 115 50 7 2 44 42 58 47 56 7 1 2 49 53 1 0 39 + 86 0 4 37 40 5 7 38 52 36 30 61 14 0 8 19 51 22 15 115 + 33 0 3 59 49 3 2 42 +145.01 83.47 1.38 2.231 + 26 23 9 43 22 7 25 32 32 22 30 57 38 41 22 10 122 7 5 21 + 14 2 0 14 64 47 50 30 6 1 0 2 85 3 2 10 25 29 54 108 + 37 2 1 17 122 121 39 20 122 21 2 29 54 13 10 16 99 74 20 66 + 70 1 0 0 18 38 51 3 11 19 58 28 8 17 48 13 75 94 69 9 + 54 27 20 7 30 55 94 64 24 46 16 14 49 111 53 2 0 2 4 0 + 0 24 85 2 0 5 17 1 0 57 104 0 1 30 32 0 0 62 84 2 + 0 30 38 0 0 62 54 0 +145.01 83.47 1.38 -0.765 + 2 104 44 0 1 36 24 0 1 82 50 3 1 54 25 0 0 94 71 0 + 0 10 13 0 0 39 55 1 0 1 1 0 57 84 19 1 63 52 14 34 + 41 63 87 59 63 23 10 17 67 102 63 10 6 26 40 15 10 38 58 13 + 7 50 36 3 39 0 0 4 117 46 32 89 44 13 8 49 117 5 3 34 + 117 101 32 27 27 2 1 41 22 32 53 115 54 11 7 11 1 0 0 27 + 98 29 34 16 19 4 0 53 117 2 7 33 30 53 33 17 22 28 33 44 + 16 8 30 47 25 9 3 51 +144.62 221.95 1.17 -0.718 + 18 2 2 0 2 3 30 31 1 0 1 1 7 42 37 14 15 42 14 7 + 35 72 12 1 22 122 55 7 10 2 0 0 22 27 37 18 8 3 3 11 + 66 31 12 2 4 20 25 40 7 1 4 5 83 122 31 11 27 99 20 6 + 35 122 24 1 36 49 10 10 11 11 20 37 122 20 1 0 0 7 45 115 + 36 3 0 0 8 122 45 15 0 6 1 0 22 122 36 0 122 66 0 0 + 17 19 3 34 122 17 0 0 0 20 81 122 4 0 0 0 1 102 84 8 + 0 0 0 0 37 122 15 0 +144.62 221.95 1.17 -3.046 + 98 9 1 31 128 13 0 14 128 30 0 0 1 0 0 28 118 62 2 2 + 0 0 0 5 57 46 13 44 18 0 0 0 86 9 1 29 128 42 14 55 + 128 41 6 9 0 0 1 64 59 64 71 102 5 0 0 2 11 80 128 128 + 19 0 0 0 64 8 0 23 67 24 12 43 94 40 32 18 2 0 2 39 + 8 18 55 128 49 16 5 3 9 27 64 62 48 5 6 8 41 12 6 16 + 24 2 1 17 26 46 20 4 1 2 2 6 3 8 18 25 25 34 13 5 + 8 2 5 6 27 18 31 50 +141.33 57.97 1.19 2.394 + 0 1 53 46 3 30 17 0 0 26 79 19 12 31 4 0 14 8 19 71 + 28 33 14 15 48 13 12 11 1 1 14 69 9 3 101 115 7 2 12 33 + 8 100 115 12 19 38 23 17 89 115 27 0 7 33 38 13 26 16 26 4 + 4 54 38 11 115 8 1 34 21 8 11 68 51 11 3 0 115 113 29 50 + 115 33 13 18 16 16 10 75 29 13 78 68 3 36 13 5 115 63 0 1 + 18 7 0 2 69 32 0 0 38 77 31 17 32 4 17 90 32 32 29 39 + 2 17 58 103 8 9 30 5 +139.18 80.84 1.26 0.117 + 0 8 71 5 0 9 105 25 21 111 55 0 5 45 51 1 65 98 8 5 + 46 12 0 0 68 7 0 0 27 10 1 4 0 0 3 70 13 20 112 54 + 37 12 2 112 102 79 49 7 112 38 0 6 44 16 2 14 87 24 0 0 + 43 17 1 2 0 0 4 112 61 32 28 6 9 0 7 112 26 10 110 62 + 91 43 29 25 25 5 26 60 69 37 3 2 52 14 0 0 0 0 39 85 + 20 31 20 1 0 0 57 112 3 6 36 14 46 51 44 61 2 1 15 38 + 58 31 1 0 19 20 3 14 +138.75 113.42 1.31 0.019 + 7 7 18 10 30 40 9 6 102 14 8 4 25 11 6 28 65 8 0 2 + 109 15 0 6 25 3 0 0 134 32 0 1 7 9 29 14 11 25 7 4 + 134 19 4 3 37 8 2 33 76 23 1 6 134 12 0 3 41 14 0 1 + 134 42 0 0 9 7 21 18 24 31 10 4 134 29 5 0 24 8 3 18 + 79 10 0 0 134 41 0 2 63 9 0 0 134 64 0 1 6 5 8 10 + 28 39 24 8 122 22 4 1 9 11 12 24 52 15 0 1 134 27 0 2 + 56 25 0 1 134 42 0 0 +138.75 113.42 1.31 -2.967 + 140 5 0 2 38 4 0 2 140 3 0 4 67 9 0 11 45 5 4 35 + 110 8 1 2 11 38 20 14 22 8 9 5 140 9 0 4 49 1 0 8 + 140 6 0 10 84 2 0 11 47 3 2 41 140 11 2 2 18 23 8 8 + 21 10 19 18 140 0 0 1 50 3 0 34 140 1 0 11 83 7 0 33 + 30 6 2 58 131 7 5 7 13 23 5 4 7 11 28 9 140 2 0 8 + 30 0 0 17 98 2 0 22 61 3 0 9 12 13 8 42 71 13 12 5 + 44 32 5 3 3 11 23 9 +137.51 77.37 1.22 2.646 + 75 1 5 30 3 0 0 70 70 42 51 54 2 0 0 19 64 32 5 12 + 42 2 0 7 2 0 0 32 118 6 0 0 32 3 3 72 44 22 16 28 + 118 34 17 55 12 4 0 35 80 13 31 118 26 0 0 19 6 0 0 118 + 87 0 0 17 5 35 1 5 43 118 5 1 55 67 57 11 11 111 16 2 + 8 21 109 118 2 6 38 24 5 0 3 56 4 0 29 118 0 49 4 0 + 6 61 1 0 7 31 5 0 2 98 76 3 1 1 6 8 1 17 118 54 + 0 0 13 52 0 0 45 84 +137.51 77.37 1.22 -1.565 + 0 0 16 41 8 4 57 15 0 0 93 67 0 1 28 21 7 30 119 29 + 4 4 21 9 10 20 19 35 34 50 5 1 8 3 6 119 97 1 4 2 + 65 1 45 80 14 10 42 82 32 32 29 7 0 119 94 27 78 53 1 0 + 5 76 13 8 20 4 0 17 119 12 0 0 119 71 0 4 29 6 9 32 + 65 38 0 0 0 119 48 15 37 7 0 0 0 70 69 49 18 3 0 0 + 113 76 0 0 67 114 1 0 29 33 0 0 34 119 32 0 0 7 5 0 + 0 39 29 0 0 8 22 6 +135.61 113.18 1.28 -0.032 + 5 18 75 26 26 13 14 9 57 74 50 3 35 11 8 7 63 8 1 1 + 110 30 1 3 21 1 0 0 130 52 0 1 9 7 23 14 31 54 11 7 + 130 18 8 6 27 15 6 32 79 18 0 2 130 24 0 5 36 11 0 0 + 130 59 0 0 5 7 29 15 9 26 9 3 130 25 4 4 24 10 3 26 + 74 23 1 2 130 26 0 3 51 21 0 1 130 64 0 0 3 3 15 17 + 25 27 10 2 124 33 6 1 7 5 4 10 59 11 0 0 120 43 0 1 + 60 15 0 0 130 54 0 0 +135.03 26.89 1.33 -1.875 + 50 40 4 1 69 94 65 22 35 46 43 14 3 2 42 57 3 1 12 80 + 51 8 33 33 7 64 77 47 28 6 4 8 1 39 118 55 10 37 49 6 + 97 57 40 55 25 9 28 29 25 6 1 86 118 71 21 11 4 10 10 25 + 24 39 67 52 22 39 108 28 9 75 29 16 118 34 39 20 5 18 10 39 + 51 2 16 11 31 110 61 9 0 0 28 21 1 19 118 59 17 1 8 5 + 2 80 67 45 88 7 28 11 0 26 50 68 12 3 67 35 0 1 26 19 + 0 0 32 28 0 0 48 23 +132.69 132.31 1.20 1.556 + 2 2 0 0 0 6 9 1 0 0 1 3 2 2 19 8 0 1 3 1 + 1 10 19 2 0 3 5 0 0 2 10 4 16 1 0 0 49 120 40 11 + 114 6 0 0 5 32 93 108 9 2 0 0 5 120 120 41 0 0 0 0 + 35 52 63 42 24 18 5 1 99 120 5 4 120 73 10 1 29 57 10 27 + 27 107 19 2 11 120 42 9 0 5 1 2 120 89 34 8 2 78 74 24 + 42 25 0 0 25 22 68 43 27 20 2 7 6 120 81 26 3 4 1 0 + 1 34 59 53 97 18 0 0 +132.69 132.31 1.20 -0.532 + 24 18 8 4 0 0 5 31 65 37 11 0 0 0 30 119 51 6 0 32 + 88 26 35 93 0 0 0 20 119 55 11 0 24 35 9 0 3 5 0 3 + 119 85 26 4 1 0 0 60 79 14 23 111 117 8 1 30 6 2 14 41 + 63 69 21 15 10 5 0 1 1 2 1 1 101 119 62 17 0 1 1 8 + 45 37 119 119 9 0 0 59 58 3 18 35 27 15 15 119 0 0 0 0 + 0 0 2 2 6 11 10 3 1 2 1 4 107 28 17 9 0 0 0 119 + 50 10 21 41 23 2 0 85 +131.99 236.73 1.21 -0.813 + 118 93 30 0 0 0 1 31 42 113 32 1 8 47 12 14 75 86 12 0 + 3 19 9 12 18 60 28 3 5 0 1 13 118 77 27 2 0 3 15 20 + 118 96 15 1 4 8 15 61 38 33 14 6 52 40 23 22 35 87 35 2 + 5 2 13 20 118 118 0 0 0 1 10 16 118 118 9 3 2 0 5 28 + 62 47 23 18 30 11 13 26 30 9 3 6 2 2 34 51 80 52 0 0 + 0 5 33 13 118 113 2 0 0 0 1 3 118 70 7 6 2 0 0 7 + 22 34 11 23 10 3 0 4 +129.72 75.75 1.49 1.578 + 23 107 13 0 6 39 4 0 48 100 2 1 99 21 0 0 82 25 0 0 + 114 27 0 0 100 29 0 1 69 8 0 0 37 21 1 3 105 98 1 0 + 114 58 0 1 76 17 0 2 79 18 0 0 114 43 0 0 114 44 0 0 + 38 23 0 0 25 18 27 53 92 12 13 37 114 2 2 3 48 14 3 79 + 28 6 4 4 114 63 56 18 97 35 13 1 5 11 30 41 2 3 23 18 + 1 1 68 56 16 5 63 18 2 5 20 58 1 1 58 22 5 20 58 19 + 3 2 44 9 0 0 60 20 +129.72 75.75 1.49 -1.433 + 0 2 49 21 15 7 49 2 14 31 63 9 1 0 60 9 5 6 23 54 + 10 7 67 7 0 1 76 37 1 2 28 11 15 10 22 25 125 22 1 0 + 125 39 35 13 37 2 0 12 44 7 5 108 123 0 0 9 67 3 27 38 + 13 26 32 61 40 5 0 1 125 8 0 0 125 8 0 2 70 6 0 3 + 59 6 0 13 125 34 0 3 125 74 0 1 18 15 2 10 31 0 0 0 + 125 10 0 4 125 6 0 0 46 10 0 3 46 3 0 0 90 115 1 2 + 21 82 5 0 16 52 5 0 +128.79 303.35 1.39 1.523 + 0 18 98 32 0 0 0 0 7 63 62 3 0 0 0 0 3 8 15 12 + 0 0 0 0 0 8 35 9 0 0 0 0 41 42 94 82 14 12 11 16 + 121 121 42 12 28 12 4 16 47 20 50 121 75 2 0 1 64 77 121 63 + 6 0 0 0 32 14 9 13 12 55 121 41 121 11 3 12 36 9 42 121 + 36 2 4 45 121 80 8 17 121 27 10 19 33 27 25 41 0 0 22 1 + 0 27 57 15 4 1 35 4 4 3 30 48 1 0 37 6 48 74 36 3 + 18 1 28 1 5 29 84 63 +128.79 303.35 1.39 -1.728 + 1 18 65 42 5 0 47 10 21 50 29 3 1 0 46 16 2 2 26 48 + 4 0 33 9 0 22 66 24 0 0 14 3 24 40 52 67 117 26 4 8 + 118 118 19 12 28 2 2 16 35 11 33 118 118 15 3 8 14 35 118 49 + 34 20 9 15 10 2 0 0 99 97 75 51 118 14 0 0 28 16 42 118 + 34 12 3 11 118 118 34 13 17 13 10 14 37 47 90 88 0 0 0 0 + 4 24 55 19 2 0 0 0 2 4 29 37 0 0 0 0 7 54 45 4 + 0 0 0 0 0 15 89 34 +128.57 137.47 1.24 2.642 + 38 97 17 14 2 0 1 2 61 40 14 35 11 3 29 80 48 1 0 38 + 101 34 48 97 0 1 0 25 119 54 13 0 26 46 8 1 2 0 0 0 + 119 80 20 7 2 0 0 64 64 10 28 119 119 21 2 33 0 0 19 89 + 75 61 18 0 18 7 0 1 2 0 1 2 104 119 64 24 0 0 0 6 + 10 27 117 119 8 1 7 9 0 0 31 75 3 0 42 58 1 1 0 0 + 0 0 1 4 9 14 9 2 0 0 1 9 36 11 10 13 1 1 39 102 + 6 2 20 33 0 1 87 119 +128.57 137.47 1.24 -1.524 + 0 0 0 3 6 10 10 2 0 0 0 0 5 6 22 6 0 3 0 0 + 1 11 19 1 0 2 0 0 0 0 11 3 18 3 1 8 90 45 17 6 + 112 6 0 0 2 24 104 101 9 1 0 0 6 129 129 35 6 3 0 1 + 4 23 105 45 44 3 0 18 129 4 0 2 129 69 15 2 3 8 9 23 + 34 91 24 2 24 129 34 11 25 27 3 13 107 81 29 13 23 4 8 37 + 75 1 0 1 93 60 54 28 1 0 0 2 16 129 87 31 10 11 1 0 + 8 37 47 64 129 18 0 0 +124.84 310.59 1.40 -0.107 + 21 8 50 11 0 3 49 62 6 14 25 5 30 3 0 7 37 6 0 0 + 101 12 0 0 30 5 0 0 118 27 0 0 5 22 118 63 16 14 12 8 + 103 118 82 5 21 3 5 26 53 18 0 1 118 14 0 2 45 9 0 0 + 118 21 0 0 3 3 15 7 15 71 118 51 80 13 3 0 14 5 94 118 + 46 3 0 0 118 28 1 13 55 5 0 0 118 21 0 2 5 55 118 27 + 1 11 46 9 22 79 22 0 9 3 19 8 18 3 0 0 104 18 0 0 + 47 4 0 0 81 15 0 1 +122.61 23.11 1.33 3.011 + 7 7 11 68 107 22 11 34 64 65 25 5 12 3 15 122 76 24 2 2 + 27 8 2 21 42 9 0 5 73 7 0 0 19 15 3 10 122 61 5 11 + 122 63 9 1 8 8 6 93 83 21 1 1 63 26 5 28 70 12 0 0 + 84 12 0 0 12 5 2 26 122 82 11 4 122 51 4 9 15 15 10 24 + 101 15 0 0 108 25 1 4 84 11 0 0 65 11 0 0 6 3 2 25 + 122 34 4 2 122 28 3 10 14 8 5 24 75 12 0 0 91 15 0 5 + 69 16 0 0 39 8 0 0 +120.79 183.94 1.32 0.592 + 37 6 7 3 4 18 69 57 40 15 0 0 1 17 118 54 0 0 0 3 + 28 50 98 17 0 1 1 10 9 25 41 3 38 25 6 7 31 70 22 12 + 118 56 3 1 2 17 31 64 16 5 2 14 41 118 80 21 0 1 1 27 + 59 95 13 0 12 1 6 12 29 118 37 13 118 101 43 12 10 23 18 33 + 15 49 80 118 35 25 7 5 0 0 10 118 54 22 0 0 0 0 4 11 + 41 61 20 0 1 39 65 32 58 73 10 0 0 27 110 97 16 7 3 0 + 0 0 13 118 29 0 0 0 +120.23 56.93 1.17 -2.104 + 38 62 0 0 30 63 0 0 70 120 30 15 5 7 0 0 1 11 85 51 + 34 62 0 0 0 9 27 12 41 89 1 0 14 12 0 0 93 120 0 0 + 120 56 7 5 14 32 8 15 31 7 48 22 20 120 42 12 0 6 44 13 + 15 50 56 50 6 56 15 8 108 94 0 0 120 12 0 3 49 42 4 25 + 117 3 2 7 1 92 62 20 0 0 3 22 11 58 111 35 3 51 29 18 + 22 15 49 12 101 1 6 12 20 6 17 104 62 4 26 62 1 2 1 18 + 0 10 28 58 6 6 2 0 +118.99 256.96 1.31 -2.628 + 7 2 3 0 2 38 33 21 94 6 5 6 1 4 33 124 18 2 27 124 + 9 6 29 118 0 0 46 113 1 1 49 97 29 22 58 23 7 11 15 11 + 124 54 24 7 2 5 25 62 26 10 34 49 13 23 124 56 1 0 42 37 + 1 1 101 124 31 6 5 7 7 34 82 40 124 69 45 1 1 5 36 67 + 14 43 124 21 0 2 23 12 0 14 112 49 3 2 3 1 30 66 8 2 + 0 0 12 10 3 20 63 17 3 5 12 12 27 41 44 3 1 10 21 14 + 6 16 9 4 8 22 35 5 +117.35 177.84 1.15 -0.768 + 9 0 0 10 153 24 0 1 153 4 0 0 40 6 0 23 44 1 0 0 + 0 7 28 39 7 0 0 0 0 5 28 97 10 0 0 12 153 10 0 0 + 153 12 1 1 64 3 0 27 83 17 26 4 0 0 9 50 34 52 50 6 + 0 2 9 45 7 0 0 6 153 9 0 0 153 54 10 0 71 3 0 7 + 30 45 91 18 1 1 4 8 6 51 91 19 2 2 9 14 2 0 0 17 + 153 15 0 1 96 7 1 1 45 6 4 36 28 7 5 5 4 5 31 39 + 24 4 1 2 2 4 38 66 +116.86 260.74 1.40 -2.663 + 4 4 7 18 13 28 7 1 15 2 2 0 3 66 58 38 98 6 6 13 + 1 4 44 125 9 1 22 125 8 4 26 111 41 22 19 19 3 2 1 3 + 50 31 74 32 9 16 23 18 125 63 29 13 4 6 37 67 13 8 36 52 + 11 16 125 66 96 35 5 2 2 6 9 13 52 13 9 11 10 44 107 55 + 125 77 61 3 1 6 41 71 8 30 125 25 0 3 19 11 55 115 4 0 + 0 0 0 1 38 119 12 3 0 0 13 12 5 25 75 26 5 4 11 12 + 37 44 38 5 2 8 21 13 +116.82 79.44 1.18 -0.567 + 4 90 83 3 10 8 4 2 21 71 7 1 25 53 0 0 48 105 0 0 + 1 11 0 0 6 15 0 0 0 2 5 0 19 69 14 15 34 47 74 9 + 118 99 1 2 11 49 7 5 36 102 0 0 19 92 4 3 13 116 1 0 + 1 2 0 0 31 5 9 118 48 15 11 24 118 17 1 17 8 11 2 89 + 34 16 6 18 54 118 3 12 11 118 1 0 13 54 0 0 21 0 5 43 + 0 0 2 118 73 0 3 67 5 0 0 118 6 33 62 118 16 12 0 3 + 9 66 15 1 5 63 1 0 +116.91 75.00 1.45 -0.965 + 14 9 83 53 1 6 4 21 4 67 75 5 2 33 15 4 10 80 21 0 + 0 42 27 2 0 58 40 0 0 19 7 0 14 2 22 54 7 4 33 114 + 30 61 19 34 80 41 50 37 114 88 3 11 15 32 16 6 6 21 30 27 + 16 67 26 0 36 0 0 81 39 0 2 114 58 2 0 114 106 3 2 41 + 114 8 0 39 40 0 0 65 12 17 34 96 85 1 0 7 8 0 0 114 + 45 0 0 24 62 0 0 51 22 0 0 114 55 0 0 80 66 0 0 71 + 35 0 0 70 54 0 0 43 +115.63 198.48 1.17 0.316 + 0 0 11 58 36 10 1 0 30 4 13 42 15 1 7 34 10 1 2 6 + 6 6 56 93 1 1 1 12 116 44 24 14 10 1 2 98 104 13 0 1 + 128 13 6 28 13 0 0 42 36 7 23 49 15 0 2 28 2 2 14 30 + 76 20 55 33 12 10 3 109 58 0 0 0 122 92 14 16 5 0 0 6 + 45 22 22 51 7 0 1 117 22 1 2 2 1 3 102 128 4 4 1 29 + 36 5 18 30 42 31 2 2 1 0 52 128 104 5 2 1 0 0 26 128 + 79 0 0 0 0 9 54 128 +115.00 11.90 1.30 0.066 + 50 0 0 11 28 7 0 7 1 10 82 83 88 46 11 5 80 87 77 7 + 2 8 17 35 35 17 0 11 59 0 0 5 45 2 0 1 47 8 0 5 + 11 13 13 37 141 55 8 5 141 42 14 12 18 8 8 37 68 0 0 8 + 90 0 0 10 30 0 0 24 39 1 0 6 21 4 3 97 141 44 2 4 + 141 16 2 10 29 16 3 35 66 1 0 7 102 0 0 7 16 0 0 27 + 60 22 0 2 33 5 3 103 133 49 0 3 141 10 2 9 10 1 0 30 + 45 0 0 12 81 0 0 5 +115.00 11.90 1.30 -2.975 + 75 0 0 9 33 0 0 25 11 0 0 60 136 2 1 6 102 27 0 16 + 73 5 7 92 93 29 0 1 3 0 0 45 97 0 0 12 50 0 0 23 + 22 9 2 68 136 5 2 7 136 27 2 11 37 4 6 121 47 0 0 6 + 13 0 0 54 75 0 0 20 59 1 0 20 16 8 9 64 136 34 13 12 + 136 35 7 4 14 13 13 59 47 3 0 10 35 2 0 6 40 0 1 13 + 36 22 1 17 5 12 22 39 66 91 82 10 105 36 8 3 1 10 72 80 + 25 4 0 19 60 0 0 7 +114.14 235.95 1.36 2.488 + 6 0 0 40 112 14 0 5 131 1 0 5 28 1 0 109 109 25 10 7 + 1 0 0 44 28 17 18 14 11 3 11 40 31 5 1 68 129 13 0 3 + 131 22 1 5 10 2 1 57 87 18 10 15 27 8 3 27 131 13 3 3 + 2 0 3 49 25 1 0 17 62 131 33 9 131 35 2 1 9 21 3 30 + 71 46 19 24 25 5 1 5 110 87 16 30 2 0 0 12 10 3 1 48 + 122 69 16 6 109 35 9 10 21 11 1 26 21 27 32 33 1 0 0 0 + 26 43 59 69 4 1 0 0 +113.69 100.67 1.36 2.450 + 4 3 10 22 31 61 31 28 4 3 4 35 36 61 50 3 21 70 15 15 + 20 36 23 3 38 85 112 11 3 6 0 15 14 6 77 112 39 16 7 7 + 112 29 18 52 30 63 22 23 9 3 5 14 71 112 26 8 82 23 30 8 + 15 20 17 53 17 3 32 105 41 27 28 33 112 33 81 55 13 7 11 64 + 24 23 90 47 64 76 27 48 17 20 37 10 32 78 22 43 7 4 27 42 + 34 37 19 20 22 35 51 26 1 2 45 82 35 43 17 10 4 24 73 112 + 12 2 2 2 31 112 40 37 +113.32 73.47 1.33 1.793 + 22 0 0 30 119 0 0 1 119 0 0 7 31 0 0 46 73 0 0 42 + 119 0 0 25 62 0 0 26 79 0 0 17 29 0 0 3 119 25 0 2 + 119 10 2 8 37 5 0 33 59 4 2 104 119 0 0 13 86 0 0 26 + 55 0 0 56 27 3 2 0 95 117 3 3 91 52 28 22 22 78 27 3 + 17 15 29 119 46 3 34 51 50 0 0 26 34 0 5 119 3 19 59 3 + 8 39 17 1 0 7 36 5 3 70 65 1 2 15 20 4 1 6 95 57 + 3 6 11 12 38 26 17 45 +113.32 73.47 1.33 -1.854 + 0 0 27 33 4 2 48 14 2 6 78 46 1 0 26 23 3 76 97 4 + 1 3 26 25 0 47 12 8 37 46 10 4 16 14 9 106 73 1 9 3 + 71 4 42 72 17 25 30 61 10 83 54 4 43 112 26 14 40 117 8 0 + 15 23 0 0 49 14 0 17 117 11 0 0 117 55 0 4 38 17 5 21 + 44 19 0 0 117 117 4 5 72 93 0 0 39 35 0 0 50 11 0 0 + 93 40 0 0 117 74 0 0 39 18 0 0 72 44 0 0 96 62 0 0 + 37 21 0 0 80 48 0 0 +111.25 204.66 1.30 -0.973 + 3 0 0 7 59 26 3 1 91 10 0 0 0 5 9 39 117 60 0 0 + 0 9 34 76 127 75 8 3 0 0 12 102 5 0 0 5 14 52 66 16 + 89 16 0 0 0 41 102 23 127 22 0 0 0 3 18 83 127 53 0 0 + 0 0 3 84 81 15 0 0 11 15 35 29 29 8 1 5 12 72 101 21 + 127 70 1 2 7 19 20 27 127 81 3 0 0 0 3 55 40 25 3 0 + 18 23 4 4 17 51 23 5 12 18 0 0 21 75 15 10 22 29 0 0 + 63 127 22 1 1 0 0 1 +110.45 75.71 1.32 0.783 + 0 33 1 0 0 116 4 0 21 116 2 0 4 51 0 0 23 68 0 0 + 21 116 1 0 26 116 0 0 6 38 8 9 0 95 12 0 9 116 0 0 + 38 54 2 2 62 116 0 1 116 78 0 0 12 51 13 9 20 9 1 24 + 10 47 69 32 0 116 59 6 7 24 19 1 21 28 49 46 83 38 12 50 + 116 8 8 29 9 4 4 82 11 2 12 81 3 2 9 41 0 16 10 1 + 0 50 116 8 2 5 10 25 8 4 104 77 7 0 2 50 8 0 9 83 + 0 0 1 11 0 0 9 87 +107.04 197.73 1.31 2.600 + 35 13 0 0 17 55 14 14 34 17 0 4 46 101 8 7 116 34 5 1 + 1 1 1 50 50 8 2 13 46 5 4 37 32 94 26 22 30 5 4 17 + 33 19 15 81 119 13 1 4 119 43 7 13 5 0 0 46 36 9 9 69 + 39 3 1 13 11 119 80 31 17 0 0 0 50 56 52 66 49 1 2 20 + 119 85 16 5 2 0 2 44 17 17 34 93 54 9 5 9 44 48 6 11 + 8 0 0 15 71 37 17 3 0 0 57 119 31 68 32 9 6 64 112 45 + 2 12 80 119 24 64 6 1 +107.23 141.61 1.38 -0.051 + 6 40 38 92 25 17 66 19 8 6 3 111 85 22 6 8 41 43 23 4 + 5 1 45 46 10 5 27 16 19 27 60 6 11 30 89 23 15 26 57 29 + 24 9 5 16 104 104 12 17 111 39 20 3 15 7 35 80 11 6 29 27 + 57 40 58 16 8 19 70 63 14 16 111 51 24 4 14 111 111 37 28 13 + 111 46 38 15 21 12 17 25 6 8 71 60 31 27 31 2 12 19 87 38 + 10 67 54 45 14 7 18 55 63 111 12 0 79 48 30 16 9 12 17 30 + 3 3 36 36 19 28 43 16 +107.23 141.61 1.38 -3.015 + 22 38 24 3 9 1 41 31 3 20 27 36 75 31 47 12 77 76 0 6 + 35 8 16 42 36 106 36 20 4 29 79 29 43 25 21 6 11 14 78 55 + 23 11 15 50 112 38 38 9 112 25 27 14 25 1 29 112 14 39 112 21 + 7 28 90 68 35 38 73 19 11 16 34 14 28 7 32 94 92 30 9 4 + 112 74 19 16 13 11 12 25 10 18 111 23 11 47 72 9 7 29 75 11 + 6 9 18 4 22 2 27 33 34 23 6 28 62 25 25 6 1 2 33 112 + 8 17 44 15 30 88 50 39 +103.42 76.77 1.28 1.421 + 117 10 0 0 52 9 0 3 91 7 0 1 123 7 0 2 123 7 0 0 + 45 26 2 6 29 0 0 0 89 105 1 3 116 0 0 14 55 3 2 68 + 84 1 0 3 123 30 6 27 123 22 0 0 44 14 7 15 51 5 0 0 + 123 83 2 3 28 3 22 6 5 4 27 123 14 1 39 15 45 90 40 31 + 82 18 41 6 8 24 53 54 28 14 54 8 47 43 8 5 1 2 51 5 + 0 0 56 15 0 1 61 15 1 2 74 16 0 5 44 6 0 1 105 12 + 0 4 47 3 0 1 86 3 +100.43 134.95 1.16 -1.596 + 3 6 5 3 2 11 85 24 9 12 4 0 0 68 122 19 0 2 6 6 + 2 91 53 33 4 8 12 2 0 1 79 64 23 42 50 68 22 8 23 13 + 122 97 16 6 13 76 52 31 21 2 3 26 71 122 50 38 56 30 12 27 + 60 6 21 39 29 27 17 23 12 8 69 46 122 32 66 98 10 4 19 82 + 23 46 57 122 61 13 1 1 70 37 12 28 103 1 2 1 6 46 60 2 + 0 0 5 5 6 16 122 71 0 0 2 6 10 39 35 66 1 0 3 18 + 20 22 10 11 11 2 19 48 +96.64 43.79 1.26 1.416 + 0 43 77 18 0 0 0 0 0 9 79 66 3 1 0 0 1 56 109 27 + 6 2 0 0 1 31 63 67 6 0 0 0 36 96 98 44 21 6 1 9 + 109 40 90 71 28 18 9 35 70 67 54 39 109 51 9 19 75 61 29 41 + 43 74 3 9 56 6 3 15 65 43 8 38 109 92 30 37 41 36 9 15 + 60 24 18 61 109 19 37 43 67 70 6 4 19 52 17 16 21 0 1 3 + 17 41 63 39 14 20 15 3 5 51 109 24 21 9 6 5 3 9 95 49 + 5 11 13 6 2 14 65 6 +96.64 43.79 1.26 -1.765 + 2 11 64 7 5 13 13 6 4 10 84 51 22 8 6 6 5 46 99 29 + 19 26 13 3 18 50 49 38 28 0 0 1 19 64 14 12 58 73 8 5 + 107 23 37 43 68 25 12 48 53 26 7 15 107 97 33 44 58 39 7 28 + 64 15 7 16 43 91 4 6 59 57 29 44 107 50 7 12 73 89 65 36 + 42 28 11 32 99 26 85 78 11 3 0 4 31 105 107 55 7 0 0 0 + 1 21 67 73 4 1 0 0 0 56 107 27 3 1 0 0 0 4 77 63 + 1 0 0 0 0 27 52 18 +96.43 26.86 1.33 1.508 + 0 1 46 24 4 5 56 2 13 25 58 16 3 2 49 16 3 2 52 54 + 16 10 53 6 5 24 76 26 2 3 10 8 4 23 96 121 14 6 15 2 + 121 90 33 72 25 6 7 9 72 14 12 121 121 32 8 17 62 40 43 39 + 23 13 62 57 9 10 34 19 5 23 121 17 121 4 0 4 14 15 54 89 + 75 6 0 2 95 121 36 19 44 41 21 10 17 58 93 20 0 0 0 0 + 0 13 121 5 13 0 0 0 0 2 76 61 6 1 1 0 0 31 15 11 + 0 0 0 0 0 23 67 6 +92.69 55.65 1.16 1.514 + 7 9 4 0 0 3 71 17 3 2 8 7 3 16 57 6 5 8 7 1 + 1 9 52 5 3 0 0 0 8 17 48 7 37 130 31 17 14 1 20 2 + 10 33 90 125 72 5 18 1 94 115 65 10 2 2 26 10 28 8 0 5 + 0 6 61 7 128 130 4 10 25 0 0 0 70 38 11 58 130 2 0 11 + 130 27 6 5 14 0 0 62 50 2 0 78 21 0 0 13 69 69 5 7 + 5 2 3 0 89 33 12 53 77 0 0 5 130 1 0 12 10 0 0 29 + 20 1 0 130 79 0 0 3 +92.69 55.65 1.16 -1.854 + 85 0 0 0 88 23 1 44 54 4 0 0 134 56 1 8 104 8 0 0 + 34 122 14 26 19 6 1 0 39 107 1 0 46 0 0 1 108 14 0 37 + 44 12 0 1 134 73 16 9 134 44 0 0 29 79 21 50 17 1 0 0 + 32 134 54 9 5 0 36 14 36 23 0 9 4 0 25 12 70 133 86 21 + 64 5 36 7 2 18 75 116 11 1 52 29 4 65 39 10 2 10 65 22 + 5 1 0 0 1 3 52 19 5 7 5 1 1 11 52 13 4 8 4 2 + 3 3 33 32 17 5 4 3 +89.96 160.85 1.36 -1.119 + 10 1 0 7 121 23 0 0 121 30 0 0 32 4 0 4 109 119 0 0 + 0 0 0 1 10 89 20 1 0 0 0 0 6 0 1 3 121 71 0 4 + 121 9 0 0 37 22 1 53 96 43 0 0 0 0 0 55 53 44 8 0 + 0 0 3 11 2 4 26 27 106 89 21 1 88 47 1 2 41 58 10 13 + 64 117 5 0 0 0 0 11 42 59 13 0 0 0 1 4 0 63 92 4 + 7 74 54 0 3 44 43 0 6 121 109 1 17 66 19 0 0 46 88 4 + 24 85 20 0 0 16 14 1 +89.38 12.64 1.36 -0.011 + 33 0 0 18 30 0 0 3 3 16 62 103 118 2 1 5 66 115 73 12 + 11 1 2 38 36 16 2 1 75 5 0 9 38 3 1 18 70 12 0 0 + 27 17 4 50 131 50 2 7 131 46 3 5 19 6 2 67 47 7 0 5 + 98 3 0 15 32 1 0 29 59 5 0 2 31 5 7 94 131 61 4 12 + 131 13 2 4 19 15 4 58 39 2 0 3 116 4 0 7 26 0 0 17 + 67 23 1 0 22 5 13 44 77 51 83 25 131 6 3 2 7 0 32 68 + 32 2 0 5 87 0 0 4 +86.86 208.01 1.33 1.987 + 72 27 1 4 13 21 7 9 12 19 15 46 102 52 7 6 64 63 18 17 + 23 25 33 17 52 37 4 11 19 6 14 11 124 30 1 7 25 8 0 8 + 28 22 7 92 124 50 3 4 124 95 10 32 41 13 6 24 40 67 11 18 + 33 8 1 3 124 16 0 0 9 10 1 16 42 4 0 4 116 124 68 18 + 123 8 1 10 55 71 77 80 48 56 6 21 89 25 0 2 124 6 0 0 + 0 0 0 22 39 3 1 20 28 44 28 12 5 5 2 24 73 43 17 4 + 14 19 2 3 62 62 1 3 +86.86 208.01 1.33 -0.834 + 63 9 0 0 79 27 1 8 81 18 4 6 10 5 3 25 61 48 12 3 + 4 1 5 61 4 9 28 61 29 1 2 5 42 2 0 8 87 34 9 47 + 54 50 48 122 85 2 2 37 122 122 44 31 18 0 1 17 11 10 2 72 + 80 0 0 1 13 7 8 13 78 25 12 17 37 10 7 57 122 28 15 73 + 122 30 4 13 27 4 6 122 18 3 0 72 115 1 0 1 21 26 25 28 + 84 17 2 4 47 21 9 14 54 39 21 59 64 16 2 8 30 4 7 91 + 1 0 0 39 122 8 0 0 +86.39 23.26 1.31 2.951 + 4 3 52 109 50 13 51 28 41 114 83 12 24 38 51 15 85 57 7 5 + 19 4 0 4 46 14 0 1 81 14 0 0 36 22 42 23 86 31 24 34 + 75 32 41 20 74 50 39 85 93 16 0 0 32 33 13 69 67 20 0 12 + 63 16 0 0 2 8 32 22 114 45 5 0 114 64 36 9 11 4 8 20 + 99 19 0 1 102 20 2 14 71 28 0 5 39 24 4 0 1 3 4 12 + 114 65 2 0 114 81 7 4 34 14 8 9 87 49 1 2 73 14 0 0 + 76 20 0 0 26 6 1 0 +84.24 76.82 1.29 1.613 + 27 0 0 46 120 0 0 8 120 0 0 8 15 0 0 89 79 8 28 51 + 13 0 0 47 12 45 34 32 11 0 0 0 37 1 0 9 120 31 0 10 + 120 31 9 18 14 2 0 46 66 16 20 120 92 0 0 20 95 41 16 76 + 35 0 0 16 14 6 8 1 88 120 8 4 63 77 48 22 6 61 48 8 + 33 13 41 97 20 0 26 100 40 0 0 99 52 0 0 47 0 23 56 3 + 8 56 26 0 0 24 25 0 1 51 96 15 2 18 15 8 21 26 71 62 + 8 1 2 47 48 56 21 14 +84.24 76.82 1.29 -2.141 + 1 16 26 31 7 2 46 15 0 1 57 98 11 2 31 12 2 64 113 14 + 0 9 18 14 2 105 43 3 35 17 4 2 72 41 26 32 55 3 0 2 + 64 2 8 63 66 15 32 65 18 19 21 4 34 113 54 29 34 113 9 0 + 21 35 0 0 113 20 0 0 51 28 1 2 113 32 0 0 62 56 9 22 + 87 19 0 0 109 113 6 12 33 32 0 0 92 78 0 0 113 28 0 0 + 13 21 4 4 64 8 0 0 7 68 61 42 39 4 0 0 67 43 11 36 + 11 4 0 0 113 73 0 0 +82.22 49.77 1.20 1.113 + 21 58 24 53 102 7 0 0 122 105 27 22 26 4 1 2 8 14 115 38 + 1 2 10 5 0 2 103 18 0 0 20 10 29 53 15 11 71 46 19 14 + 122 30 8 8 35 20 21 23 25 9 49 20 3 10 114 40 0 1 53 11 + 0 0 77 40 8 4 3 2 13 53 45 34 93 18 9 0 5 31 73 69 + 18 13 65 30 5 6 54 17 0 1 110 59 4 8 9 2 9 36 24 4 + 0 0 50 49 8 11 0 9 11 2 90 63 1 0 12 122 97 8 44 12 + 8 4 122 122 14 9 17 22 +81.56 160.10 1.28 2.089 + 31 41 7 7 50 22 0 1 93 88 25 0 1 5 28 32 4 57 56 0 + 0 47 76 5 0 49 59 0 0 60 95 0 45 23 1 50 101 3 0 0 + 144 78 0 3 4 1 7 9 66 6 1 0 0 23 57 23 16 13 16 1 + 6 68 105 9 62 5 0 14 140 8 0 1 144 12 0 1 5 0 0 35 + 83 0 0 1 0 0 15 60 19 2 2 37 19 7 5 11 40 7 0 1 + 128 12 0 0 144 116 9 0 6 0 0 11 40 58 62 24 0 0 4 17 + 0 0 32 110 3 0 1 2 +80.37 218.39 1.32 1.607 + 12 9 0 3 17 29 45 5 6 5 4 6 46 43 16 3 30 13 6 4 + 21 100 12 10 1 8 27 5 24 80 17 2 51 11 0 2 8 12 19 46 + 27 4 2 7 119 99 28 18 119 18 2 4 49 76 13 24 11 1 0 0 + 33 119 46 4 119 70 0 0 2 7 3 21 28 34 5 0 63 119 42 13 + 106 12 2 6 20 86 105 49 14 4 2 27 89 46 10 6 52 119 6 0 + 0 0 0 0 3 117 83 1 0 19 8 0 0 13 79 93 15 19 39 5 + 12 13 39 119 41 5 5 3 +80.37 218.39 1.32 -0.980 + 28 16 1 6 7 4 8 49 23 19 15 6 4 8 94 93 7 32 9 1 + 4 84 98 31 2 1 0 1 22 96 6 1 117 75 8 6 3 0 0 10 + 71 51 38 117 66 0 0 14 117 117 28 24 20 27 3 7 14 5 0 10 + 117 83 0 0 117 56 9 25 9 4 3 6 72 22 11 117 70 6 3 64 + 117 43 27 30 8 0 0 83 12 5 16 97 97 4 0 0 67 26 1 3 + 17 17 2 3 51 19 2 6 10 7 4 34 40 34 25 11 8 1 1 31 + 0 0 11 56 54 0 0 0 +80.07 61.58 1.22 0.982 + 0 0 11 57 17 4 16 6 0 7 101 88 3 3 5 3 24 125 66 8 + 0 2 5 6 16 42 1 14 53 15 4 2 9 0 2 121 125 1 3 3 + 76 4 27 64 21 25 45 61 67 88 10 2 0 102 58 15 90 79 0 0 + 43 21 5 8 19 4 0 23 125 3 0 0 125 47 0 4 30 11 9 19 + 69 14 0 0 0 108 85 23 43 8 0 0 19 20 51 47 7 6 0 1 + 125 23 0 0 125 72 0 0 32 5 0 0 106 48 0 1 0 3 10 1 + 2 1 8 6 7 5 14 4 +80.07 61.58 1.22 -1.107 + 1 0 2 35 6 0 10 121 23 43 46 56 3 0 2 26 31 36 7 23 + 0 1 0 0 0 0 1 121 3 1 3 0 3 1 1 121 73 1 3 20 + 121 34 26 91 21 0 0 22 71 19 42 121 0 0 0 8 0 0 7 121 + 1 0 3 14 3 4 4 35 95 77 2 0 59 47 49 26 18 69 24 6 + 8 11 79 121 0 2 51 41 0 0 4 50 0 0 65 121 2 2 1 0 + 3 60 9 1 4 8 4 1 0 78 121 8 0 2 4 4 0 4 121 86 + 0 0 0 20 3 0 55 86 +78.26 114.63 1.41 2.932 + 135 7 0 0 39 6 0 3 119 6 0 1 53 22 0 3 10 8 13 19 + 65 92 10 1 86 60 8 4 3 22 10 9 135 12 0 6 57 2 0 3 + 135 23 0 14 69 10 0 1 18 4 31 54 75 72 9 1 35 41 38 5 + 4 22 18 14 135 2 0 3 60 6 0 7 135 3 0 3 80 13 0 6 + 28 1 4 4 135 51 7 4 20 14 13 8 13 15 19 12 135 0 0 3 + 50 1 0 13 135 1 0 4 58 4 0 6 26 1 3 2 54 62 27 1 + 9 4 9 7 6 19 93 22 +77.94 23.57 1.29 -2.885 + 3 2 4 89 118 6 2 1 118 16 10 16 33 5 4 80 85 0 0 35 + 46 0 3 68 57 0 0 24 30 2 0 22 13 13 7 86 118 8 5 6 + 118 37 3 8 10 6 9 85 92 7 2 60 84 0 0 26 81 0 0 9 + 18 11 1 44 19 30 15 79 118 10 14 45 114 118 9 7 5 2 42 114 + 79 32 7 38 39 2 5 41 70 0 0 0 1 0 0 40 35 27 2 18 + 40 9 23 56 57 56 6 13 16 4 44 98 73 2 2 15 27 3 6 46 + 34 0 0 0 0 0 0 19 +75.58 276.31 1.27 0.965 + 74 13 8 0 0 0 0 31 66 28 15 2 0 0 0 13 31 12 7 30 + 18 9 4 12 5 5 6 26 10 4 5 5 66 41 35 18 0 0 0 1 + 133 52 32 13 3 0 0 13 30 17 32 97 37 0 1 8 5 15 67 67 + 4 0 23 84 37 33 19 16 2 0 0 2 60 94 78 13 0 0 6 46 + 6 13 53 76 9 0 64 157 0 0 8 9 0 0 108 157 11 5 4 14 + 2 0 25 95 5 10 11 1 0 0 96 157 1 1 2 0 0 0 95 157 + 0 0 0 0 0 0 28 82 +75.58 276.31 1.27 -3.055 + 0 0 0 33 155 0 0 0 4 1 0 24 155 8 15 17 16 2 0 0 + 1 21 35 20 7 0 0 0 0 66 38 8 0 0 0 35 155 1 0 0 + 35 3 0 17 155 17 37 77 18 1 0 0 4 110 69 45 15 0 0 0 + 4 41 35 38 1 0 0 46 155 0 0 1 94 29 0 19 155 3 4 33 + 47 31 0 0 4 67 30 16 2 1 0 0 9 58 31 14 5 0 0 33 + 155 1 0 2 71 7 0 11 86 5 11 51 32 18 5 2 4 9 12 12 + 3 7 8 6 15 22 5 1 +73.87 135.16 1.18 1.490 + 2 1 3 0 6 26 27 7 24 5 4 1 1 4 53 64 46 32 6 9 + 10 13 54 32 15 8 5 36 64 6 1 1 38 2 0 1 131 88 28 14 + 131 7 0 1 27 25 42 90 26 1 1 19 122 112 47 26 14 1 2 41 + 75 23 0 0 41 8 6 9 131 69 14 9 131 42 14 10 31 19 15 31 + 42 18 19 68 131 46 2 1 8 0 2 22 74 56 6 0 4 12 108 47 + 26 17 5 1 25 46 131 23 3 5 6 7 4 18 131 46 24 6 1 0 + 3 1 38 44 18 11 2 0 +72.26 82.87 1.34 1.256 + 22 19 3 29 127 0 0 0 127 0 0 4 30 0 0 22 69 0 0 44 + 127 0 0 8 63 0 0 12 58 18 4 36 50 4 0 34 127 0 0 6 + 127 8 0 10 32 0 0 19 80 3 0 72 127 0 0 8 127 0 0 9 + 50 13 1 39 15 1 6 18 67 64 57 16 127 18 4 11 20 13 53 60 + 57 7 2 58 127 48 26 19 127 1 0 3 30 8 13 43 0 6 46 2 + 1 20 61 3 4 17 43 0 1 10 61 24 3 10 48 3 8 44 48 12 + 25 22 34 1 7 6 23 27 +72.26 82.87 1.34 -2.112 + 0 2 55 12 4 7 44 3 1 15 61 12 2 2 52 12 0 3 64 39 + 5 3 51 4 3 26 52 15 1 0 42 14 12 11 27 44 113 23 15 1 + 107 68 48 24 38 15 10 15 22 10 47 63 126 56 5 5 100 46 47 15 + 27 6 0 3 33 26 1 3 126 31 0 0 126 11 0 0 74 21 0 10 + 51 2 0 0 126 77 0 3 126 18 0 0 52 19 0 2 30 59 5 9 + 95 5 0 0 126 12 0 2 63 6 0 0 52 3 0 0 126 41 0 0 + 109 20 0 0 55 15 0 1 +70.56 180.46 1.38 2.117 + 0 0 0 25 65 26 0 0 21 1 0 1 84 104 3 16 149 3 0 0 + 7 12 8 140 39 4 1 4 11 9 9 44 0 3 2 27 64 9 0 0 + 53 5 3 48 110 28 1 6 149 3 0 5 16 14 6 66 35 1 0 0 + 13 68 31 23 0 0 8 57 44 1 0 0 56 10 1 35 127 1 0 0 + 149 82 0 2 12 1 1 16 63 18 0 0 3 46 17 11 0 0 5 18 + 15 5 3 0 15 10 0 11 102 4 0 0 149 145 0 1 15 0 0 0 + 102 64 0 0 0 6 2 3 +70.07 85.97 1.35 1.138 + 130 10 0 1 24 0 0 0 68 3 0 19 130 0 0 0 130 0 0 3 + 58 28 3 19 30 0 0 0 94 80 1 6 130 40 0 6 28 2 7 11 + 78 18 1 46 130 14 5 5 130 15 0 6 50 14 6 18 50 1 0 0 + 130 72 1 6 45 13 23 2 6 11 75 62 23 8 36 15 50 76 51 27 + 99 20 35 2 11 17 48 66 26 7 38 9 82 57 11 11 0 4 27 0 + 0 0 75 9 0 3 38 4 0 8 94 3 1 11 41 1 0 9 97 2 + 0 4 55 12 8 49 29 0 +70.07 85.97 1.35 -2.092 + 5 45 46 1 0 2 44 13 0 2 99 9 1 6 41 3 0 4 83 11 + 0 1 42 8 0 1 60 20 0 2 36 2 58 60 11 8 23 7 46 15 + 10 16 48 62 99 22 38 3 61 73 54 28 28 11 29 15 9 10 65 67 + 64 24 15 2 129 98 2 4 48 4 0 0 45 20 4 12 129 41 0 2 + 129 15 4 3 70 25 1 20 31 2 1 3 129 64 0 3 75 91 1 2 + 42 2 0 0 45 51 4 10 129 9 0 0 129 7 0 0 62 8 0 0 + 28 1 0 0 129 31 0 0 +69.60 175.32 1.24 1.832 + 44 43 8 0 6 25 0 0 136 84 4 0 0 0 0 12 79 30 3 10 + 10 2 1 36 6 2 17 28 22 11 1 8 34 10 0 0 13 136 5 8 + 136 34 0 0 0 11 7 90 76 11 3 1 8 37 19 56 6 2 3 1 + 17 23 22 20 11 4 2 6 58 107 4 4 136 105 0 2 29 22 3 17 + 136 44 0 0 1 56 43 18 2 0 0 1 2 38 67 37 0 1 2 13 + 82 11 0 0 136 106 0 4 53 11 0 0 136 136 0 0 0 3 7 4 + 12 16 0 0 0 33 24 3 +69.71 127.46 1.24 2.665 + 1 3 1 9 10 35 27 8 11 6 0 0 0 6 17 14 121 64 0 0 + 4 3 12 4 88 34 0 0 66 23 0 0 1 1 7 41 54 105 55 24 + 15 7 6 5 11 35 61 86 121 32 5 17 17 35 46 13 121 31 0 0 + 70 29 0 2 0 14 56 85 20 5 2 1 10 21 97 46 4 4 10 24 + 103 16 48 54 11 4 16 120 121 9 0 0 47 35 4 78 0 3 27 22 + 3 0 41 55 0 1 20 11 0 0 121 121 9 0 4 1 0 0 104 121 + 11 0 0 12 56 11 11 71 +69.71 127.46 1.24 1.635 + 0 84 124 0 0 4 6 0 2 114 128 0 0 18 24 3 1 96 77 0 + 0 35 57 1 6 50 23 0 0 30 71 3 16 13 16 0 0 0 0 8 + 50 49 35 2 5 8 19 71 24 128 71 14 48 23 15 9 128 128 12 1 + 2 9 17 3 27 3 3 0 2 8 71 51 61 31 9 19 17 13 41 27 + 68 13 7 66 86 6 1 4 128 18 0 3 5 0 0 18 106 0 0 3 + 32 23 34 65 2 0 4 32 91 47 21 6 73 0 2 37 47 2 0 9 + 128 0 0 0 1 0 0 29 +69.71 127.46 1.24 -1.696 + 6 0 0 0 125 36 0 2 64 16 1 0 22 3 1 34 55 63 52 28 + 18 3 1 12 10 13 37 65 88 4 0 0 9 0 0 0 125 75 0 2 + 102 17 3 2 41 24 7 43 10 7 28 35 71 50 9 11 0 1 20 26 + 21 8 5 1 2 4 13 2 123 125 14 0 41 27 12 6 20 125 114 9 + 4 9 15 52 42 48 107 1 0 0 0 5 12 23 93 0 0 15 92 5 + 6 37 26 0 0 10 94 3 1 60 95 0 0 17 62 0 0 44 125 0 + 0 7 41 0 0 30 125 0 +65.94 126.76 1.23 1.933 + 3 123 31 0 0 2 4 12 3 123 28 0 0 44 13 4 6 95 9 0 + 0 82 37 1 2 94 12 0 0 25 12 0 47 13 3 2 2 5 23 62 + 23 120 18 27 44 21 20 15 123 123 7 4 4 29 19 11 22 21 3 0 + 15 121 22 4 26 9 14 30 22 20 22 11 68 7 12 95 40 1 0 37 + 123 14 0 5 3 0 0 123 29 0 0 11 59 32 1 13 1 0 12 50 + 52 7 0 1 114 0 3 26 11 0 0 106 123 0 0 2 2 0 0 123 + 6 0 0 49 60 0 0 5 +63.27 23.94 1.38 -3.118 + 3 6 4 22 120 15 2 2 85 65 11 5 18 4 12 56 57 35 10 11 + 28 10 13 36 85 0 0 1 4 0 0 6 4 2 1 33 120 44 7 3 + 120 19 2 6 20 26 16 71 111 2 0 9 100 10 10 29 104 2 0 1 + 6 0 0 3 2 3 10 66 120 43 23 9 120 55 15 25 13 8 28 83 + 112 11 0 12 116 0 0 14 99 0 0 0 5 0 0 7 0 0 0 4 + 33 66 95 16 25 0 0 2 17 6 106 98 62 0 0 6 104 2 3 15 + 77 0 0 0 3 0 0 3 +62.42 99.53 1.17 2.886 + 3 0 30 70 9 0 0 5 4 7 109 59 2 0 0 1 11 3 86 109 + 22 2 0 3 109 14 22 51 13 1 0 24 3 1 13 103 109 20 1 0 + 87 21 46 36 37 19 5 17 49 3 11 29 109 16 4 45 103 4 11 19 + 23 28 6 85 0 2 33 63 70 50 9 0 50 63 26 40 36 23 2 1 + 88 18 17 40 45 1 0 63 56 15 46 109 41 3 1 42 0 0 3 5 + 21 109 45 0 23 22 13 7 60 109 7 9 109 15 9 8 22 15 2 80 + 9 2 5 49 97 65 40 10 +62.42 99.53 1.17 -0.371 + 78 73 52 15 24 5 4 15 14 22 2 48 110 23 14 3 41 110 28 1 + 8 15 13 9 19 106 63 0 0 0 5 8 88 5 1 26 68 6 28 109 + 42 3 0 37 102 26 22 36 42 31 4 0 38 64 28 37 85 48 7 0 + 0 0 26 61 16 30 9 59 110 4 15 30 104 28 5 39 71 4 4 19 + 34 24 6 10 86 27 41 39 110 24 1 0 4 2 14 99 17 9 1 15 + 110 19 20 42 33 5 0 5 30 6 45 110 3 1 0 1 3 4 110 88 + 8 0 0 2 3 0 31 70 +58.82 89.78 1.38 1.110 + 26 0 0 0 62 75 2 4 128 1 0 2 13 5 0 5 47 0 0 36 + 128 0 0 1 114 0 0 7 44 0 0 24 48 1 0 0 128 85 1 4 + 128 3 0 6 49 18 0 8 55 2 0 55 128 0 0 1 128 0 0 8 + 35 0 0 27 43 5 9 3 104 60 6 9 126 5 5 12 54 41 18 47 + 31 2 2 50 128 46 30 8 128 1 0 5 19 6 24 35 3 6 63 13 + 10 28 21 2 5 19 87 7 7 24 19 20 1 17 71 2 10 41 43 5 + 16 12 47 8 6 6 32 27 +58.82 89.78 1.38 -2.205 + 8 4 21 16 3 3 72 14 3 22 38 10 1 4 94 6 5 27 22 20 + 7 3 88 21 10 24 18 5 10 5 54 21 15 5 43 40 104 18 7 2 + 127 60 57 9 22 5 9 14 46 48 18 33 127 23 6 8 83 104 6 5 + 40 12 2 1 26 0 0 0 127 22 0 1 127 11 0 0 44 8 0 6 + 65 13 0 0 127 54 0 3 78 127 1 1 50 10 0 0 16 0 0 0 + 127 12 0 1 127 13 0 0 38 3 0 0 62 3 0 0 127 40 0 0 + 19 54 0 0 61 17 0 0 +56.20 146.11 1.28 -1.929 + 13 5 0 0 24 21 5 13 6 5 7 6 78 32 0 5 54 17 11 0 + 5 2 4 130 7 1 1 12 25 2 35 130 6 4 0 0 38 32 5 16 + 40 1 0 0 113 51 3 20 130 20 0 0 11 5 1 130 37 4 0 6 + 90 21 5 56 5 0 18 20 27 16 9 36 22 7 21 66 81 57 6 13 + 130 130 6 11 8 8 2 9 72 46 0 0 34 24 0 0 1 1 90 60 + 1 0 35 28 1 1 42 78 5 0 110 86 109 51 4 7 3 14 91 70 + 96 58 0 0 5 6 1 2 +55.86 141.26 1.18 -1.648 + 0 0 0 4 31 10 17 23 16 0 0 13 106 17 5 17 147 0 0 2 + 13 2 4 147 24 0 0 8 24 0 25 91 1 4 120 43 13 3 13 14 + 40 9 60 66 56 12 14 11 147 31 4 2 3 2 2 30 62 3 0 2 + 65 4 0 4 0 0 60 13 0 0 147 21 18 3 28 12 3 22 147 39 + 147 14 1 0 3 15 48 49 71 4 0 0 53 5 0 0 0 0 0 0 + 0 0 95 7 0 0 0 0 52 29 71 4 139 12 0 0 47 18 8 4 + 62 6 0 0 32 3 0 0 +52.77 69.96 1.17 1.206 + 1 16 36 0 0 5 40 2 0 13 39 5 1 15 40 0 0 16 49 1 + 0 8 26 0 0 11 47 0 0 10 25 0 43 126 55 11 4 2 11 2 + 13 41 69 126 64 10 17 0 68 122 92 26 8 5 22 5 32 21 6 15 + 8 24 49 5 126 126 6 8 12 0 0 0 63 54 14 75 126 1 0 7 + 126 41 13 13 39 1 0 75 75 9 2 39 94 1 0 21 67 50 3 3 + 4 2 3 1 67 39 14 59 65 0 0 10 126 0 0 5 14 0 0 64 + 38 0 0 42 126 0 0 12 +52.77 69.96 1.17 -2.194 + 74 2 0 0 109 19 0 1 40 2 0 0 128 34 3 12 59 3 0 0 + 31 104 19 25 26 6 2 1 26 59 0 0 99 16 0 2 119 11 0 1 + 58 15 0 2 128 41 4 6 128 36 0 0 33 97 13 28 16 2 0 0 + 41 128 33 7 64 11 19 3 42 33 2 27 11 2 12 5 95 128 86 27 + 101 10 18 1 4 29 67 122 10 1 25 8 4 113 64 13 2 6 59 2 + 1 1 27 7 0 1 42 7 3 12 45 8 2 2 35 4 0 2 51 10 + 0 0 33 7 0 1 37 9 +52.13 94.86 1.37 1.016 + 32 1 0 8 132 0 0 1 132 1 0 3 23 0 0 10 62 2 0 26 + 113 0 0 3 92 1 0 2 7 0 0 8 45 3 0 22 132 1 0 1 + 132 7 0 5 35 0 0 8 84 2 0 28 132 0 0 3 128 1 0 1 + 4 0 0 7 18 2 12 16 87 58 64 10 132 16 8 8 27 5 49 59 + 81 4 2 28 132 0 0 11 119 0 0 0 2 0 0 19 0 7 77 4 + 4 19 36 6 6 11 109 21 12 4 22 27 44 4 36 34 27 0 2 72 + 51 0 0 0 0 0 0 41 +47.92 236.80 1.21 1.443 + 2 138 136 6 1 0 0 0 8 89 138 56 4 1 1 1 17 51 50 32 + 7 7 9 6 16 34 15 1 0 0 12 19 32 41 9 0 5 1 0 0 + 138 55 28 1 0 4 19 37 53 30 11 2 0 38 72 40 58 18 6 0 + 0 2 38 97 30 11 1 1 13 3 0 0 138 50 0 0 0 0 3 12 + 134 7 0 0 1 57 57 45 138 8 0 0 1 17 18 70 22 2 0 1 + 22 2 0 0 138 8 0 0 0 0 0 10 138 1 0 0 14 42 13 44 + 78 48 0 0 27 43 3 4 +42.70 302.54 1.39 1.823 + 30 103 114 20 2 0 0 1 29 47 26 5 1 0 0 1 1 9 14 4 + 1 0 0 0 1 2 3 0 0 0 0 1 114 53 28 26 14 14 16 49 + 101 69 114 114 34 3 0 15 102 114 79 17 3 0 0 7 8 7 45 87 + 9 0 1 4 45 7 2 11 11 39 114 39 46 14 11 55 57 100 88 51 + 114 27 5 18 30 9 25 108 38 9 16 107 114 24 3 25 0 16 36 0 + 0 13 39 0 1 9 19 0 0 42 71 19 12 5 8 1 12 8 23 40 + 9 9 4 1 44 96 17 1 +39.34 76.64 1.34 -2.086 + 3 0 0 23 118 0 0 0 132 1 0 16 58 0 0 18 37 0 0 27 + 132 5 0 4 132 0 0 3 79 1 0 20 9 0 0 6 132 28 0 1 + 132 8 1 7 73 16 1 32 25 2 1 34 132 93 38 6 132 3 0 4 + 45 25 78 60 4 0 0 0 81 68 6 0 92 42 18 1 34 49 48 13 + 8 20 63 6 22 70 76 2 15 15 42 0 0 15 112 45 0 0 2 9 + 16 24 5 0 1 5 39 12 6 25 55 2 0 11 51 0 0 11 64 0 + 0 9 35 0 0 5 58 0 +38.24 255.13 1.31 2.939 + 0 0 0 1 4 102 27 0 111 4 0 0 3 30 7 15 152 22 3 0 + 0 0 16 97 12 16 26 12 0 1 47 85 0 0 0 8 47 83 4 0 + 137 5 0 0 52 83 3 10 152 50 0 0 0 1 10 44 65 40 10 0 + 0 0 19 83 0 9 8 17 36 10 0 0 97 11 0 9 92 22 1 14 + 152 83 6 0 1 1 0 21 37 68 63 11 0 0 0 0 6 20 5 4 + 13 3 1 1 23 31 2 8 84 10 0 0 83 152 24 1 7 0 0 0 + 23 86 49 5 0 0 0 0 +35.33 165.46 1.41 -1.825 + 46 3 0 1 49 34 0 6 134 7 0 0 10 7 6 46 37 4 0 6 + 66 41 26 33 19 2 0 0 5 43 34 26 56 6 0 0 134 92 0 2 + 134 24 2 0 7 4 7 37 38 12 14 3 25 25 104 55 8 4 3 5 + 5 24 65 66 41 4 0 0 134 134 0 0 134 66 16 1 15 18 0 17 + 49 56 58 6 0 1 14 34 18 22 14 18 14 9 10 12 7 1 0 0 + 134 134 4 1 134 31 0 0 41 52 0 14 83 10 5 6 7 3 4 33 + 18 10 37 21 12 6 12 12 +32.28 237.10 1.30 -1.806 + 72 83 9 2 0 0 0 1 23 51 31 40 8 2 4 5 60 122 8 4 + 1 0 3 3 3 29 10 16 49 14 0 0 93 102 5 1 0 6 12 6 + 79 25 13 12 0 11 63 109 29 82 15 2 11 80 67 29 2 43 100 42 + 17 13 0 0 88 40 0 0 13 106 31 8 122 77 0 0 6 13 10 37 + 27 9 2 1 73 122 11 8 0 0 17 11 41 94 5 0 53 16 0 1 + 100 60 2 2 122 122 1 2 26 7 0 0 29 70 3 1 43 27 0 0 + 0 0 0 16 88 44 0 0 +32.06 303.05 1.25 1.514 + 1 1 6 28 1 0 0 1 0 4 103 73 1 0 1 1 0 44 105 15 + 1 1 1 0 0 9 104 59 8 2 1 0 16 18 7 105 92 3 0 0 + 68 15 75 105 51 22 35 66 33 76 95 25 71 65 32 16 38 34 48 75 + 66 28 3 12 46 11 0 9 105 69 2 5 74 60 39 25 54 104 48 20 + 21 19 35 64 75 30 74 69 33 15 7 53 30 54 82 29 7 2 7 1 + 3 26 3 7 0 3 9 0 1 72 85 8 0 1 13 1 0 11 96 64 + 0 0 11 1 1 36 91 11 +32.06 303.05 1.25 -1.546 + 4 57 105 10 1 0 4 1 1 20 105 57 0 1 11 2 1 77 85 8 + 0 4 10 0 4 27 2 4 3 3 9 1 34 45 54 24 44 16 12 68 + 82 31 71 53 27 21 38 69 57 105 41 24 76 58 39 25 105 67 1 8 + 45 6 0 11 60 21 2 8 33 39 75 73 67 61 34 19 30 87 105 21 + 51 19 32 68 62 13 83 105 84 2 0 0 27 21 7 101 2 0 1 0 + 0 10 86 35 0 0 0 0 0 49 105 8 1 0 0 1 0 4 98 69 + 1 0 0 1 1 4 6 23 +30.75 244.14 1.32 -1.396 + 90 0 0 13 46 0 0 38 109 0 0 0 0 0 20 95 39 0 0 0 + 0 2 45 74 17 0 0 0 0 23 71 43 120 7 0 5 26 0 0 13 + 120 18 3 1 1 0 1 60 91 11 9 11 16 6 7 36 115 6 0 0 + 7 16 20 56 120 13 0 0 8 37 28 11 120 47 28 4 0 0 15 19 + 104 49 60 22 3 7 33 11 120 50 2 5 8 1 0 3 73 0 0 0 + 53 90 18 26 120 1 1 0 3 9 41 120 41 12 2 1 38 82 87 43 + 64 76 26 9 10 9 1 2 +23.74 220.05 1.08 1.566 + 10 1 5 10 3 0 0 5 44 3 2 0 1 10 20 72 117 1 0 0 + 7 33 22 17 147 2 0 0 0 0 0 3 53 0 0 5 5 0 0 13 + 147 10 0 1 25 19 11 89 134 1 0 2 117 48 10 15 147 2 0 0 + 1 0 0 3 54 2 0 0 6 12 1 15 147 75 12 15 20 0 0 11 + 132 16 11 40 102 2 0 4 147 2 0 0 1 0 0 4 18 0 0 0 + 15 33 8 37 29 18 8 6 1 10 30 36 112 7 8 22 12 16 6 2 + 147 1 0 0 0 0 0 6 +20.31 141.70 1.37 2.924 + 0 0 0 0 21 30 48 28 130 48 0 0 100 67 5 3 130 70 0 0 + 1 0 0 0 2 1 0 0 0 0 0 0 0 0 96 45 18 10 12 4 + 100 29 34 66 130 26 9 11 130 85 0 1 7 0 2 17 14 4 0 0 + 0 0 2 2 0 0 93 36 0 0 130 66 24 2 27 33 10 0 130 130 + 124 13 0 0 0 0 60 130 13 1 1 0 0 0 0 6 0 0 12 3 + 0 0 104 43 0 0 29 7 0 0 75 30 0 1 43 7 0 0 15 17 + 0 1 43 9 0 0 4 2 +20.31 141.70 1.37 1.704 + 0 11 55 0 0 0 0 0 1 9 37 0 0 0 0 0 1 8 11 0 + 0 0 0 0 0 1 0 6 17 0 0 0 0 61 150 0 0 10 60 2 + 8 113 150 0 0 18 22 0 82 150 96 0 0 1 0 2 11 8 0 15 + 31 0 0 0 18 7 16 2 9 32 143 18 59 27 46 15 101 104 66 13 + 150 49 12 1 11 7 0 55 30 2 0 19 43 0 0 3 28 4 0 8 + 33 1 2 17 84 0 0 39 150 2 0 16 150 0 0 3 11 0 0 54 + 17 0 0 14 52 0 0 3 +202.08 220.93 0.94 -1.539 + 5 1 0 4 40 25 34 13 27 0 0 1 82 107 33 13 175 0 0 0 + 19 15 2 27 57 0 0 0 10 1 0 3 41 12 2 25 22 2 2 6 + 47 5 1 88 170 16 2 4 175 3 1 12 31 2 0 15 64 0 0 2 + 12 1 0 1 25 34 18 35 29 0 0 1 64 6 6 90 159 0 0 3 + 175 2 0 6 17 0 0 21 55 0 0 0 10 3 0 3 0 10 14 12 + 22 9 5 0 61 2 5 34 85 15 2 3 175 1 0 2 7 1 0 24 + 34 0 0 1 9 2 0 3 +199.75 223.15 1.09 1.559 + 1 1 0 2 134 1 0 0 83 4 0 1 134 4 3 32 46 4 1 0 + 6 25 24 32 66 1 0 0 1 4 2 28 3 1 0 0 134 6 0 0 + 134 4 0 0 134 10 2 68 62 1 0 3 45 21 5 48 69 0 0 0 + 4 4 2 38 5 0 0 2 134 3 0 0 108 84 16 10 134 2 0 10 + 59 50 47 23 15 5 0 9 75 6 2 3 4 1 0 16 2 1 0 3 + 134 1 0 0 34 62 13 10 134 1 0 1 112 49 23 2 0 0 0 12 + 79 12 0 1 7 0 0 3 +199.45 212.76 1.04 1.444 + 1 0 0 0 144 52 0 0 49 15 1 0 94 24 4 14 18 74 46 0 + 0 6 5 2 32 51 49 2 0 0 0 1 3 1 0 0 144 61 0 0 + 71 3 0 0 144 40 21 41 17 8 10 0 1 66 77 21 62 16 5 0 + 0 6 28 74 4 2 0 0 144 43 0 0 109 40 2 0 144 33 1 5 + 47 27 15 6 4 19 19 10 64 8 0 0 0 3 11 62 2 2 0 0 + 144 28 0 0 73 15 0 0 144 38 0 14 65 13 4 0 2 15 30 31 + 80 7 0 0 1 8 7 18 +199.34 192.34 0.95 1.840 + 2 0 0 49 93 0 0 2 55 0 0 82 121 0 0 33 121 0 0 1 + 2 0 1 72 12 1 1 1 0 1 19 24 2 0 0 102 121 0 0 1 + 121 5 0 71 110 0 0 33 121 22 0 0 0 0 0 47 32 19 0 1 + 2 0 9 16 5 0 0 121 121 0 0 0 121 51 0 30 55 0 0 9 + 99 103 0 0 0 0 0 9 35 44 3 1 2 0 1 3 7 1 0 93 + 121 0 0 0 89 22 0 9 12 0 0 18 121 17 0 0 0 0 3 56 + 15 7 3 3 5 9 13 15 +196.11 182.98 1.00 1.209 + 123 12 0 0 0 1 0 100 42 10 2 6 13 7 41 41 9 6 1 5 + 14 23 47 20 0 0 0 22 58 48 1 0 123 81 0 0 7 10 1 35 + 123 41 1 0 3 6 14 29 10 1 2 10 52 32 20 12 1 0 0 3 + 27 108 13 14 123 123 0 0 61 46 0 8 123 49 14 7 5 1 0 20 + 37 7 24 20 27 7 6 44 19 0 0 7 43 52 24 54 101 98 0 0 + 123 107 0 0 123 123 2 1 4 1 1 6 56 15 2 1 3 1 5 70 + 25 3 1 19 76 19 3 20 +193.28 192.06 0.92 -1.261 + 117 2 0 0 0 0 0 70 78 0 0 0 0 0 20 75 44 21 13 8 + 9 4 13 42 3 4 8 69 117 6 1 3 117 6 2 0 0 0 0 117 + 81 23 3 0 1 12 24 84 6 12 18 15 39 64 20 6 0 2 10 73 + 117 54 0 0 107 15 11 4 1 1 16 86 116 55 11 3 5 7 16 87 + 19 2 0 4 79 76 2 8 0 0 0 12 113 106 0 0 81 4 2 0 + 0 0 15 89 20 3 23 45 1 0 14 93 2 1 46 55 30 8 0 4 + 0 0 3 78 117 6 0 0 +182.45 250.28 1.16 2.363 + 52 3 8 6 1 25 35 53 113 68 13 6 0 0 0 30 113 103 0 0 + 0 0 1 4 48 33 11 3 0 0 0 1 8 3 19 62 35 25 26 12 + 113 45 39 37 5 5 6 50 113 89 40 51 4 4 13 34 24 86 113 48 + 3 5 4 1 16 47 41 27 28 30 10 4 113 98 18 19 11 22 26 26 + 99 73 58 113 23 1 1 19 98 41 40 19 5 14 31 36 99 44 8 4 + 3 2 4 6 34 18 23 18 7 8 36 42 49 25 17 26 14 31 82 52 + 41 82 91 6 13 24 6 8 +181.21 267.91 0.94 -0.042 + 2 4 16 125 94 6 4 1 6 5 3 26 59 70 93 14 63 0 0 1 + 2 18 76 125 17 0 0 0 4 11 101 125 9 28 21 115 16 22 40 5 + 29 49 34 32 12 25 53 13 125 32 4 12 5 7 8 57 85 41 0 0 + 8 11 7 34 14 1 0 1 1 16 101 40 15 5 6 3 0 59 125 31 + 89 40 7 4 0 16 108 48 43 125 3 0 1 1 7 6 23 19 12 2 + 1 2 5 9 14 16 85 40 2 7 21 5 10 34 109 45 0 4 28 2 + 29 66 19 0 0 0 4 5 +181.21 267.91 0.94 -1.740 + 66 127 20 0 0 0 6 19 4 20 74 59 3 0 6 12 10 8 29 127 + 12 0 0 0 6 5 21 67 36 5 0 0 54 127 88 0 0 0 1 6 + 6 40 127 62 2 11 6 6 111 60 84 46 4 6 0 10 42 5 2 13 + 88 74 1 2 119 33 6 0 0 16 58 57 43 16 25 47 31 32 19 24 + 127 42 14 11 9 7 0 27 36 13 25 21 43 25 0 3 10 1 0 0 + 2 110 127 14 17 4 5 32 18 127 43 11 97 39 6 5 1 16 8 16 + 13 17 22 11 4 1 0 1 +180.72 147.75 0.95 2.917 + 6 26 33 24 5 2 1 2 47 7 9 10 1 3 6 29 15 0 0 1 + 3 35 26 33 11 0 0 0 85 72 26 42 30 133 31 31 3 0 0 2 + 133 86 5 0 0 1 9 56 54 6 0 0 0 30 108 99 3 0 0 0 + 89 78 55 109 95 91 13 7 0 0 0 12 133 65 1 0 0 0 0 75 + 133 46 3 0 0 1 26 57 9 23 6 0 44 54 19 21 133 76 7 2 + 0 0 0 6 133 39 0 0 0 0 0 55 79 32 10 0 0 4 11 45 + 4 23 24 8 15 13 7 2 +180.72 142.76 1.05 0.079 + 5 0 0 31 157 0 0 0 157 13 0 12 85 0 2 25 73 15 1 1 + 6 16 12 15 1 4 4 12 15 9 3 0 11 0 0 35 157 0 0 1 + 157 18 1 9 85 0 0 29 89 23 30 18 3 4 0 10 0 4 18 35 + 53 4 0 0 17 0 0 38 157 0 0 1 157 30 8 10 63 0 0 18 + 39 34 58 39 1 0 0 2 1 20 27 39 25 1 0 0 20 0 0 32 + 157 0 0 2 157 17 5 6 33 0 0 15 14 18 13 8 4 0 0 2 + 2 5 6 16 7 0 2 1 +176.48 71.41 1.10 -2.512 + 0 2 76 9 0 2 42 0 4 32 51 7 7 11 52 0 31 15 4 2 + 95 31 12 0 71 13 0 2 21 0 0 1 6 9 128 22 0 4 16 0 + 128 86 90 13 14 1 1 3 93 11 0 8 128 1 0 3 102 0 0 1 + 32 1 0 8 14 0 17 29 18 50 99 3 128 6 2 8 26 17 6 41 + 110 2 0 14 128 0 0 8 98 0 0 3 30 0 0 7 15 0 52 69 + 9 5 19 69 115 0 2 10 29 2 2 128 63 0 0 7 128 1 0 12 + 70 1 0 5 24 0 0 4 +175.88 148.76 1.12 3.001 + 27 47 30 44 2 0 0 3 134 72 2 0 0 0 2 32 73 9 0 0 + 0 16 56 58 1 0 0 0 112 56 33 45 100 75 27 8 0 0 0 8 + 137 26 0 0 0 0 0 99 110 27 4 0 0 4 13 63 8 23 14 6 + 89 57 9 6 137 25 5 3 0 0 0 9 137 74 0 0 0 0 0 22 + 87 52 19 1 3 7 7 13 9 16 22 14 59 41 4 2 137 13 0 0 + 0 0 0 10 137 66 0 0 0 0 0 9 100 80 2 0 1 6 8 5 + 26 15 2 0 15 39 10 13 +175.86 142.42 0.90 0.023 + 7 0 0 13 163 0 0 0 163 13 0 4 51 0 0 6 69 47 1 3 + 4 0 0 4 2 8 4 7 15 5 1 0 13 0 0 17 163 0 0 0 + 163 3 0 4 58 0 4 37 75 11 0 0 2 12 26 29 6 5 3 1 + 6 13 7 2 16 0 0 13 163 0 0 0 163 39 0 2 50 0 0 7 + 84 35 3 1 6 13 5 5 0 3 5 10 16 14 1 0 13 0 0 7 + 163 0 0 0 163 16 0 1 37 0 0 12 75 17 21 18 0 0 0 6 + 0 6 26 17 19 2 0 0 +172.36 261.91 1.07 2.394 + 102 7 5 5 0 0 2 39 130 3 0 0 0 0 2 90 88 3 9 19 + 2 7 5 52 1 1 19 32 15 56 17 9 130 69 10 8 1 3 5 17 + 130 34 0 1 3 0 0 37 85 6 16 76 69 5 1 34 64 7 20 32 + 7 2 14 101 130 83 23 20 2 0 0 2 130 99 0 0 3 0 0 22 + 87 34 0 7 57 48 13 31 89 40 22 1 7 9 5 58 130 25 1 7 + 5 0 0 20 130 42 0 0 0 0 0 28 68 49 14 7 18 12 3 11 + 4 25 42 9 18 20 7 1 +168.86 263.77 1.04 2.488 + 139 71 13 6 0 0 0 8 139 35 0 3 7 0 0 43 49 7 11 60 + 70 11 3 39 53 4 11 12 3 1 16 109 139 29 5 5 0 0 0 22 + 139 63 0 1 4 3 2 53 77 23 2 6 47 55 13 39 68 60 40 1 + 4 3 3 46 139 11 0 0 0 0 0 85 139 72 4 0 0 0 0 33 + 42 57 20 15 31 14 3 8 2 30 69 12 18 35 16 1 110 15 0 0 + 0 0 0 86 76 68 2 0 0 0 0 35 90 30 2 0 0 5 7 36 + 4 1 6 12 6 33 39 7 +168.26 259.00 1.07 2.038 + 58 18 1 22 4 15 19 19 12 2 5 62 21 53 43 51 21 1 0 5 + 8 29 82 114 3 8 3 10 17 84 110 6 94 29 3 49 61 11 0 2 + 114 24 12 53 37 11 2 62 65 7 9 9 1 1 12 95 1 0 5 114 + 80 24 22 6 85 114 9 1 35 30 7 2 114 53 18 1 26 53 31 23 + 34 48 114 80 5 4 1 3 6 1 52 114 27 1 9 32 111 114 6 0 + 0 1 2 5 34 56 32 9 21 26 9 2 4 5 35 25 13 30 50 9 + 6 0 11 27 7 5 50 63 +168.65 77.05 1.10 2.233 + 10 0 8 10 124 11 0 3 79 5 22 0 15 27 18 50 23 94 24 0 + 55 75 11 7 73 124 2 0 2 1 0 0 26 0 0 23 124 0 0 3 + 124 13 5 12 34 8 1 28 46 8 3 39 124 34 1 14 124 33 0 1 + 11 1 0 28 13 9 0 28 124 0 0 2 67 71 50 33 9 4 7 10 + 44 12 27 78 45 4 3 77 103 3 0 0 2 0 0 124 21 0 0 19 + 122 0 0 13 46 4 4 1 9 45 36 59 52 60 2 2 25 54 9 16 + 75 81 0 0 0 0 0 24 +168.65 77.05 1.10 -1.202 + 6 23 0 1 20 120 11 0 5 72 49 22 30 22 8 5 29 10 13 28 + 47 15 10 2 120 54 0 0 1 1 0 0 2 0 0 61 120 43 1 0 + 74 7 4 28 48 25 28 73 23 4 1 2 73 98 41 26 120 60 0 0 + 12 7 0 0 5 1 0 17 120 59 0 0 120 88 2 6 50 23 1 12 + 34 42 8 6 120 56 1 4 120 60 0 1 42 11 0 0 0 0 0 0 + 47 120 3 0 17 65 5 0 15 120 45 0 6 62 36 28 44 16 66 6 + 32 22 1 9 24 3 60 37 +167.23 250.86 0.91 0.118 + 15 0 0 0 0 0 7 122 8 1 5 13 5 5 23 116 27 8 9 8 + 2 57 67 25 5 19 5 0 0 31 122 13 13 0 0 0 14 16 61 122 + 14 6 4 54 99 34 23 30 122 24 7 20 8 3 18 40 60 10 2 0 + 0 12 99 30 20 3 21 14 29 29 18 70 5 0 22 44 80 122 41 7 + 122 64 34 15 5 19 34 30 44 89 45 0 0 0 0 0 1 1 74 53 + 11 5 5 2 3 6 91 122 48 11 1 0 84 82 94 43 7 2 5 21 + 16 63 57 2 1 12 16 13 +165.73 140.25 1.12 1.560 + 0 2 28 1 2 0 0 0 32 3 12 22 136 0 0 0 146 5 0 4 + 36 0 0 1 12 0 0 0 54 0 0 1 0 11 146 2 0 0 39 1 + 63 19 146 85 35 6 32 3 146 21 11 15 10 0 1 5 17 0 0 0 + 70 0 0 3 0 2 30 0 0 2 146 35 61 5 26 7 37 91 146 18 + 146 17 1 0 11 16 9 19 16 2 1 1 67 3 0 1 3 7 14 8 + 1 0 11 16 14 8 11 18 79 36 7 2 106 123 6 0 29 24 0 1 + 6 48 23 0 18 8 0 0 +160.42 258.71 0.95 1.208 + 20 2 0 9 107 78 15 13 65 4 0 1 9 36 43 39 1 0 0 0 + 11 119 63 2 0 0 0 0 4 120 46 1 16 1 0 2 120 120 5 6 + 120 18 0 2 35 36 18 31 24 5 4 21 39 96 43 8 8 5 2 1 + 2 86 107 16 6 3 2 81 120 19 1 3 120 32 2 18 60 12 2 34 + 38 22 13 49 80 45 2 8 39 91 32 10 7 10 20 9 1 0 9 83 + 63 9 17 18 64 2 0 4 18 8 14 101 14 1 3 26 96 67 9 11 + 18 57 26 16 23 26 33 22 +159.93 22.04 0.96 -2.331 + 2 95 119 16 2 23 14 0 25 119 24 0 0 2 0 0 5 6 0 10 + 1 0 0 1 0 0 3 78 1 0 0 1 13 39 27 29 54 119 63 8 + 119 119 7 7 22 37 1 23 39 18 8 119 4 0 0 3 0 0 2 119 + 1 0 3 63 5 2 63 98 42 31 45 58 115 6 10 52 17 8 8 119 + 17 4 15 107 1 0 4 87 0 0 0 14 0 0 6 119 0 0 2 47 + 10 24 80 36 3 0 4 49 2 0 13 99 0 0 0 7 0 0 10 119 + 0 0 0 0 0 1 2 26 +158.21 64.78 1.26 -1.492 + 1 3 0 0 72 139 0 0 70 26 7 7 22 51 0 0 139 74 0 0 + 1 1 0 0 11 4 0 0 11 48 1 0 0 0 0 0 67 139 0 0 + 43 9 0 0 78 139 9 6 139 71 0 0 3 13 9 34 37 8 5 4 + 0 1 0 2 2 0 3 2 11 38 0 0 5 0 15 11 27 139 95 20 + 92 5 42 37 2 27 91 135 16 1 70 72 0 0 12 17 0 0 62 39 + 0 0 10 4 0 0 84 56 0 5 39 24 0 0 57 52 0 2 67 44 + 0 0 28 30 0 0 57 49 +152.91 90.19 0.94 -2.676 + 15 13 32 16 55 9 0 1 115 6 2 3 42 31 2 9 11 26 9 1 + 87 114 2 2 5 63 96 0 2 24 6 1 26 11 33 17 11 104 26 3 + 115 19 6 13 24 23 4 13 14 7 25 58 80 104 8 2 0 18 36 3 + 2 88 65 0 13 0 0 1 85 107 16 3 115 14 0 19 77 25 4 9 + 11 16 33 89 115 27 23 3 1 53 84 6 3 18 45 5 7 0 0 5 + 115 2 0 0 111 7 0 2 57 16 6 15 8 1 2 2 40 65 115 17 + 0 1 2 5 41 61 95 11 +152.36 170.40 1.02 2.754 + 43 10 27 31 2 6 7 15 130 19 5 7 6 11 1 39 14 10 15 31 + 36 86 25 6 0 6 5 6 24 130 45 0 58 12 0 0 2 24 18 23 + 130 3 0 0 23 19 6 54 36 32 33 54 130 103 8 14 47 70 22 20 + 55 55 10 4 39 14 1 0 0 2 35 63 130 27 1 0 6 8 36 86 + 41 24 4 5 80 130 26 12 62 22 2 4 23 114 44 24 39 101 26 1 + 0 0 7 16 39 130 24 2 0 0 25 53 4 19 13 66 32 14 8 9 + 3 13 24 79 37 22 6 4 +152.36 170.40 1.02 0.070 + 62 27 8 16 14 10 6 12 57 37 7 6 4 8 40 65 7 3 15 5 + 26 42 32 38 0 0 4 3 108 119 1 0 71 44 12 35 80 17 4 28 + 119 119 13 22 39 15 5 32 34 11 66 89 80 9 1 3 0 7 77 52 + 98 28 0 0 37 40 1 1 27 37 23 35 119 13 9 54 27 22 29 96 + 22 7 17 119 109 0 0 2 3 11 53 42 24 2 0 0 84 118 7 1 + 1 1 6 14 34 13 7 101 64 9 11 14 3 13 6 119 52 0 3 0 + 5 20 14 24 29 3 0 0 +152.12 78.96 1.10 1.956 + 4 12 1 35 115 0 0 0 70 0 0 20 111 18 4 26 46 16 0 0 + 68 42 2 6 115 58 0 0 0 0 0 0 27 61 8 59 115 0 0 0 + 115 19 6 21 95 21 2 27 37 13 5 17 115 66 2 6 115 67 0 1 + 10 1 0 0 54 34 5 44 100 0 0 3 48 67 54 26 43 2 28 24 + 11 15 45 66 62 28 36 3 115 60 0 3 8 5 0 0 45 3 0 26 + 79 4 2 18 94 17 2 5 16 6 56 75 11 3 1 5 72 103 81 14 + 61 43 0 2 31 22 6 2 +152.12 78.96 1.10 -1.134 + 19 12 1 1 89 43 0 2 68 106 68 7 7 2 3 8 10 13 74 75 + 80 12 4 4 73 3 2 21 41 3 0 33 7 1 0 0 116 50 0 3 + 72 22 21 1 16 15 42 69 36 4 27 21 55 72 55 29 95 0 0 5 + 52 28 4 54 8 1 0 0 116 50 0 0 116 60 2 7 40 10 3 13 + 93 20 2 38 116 13 4 27 116 0 0 1 31 57 7 72 1 0 0 0 + 116 47 0 0 73 34 3 8 46 12 0 0 114 13 4 29 59 0 0 31 + 116 0 0 0 4 13 1 44 +151.53 137.58 0.95 1.700 + 18 0 0 33 131 0 0 4 131 1 0 2 10 1 3 75 56 3 3 25 + 120 43 18 34 72 14 24 20 20 23 27 42 42 0 0 33 131 0 0 8 + 131 20 7 14 17 0 0 48 46 9 40 131 131 10 2 8 15 18 131 61 + 14 3 2 17 27 11 0 27 105 0 0 4 101 120 92 20 6 0 0 9 + 6 18 85 123 98 0 0 0 26 11 16 13 19 1 2 30 2 4 0 10 + 57 4 0 0 4 17 19 0 0 0 0 1 0 2 20 10 1 1 1 0 + 4 9 5 1 1 0 0 0 +151.53 137.58 0.95 -1.830 + 1 1 1 0 0 0 1 2 0 0 1 0 2 5 25 11 12 5 0 0 + 4 17 21 1 125 71 0 0 0 1 0 0 23 5 0 1 7 7 4 13 + 92 13 0 0 5 23 96 117 10 2 0 0 106 125 76 16 125 68 0 0 + 21 11 0 0 23 8 0 13 35 8 36 65 125 43 1 0 12 15 27 78 + 44 9 0 0 125 125 6 5 87 44 0 0 69 32 0 0 25 8 2 5 + 37 18 53 125 61 71 16 18 46 21 27 33 39 51 12 20 125 49 0 1 + 34 12 0 5 93 38 0 0 +150.23 258.10 1.02 -0.911 + 32 36 13 5 0 0 0 2 58 65 79 0 0 0 0 40 97 74 32 0 + 0 0 0 97 87 39 1 0 0 0 1 61 31 36 7 0 1 0 0 1 + 129 29 7 0 0 0 0 109 129 34 1 0 0 0 0 129 129 20 0 0 + 1 0 0 47 39 13 1 0 10 13 0 1 129 76 0 0 0 0 0 5 + 129 90 4 0 0 0 0 14 129 62 3 3 1 0 0 9 17 5 0 0 + 35 35 0 0 129 50 0 0 0 0 0 0 129 19 0 0 0 0 0 23 + 79 33 1 0 0 0 0 23 +148.21 160.09 1.06 0.199 + 16 0 0 81 138 14 0 3 161 6 1 0 7 4 0 66 131 27 25 16 + 7 2 0 27 5 4 3 19 12 15 12 4 28 0 0 23 63 19 1 8 + 161 13 2 1 9 9 0 66 98 67 31 4 19 22 1 18 54 37 2 1 + 11 16 14 12 39 2 0 20 58 7 0 4 161 45 22 8 7 2 0 19 + 102 61 70 16 17 14 1 20 102 26 6 15 11 4 1 28 39 4 0 9 + 59 5 0 4 161 15 5 4 6 5 3 22 89 24 15 4 3 5 6 98 + 53 17 4 20 38 9 4 36 +146.28 132.77 1.08 -0.901 + 94 12 9 32 39 11 0 30 8 15 35 56 29 56 33 2 0 0 37 100 + 23 41 57 4 1 0 6 18 15 13 6 7 30 82 112 75 22 5 0 7 + 83 14 81 87 15 11 48 70 6 3 25 71 18 112 112 25 10 0 4 7 + 3 43 72 112 14 15 26 9 0 3 10 1 112 112 27 29 4 3 9 32 + 49 59 42 105 29 32 31 53 44 6 8 95 18 12 34 106 0 1 0 0 + 0 3 3 0 3 64 13 1 3 8 1 0 26 112 36 14 3 3 5 27 + 11 24 31 112 15 0 0 19 +145.81 239.19 1.04 -0.154 + 39 18 17 37 27 12 1 10 124 56 7 15 15 2 8 80 8 28 66 54 + 43 7 28 36 12 18 55 55 25 8 4 15 34 28 20 72 56 14 1 3 + 129 111 12 19 27 10 2 30 34 17 34 37 129 118 3 9 116 41 48 21 + 21 39 4 21 69 17 6 18 103 76 19 38 129 41 10 16 15 16 12 89 + 29 12 7 45 83 68 12 5 38 11 9 32 47 56 10 10 24 21 5 0 + 18 28 31 50 47 19 4 4 5 5 15 105 8 3 6 85 46 4 5 7 + 0 0 8 82 43 4 0 0 +144.64 172.08 1.10 -2.709 + 125 108 33 7 0 0 0 0 133 63 0 0 0 2 5 19 55 10 7 3 + 2 23 41 33 11 2 4 44 106 12 6 22 133 50 0 0 0 1 27 55 + 133 61 2 2 0 0 1 38 63 23 81 47 9 2 1 1 8 15 61 35 + 46 13 6 7 26 0 0 0 0 3 133 125 133 16 6 6 2 2 54 91 + 21 18 46 51 38 17 5 2 36 30 33 14 11 11 11 14 0 0 0 0 + 1 13 121 7 2 1 4 33 70 30 60 8 32 42 71 84 46 4 1 2 + 31 35 16 6 4 1 5 9 +144.16 202.52 0.92 1.311 + 8 32 27 4 9 56 44 6 54 102 5 0 0 4 6 14 67 24 1 0 + 0 10 26 106 4 0 0 0 0 0 64 144 2 6 5 45 80 68 39 7 + 95 19 1 1 9 14 15 22 144 12 0 1 0 0 1 97 36 3 6 55 + 4 0 8 66 29 29 14 127 66 3 5 10 105 52 13 2 5 8 3 10 + 144 92 4 3 1 0 0 8 31 35 8 53 19 9 25 11 9 4 4 25 + 20 8 25 17 21 57 25 24 9 1 2 6 48 144 43 0 0 0 0 0 + 6 144 88 0 0 1 7 6 +143.37 55.61 0.90 -2.878 + 8 124 67 0 0 18 24 0 41 124 11 5 34 3 0 0 49 13 1 4 + 65 5 0 0 43 6 0 0 23 3 0 1 29 25 2 49 61 75 43 1 + 124 94 2 8 32 7 0 0 44 42 29 35 81 1 0 0 19 62 98 11 + 13 0 0 0 26 2 12 124 25 4 38 46 124 6 2 9 30 4 14 100 + 25 6 21 29 124 33 25 23 1 27 74 6 4 15 105 34 2 4 3 6 + 1 2 124 98 15 0 0 0 35 7 46 122 29 9 0 3 88 20 13 27 + 33 11 0 0 0 17 51 35 +142.55 80.94 0.98 2.324 + 9 1 8 13 27 49 6 1 121 0 0 3 2 0 0 36 79 13 28 78 + 28 0 0 13 58 65 33 23 4 0 0 0 20 2 0 48 100 40 7 2 + 121 10 1 11 13 1 2 22 70 11 4 108 121 0 0 3 121 35 3 18 + 14 0 0 0 6 9 16 10 24 102 89 6 101 12 2 10 22 24 85 59 + 31 14 2 59 121 62 15 4 109 100 33 12 6 12 6 0 0 33 45 0 + 0 37 41 0 1 67 50 0 3 26 45 12 1 34 23 0 13 121 51 1 + 2 22 19 2 0 99 69 0 +142.55 80.94 0.98 -1.135 + 0 39 115 0 0 8 46 0 2 44 67 10 2 21 78 0 0 4 71 42 + 5 12 79 1 3 32 72 3 0 2 59 9 9 34 77 0 11 82 42 10 + 117 83 50 10 18 23 0 6 20 6 60 58 111 66 0 2 84 60 74 6 + 10 8 0 10 10 0 0 0 101 117 18 12 117 8 0 0 39 51 2 15 + 50 1 0 0 117 94 1 5 41 49 6 0 45 20 0 4 5 0 0 0 + 59 86 7 1 78 0 0 0 28 64 39 68 25 0 0 0 117 52 2 19 + 16 3 1 0 67 18 0 12 +140.47 131.94 1.10 0.075 + 0 0 1 1 2 2 0 0 26 32 35 4 3 3 16 11 7 27 114 12 + 1 0 62 66 4 19 71 10 11 12 85 52 8 2 2 5 1 0 0 1 + 114 15 3 7 1 0 66 114 17 11 33 34 4 0 114 114 1 5 30 114 + 40 8 87 55 9 2 0 2 6 8 0 0 114 114 50 8 2 3 12 30 + 34 110 98 60 11 3 18 29 8 22 34 51 109 40 0 8 8 0 0 1 + 6 3 0 5 61 23 16 1 2 7 47 114 12 56 47 8 54 88 65 42 + 1 67 72 14 46 34 0 0 +140.47 131.94 1.10 -0.996 + 21 17 19 122 85 13 0 2 122 9 3 57 28 4 2 59 53 2 3 15 + 115 97 16 23 0 0 1 5 24 60 75 10 21 23 44 72 23 2 2 9 + 122 48 8 17 20 6 0 63 51 25 39 82 80 42 6 10 5 10 40 115 + 15 33 61 10 7 7 1 2 3 3 2 2 59 122 83 11 6 4 0 10 + 57 49 122 122 22 7 2 13 88 29 29 51 12 19 74 72 0 0 0 1 + 2 2 0 0 0 4 8 0 2 3 7 1 27 27 11 6 0 3 9 2 + 45 119 34 24 8 3 1 5 +139.24 31.20 1.03 0.773 + 5 21 65 108 10 14 4 2 57 110 56 6 9 22 3 3 29 28 1 18 + 30 80 26 13 28 4 25 95 10 15 21 20 16 56 42 36 42 35 7 2 + 110 71 20 7 10 22 7 59 58 12 1 98 37 3 2 28 2 0 1 70 + 20 26 45 77 23 14 18 4 7 59 80 87 110 48 7 24 17 42 84 64 + 95 20 10 91 38 1 1 33 45 1 0 2 2 3 6 68 4 0 0 0 + 0 8 42 99 3 1 0 15 107 30 56 19 110 89 9 36 110 9 1 4 + 50 47 19 6 1 0 0 3 +138.80 83.98 0.99 0.186 + 24 36 3 3 30 78 34 0 118 70 0 0 34 11 0 0 85 6 0 0 + 95 24 0 1 64 10 1 0 11 23 2 4 28 3 6 118 77 30 9 6 + 118 19 0 7 38 7 2 17 99 18 0 0 118 24 0 0 106 24 0 0 + 7 25 1 1 6 0 6 53 5 3 115 70 111 34 20 15 18 2 37 78 + 68 30 2 2 118 27 0 1 118 30 0 0 7 3 0 0 0 0 48 106 + 1 1 35 15 50 74 51 67 3 1 6 4 67 47 2 0 72 28 0 1 + 102 26 0 0 12 6 0 0 +138.80 83.98 0.99 -2.885 + 7 2 0 0 106 14 0 0 80 22 0 3 81 27 0 0 4 1 5 6 + 85 70 41 41 1 1 13 3 0 0 70 101 5 2 0 0 120 15 0 0 + 120 14 0 1 76 26 2 4 20 1 37 64 75 50 31 21 2 3 120 56 + 2 0 16 41 9 21 1 2 119 13 0 0 120 9 0 3 103 9 0 1 + 34 3 8 43 120 2 0 9 45 10 23 15 22 1 15 120 13 18 1 8 + 73 5 0 0 114 14 0 4 83 3 0 0 30 9 0 3 120 38 0 2 + 53 90 28 0 18 11 1 21 +137.47 137.75 0.92 2.603 + 16 71 44 0 0 0 3 6 66 127 36 0 5 4 11 16 63 18 0 19 + 22 10 37 71 16 0 1 127 82 14 5 17 15 9 5 0 0 0 0 5 + 127 64 7 2 0 0 0 84 108 21 13 127 41 1 4 51 0 0 0 127 + 97 1 18 45 11 5 0 0 0 0 0 3 100 127 23 7 0 0 0 7 + 35 70 50 127 39 4 33 27 25 7 5 49 14 3 68 127 2 0 0 0 + 0 0 0 2 15 39 2 1 2 0 0 0 42 78 56 8 0 0 8 14 + 94 24 38 8 0 0 6 53 +137.47 137.75 0.92 -1.293 + 1 1 0 0 3 17 29 18 1 2 0 0 0 17 37 1 0 0 0 0 + 4 11 14 0 0 0 0 0 1 2 1 0 13 1 0 15 31 53 50 75 + 52 13 1 15 13 57 132 49 8 0 0 0 38 132 115 14 0 0 0 0 + 15 34 15 8 12 5 2 59 132 53 13 11 132 50 5 38 40 12 11 21 + 74 8 1 5 95 132 37 12 0 1 1 4 22 87 132 33 10 7 14 85 + 132 11 0 0 132 95 0 13 29 0 0 1 88 41 5 29 66 42 5 1 + 2 21 20 50 30 24 29 4 +136.64 58.98 0.97 -1.657 + 21 29 46 36 4 1 0 0 8 43 92 29 3 12 10 0 2 22 71 46 + 12 28 35 0 0 48 41 5 6 74 38 0 35 52 24 66 75 0 0 0 + 121 66 36 44 52 7 1 5 45 25 32 35 98 120 3 5 0 121 91 11 + 25 52 2 1 24 48 31 56 40 0 9 7 121 16 0 26 31 3 10 44 + 100 3 0 1 26 121 8 13 1 8 10 3 13 121 89 16 3 4 7 5 + 1 0 92 80 60 1 14 11 0 0 72 121 35 1 51 41 1 14 3 23 + 0 0 34 47 5 30 29 5 +135.68 83.14 0.98 0.294 + 7 116 54 0 0 8 7 0 38 120 8 7 19 0 0 0 50 8 2 27 + 120 1 0 2 73 2 0 6 14 3 3 8 26 29 2 9 45 112 37 1 + 120 73 0 2 33 9 1 6 91 3 0 4 120 12 0 9 86 5 0 0 + 14 14 1 14 29 0 13 120 65 23 8 7 120 1 0 7 41 3 2 31 + 105 4 0 2 120 4 0 5 107 6 0 0 15 26 1 6 7 0 9 30 + 2 3 101 41 93 19 9 7 26 1 24 61 72 9 0 5 120 4 0 1 + 100 6 0 0 2 5 0 0 +132.98 53.47 0.94 -2.828 + 2 121 129 1 0 20 19 7 27 129 79 1 8 1 12 11 13 29 5 20 + 129 6 1 1 60 85 3 7 27 4 1 1 15 32 50 25 39 113 14 4 + 129 110 21 3 12 10 0 31 73 19 2 14 129 20 8 9 15 60 4 0 + 24 70 27 8 37 7 68 34 15 7 4 7 129 36 5 7 5 1 0 35 + 78 27 10 28 43 1 2 16 44 2 0 0 4 83 24 29 52 2 4 7 + 11 45 25 22 129 7 5 4 14 10 5 80 62 58 24 13 17 5 1 6 + 61 28 0 0 0 7 0 7 +128.99 318.93 1.09 3.133 + 31 0 0 0 0 0 0 0 191 4 0 0 0 0 0 2 130 4 0 0 + 16 0 0 1 39 1 0 1 52 2 0 0 39 1 0 0 0 0 0 0 + 191 8 0 0 0 0 0 1 165 7 0 1 19 0 0 2 51 1 0 2 + 66 0 0 0 39 0 0 0 0 0 0 0 191 2 0 0 0 0 0 3 + 163 6 0 2 19 0 0 4 49 4 0 6 63 1 0 0 29 0 0 0 + 0 0 0 0 191 2 0 0 0 0 0 2 126 2 0 0 16 1 0 5 + 38 0 0 0 52 3 0 2 +129.28 235.25 1.06 -0.830 + 117 36 6 4 3 0 1 24 61 109 55 10 1 9 9 61 25 83 32 7 + 21 98 21 12 52 80 6 0 3 17 12 11 117 61 7 6 6 2 1 3 + 89 103 50 23 13 28 15 13 117 98 18 3 10 16 16 48 13 23 11 8 + 41 35 24 12 111 73 0 0 2 5 3 3 117 86 7 2 1 30 37 26 + 117 75 9 9 10 5 11 38 25 15 8 27 59 15 14 17 22 30 0 0 + 1 23 23 3 101 117 11 2 0 3 6 5 95 90 21 6 0 0 0 3 + 64 27 16 17 3 0 0 22 +127.22 185.84 0.94 -1.837 + 1 0 0 0 0 34 71 50 23 5 0 0 1 49 28 67 85 10 0 0 + 0 10 22 117 13 0 0 0 0 117 72 22 0 0 0 0 7 83 117 19 + 17 29 10 5 68 117 18 12 117 96 9 1 7 10 8 47 70 3 0 0 + 0 54 20 22 1 0 0 12 96 86 57 8 9 3 2 12 104 114 43 22 + 117 16 1 0 4 22 61 117 74 15 0 0 2 7 4 15 2 7 35 117 + 73 6 3 2 58 37 27 59 33 1 4 10 59 27 3 2 9 19 12 28 + 32 65 10 0 1 5 7 8 +127.17 105.51 1.07 1.902 + 38 9 32 3 0 0 10 81 0 11 13 2 1 14 32 3 1 1 16 55 + 9 72 52 2 5 3 21 30 12 59 60 13 13 59 114 36 12 8 17 16 + 82 114 61 14 28 2 0 8 55 10 25 114 114 25 3 18 89 9 21 22 + 4 6 17 77 46 14 25 84 50 22 33 85 114 30 7 6 25 11 1 114 + 42 2 4 5 74 114 50 25 85 8 3 47 3 13 30 38 21 11 24 19 + 4 31 81 100 30 4 20 26 17 3 4 84 1 11 104 38 11 17 22 5 + 1 2 38 97 3 3 27 31 +127.17 105.51 1.07 -1.280 + 4 3 25 28 1 1 37 96 10 19 21 5 2 6 90 35 12 2 5 108 + 50 2 11 19 8 32 76 99 30 6 15 35 4 13 31 38 93 12 1 37 + 86 113 48 24 50 3 2 7 30 11 0 113 113 51 13 7 53 22 33 62 + 41 20 37 76 4 6 17 72 86 10 21 24 113 20 2 14 51 11 26 113 + 26 2 0 2 53 113 66 13 4 4 10 18 15 49 113 33 11 57 69 13 + 5 3 16 29 8 83 69 3 2 1 13 46 1 21 46 5 0 4 7 1 + 0 0 20 79 45 4 16 2 +126.58 264.88 0.98 2.469 + 0 5 50 12 0 0 0 0 70 28 22 22 0 0 0 0 134 134 0 0 + 0 0 0 0 131 106 0 0 16 10 0 0 0 1 4 1 1 3 37 3 + 59 21 6 3 3 11 36 11 134 70 1 0 0 0 5 27 134 134 5 0 + 5 1 0 6 0 0 0 0 3 24 134 7 15 0 0 0 2 26 134 79 + 134 15 4 0 0 1 59 115 55 106 18 0 0 2 4 10 0 0 0 0 + 7 31 56 8 7 0 0 0 3 13 49 110 9 0 0 0 0 5 39 63 + 27 5 2 2 2 5 19 25 +126.73 203.56 1.07 -1.158 + 14 57 43 7 0 0 2 7 6 33 33 60 9 10 12 10 2 2 17 46 + 20 3 46 61 25 8 7 10 4 10 51 36 42 99 76 6 0 0 2 11 + 126 69 21 22 5 3 43 112 17 6 21 6 1 9 126 126 0 0 5 4 + 4 37 119 14 101 95 4 1 0 0 1 16 126 86 8 0 0 0 2 35 + 59 36 66 5 0 3 34 32 0 3 31 23 7 26 26 4 79 100 0 0 + 0 0 3 4 126 126 21 0 0 0 0 9 36 126 57 0 0 1 20 15 + 0 34 32 1 1 24 28 3 +126.73 203.56 1.07 -2.158 + 6 3 3 4 20 39 10 5 122 10 2 3 12 9 2 59 34 0 0 4 + 7 3 17 102 2 0 1 25 27 8 16 21 7 2 25 21 64 16 9 10 + 124 44 15 10 36 9 1 53 66 24 20 60 20 2 6 34 24 3 11 25 + 10 2 10 48 2 7 76 93 24 2 0 0 49 124 124 27 6 2 0 4 + 18 124 124 18 4 0 0 5 14 32 124 106 2 0 0 8 1 7 94 62 + 8 0 2 0 11 49 124 11 4 0 0 0 4 89 124 2 0 0 0 0 + 0 22 124 62 5 0 0 0 +126.78 169.22 1.01 -0.697 + 7 4 3 59 133 29 0 0 133 28 4 13 25 3 0 12 62 8 3 46 + 46 16 11 30 100 13 2 11 8 3 6 82 19 2 2 105 133 22 0 2 + 133 17 1 8 31 2 0 34 104 8 0 2 22 18 10 40 69 17 8 3 + 1 1 4 64 14 1 0 5 133 112 6 3 133 34 1 1 16 26 10 18 + 107 26 14 4 12 13 1 5 68 29 7 0 0 0 0 5 0 0 0 6 + 78 84 12 1 53 26 12 2 3 65 42 12 47 58 91 21 3 17 10 5 + 90 51 10 0 0 0 0 4 +126.50 52.47 0.92 -2.998 + 25 5 40 25 6 4 12 1 129 43 4 3 2 1 0 18 54 44 21 17 + 12 1 0 4 74 21 1 0 0 6 4 3 30 3 5 28 20 63 75 6 + 129 12 0 4 12 25 7 46 38 60 25 16 79 73 6 14 33 129 31 1 + 5 6 4 1 14 4 26 103 16 11 64 38 129 25 2 7 11 9 28 119 + 54 9 1 0 108 101 28 24 7 57 23 0 9 62 93 18 2 6 1 3 + 0 0 129 84 15 0 0 1 18 2 69 129 11 4 5 13 106 8 5 19 + 9 11 62 37 10 18 23 9 +126.20 254.46 1.00 2.634 + 106 1 0 7 17 0 0 27 28 3 1 48 136 2 0 14 136 10 1 6 + 23 1 5 88 8 0 0 4 38 19 13 19 128 17 0 3 37 5 0 5 + 53 8 1 22 136 9 0 4 136 34 1 4 23 1 0 21 18 3 0 18 + 95 2 1 2 136 46 0 0 35 7 0 2 51 2 0 0 136 37 2 20 + 136 6 0 4 21 5 1 58 16 2 0 29 82 1 0 1 96 75 4 1 + 14 1 0 3 28 22 8 4 95 32 9 40 81 0 0 9 19 5 5 90 + 3 1 1 56 61 0 0 2 +125.33 91.01 1.08 -2.927 + 67 109 37 56 23 6 11 7 67 74 7 3 0 2 1 1 1 1 18 46 + 26 40 3 1 17 14 10 28 88 25 0 2 64 83 24 27 36 56 69 18 + 114 114 8 17 21 15 2 8 18 9 47 114 66 63 49 19 59 12 27 38 + 86 21 32 81 32 63 64 19 19 31 44 36 114 22 11 6 7 9 12 112 + 28 4 1 2 12 57 80 19 5 0 0 15 114 12 53 43 57 55 27 6 + 25 48 21 35 114 38 2 1 0 1 6 76 3 3 3 1 0 0 1 4 + 1 0 2 20 114 1 0 0 +123.82 163.49 0.88 2.690 + 5 67 17 14 30 9 2 0 87 59 3 0 0 0 0 22 48 1 0 0 + 0 0 9 64 6 1 0 0 2 53 23 27 42 41 11 46 105 0 0 3 + 132 63 2 0 0 0 0 29 87 11 9 7 0 0 7 80 2 9 49 61 + 1 7 11 40 68 2 0 40 81 0 1 45 132 57 1 0 0 0 6 81 + 52 64 52 41 9 15 16 31 3 21 66 132 40 25 41 9 76 0 0 10 + 26 3 6 117 65 3 0 0 0 0 46 132 12 4 1 3 5 54 113 87 + 0 0 0 6 14 47 132 30 +124.03 47.71 0.97 1.321 + 4 0 0 21 117 51 1 3 117 2 0 20 79 17 2 57 83 19 2 44 + 73 2 0 39 49 10 3 34 79 12 4 38 9 0 0 3 117 21 0 2 + 117 3 0 7 117 34 1 37 65 55 5 17 75 107 17 11 32 51 17 28 + 38 17 19 11 7 3 5 85 117 1 0 4 117 64 17 28 62 10 5 47 + 15 15 17 16 24 59 60 44 6 4 0 0 1 6 92 65 3 1 10 69 + 52 12 13 30 29 11 39 38 12 2 17 117 4 61 81 21 0 0 33 50 + 2 43 8 4 7 0 29 21 +122.91 168.97 0.95 2.222 + 2 5 1 2 64 47 13 5 21 45 16 6 94 49 0 0 113 126 11 0 + 1 1 0 3 27 40 29 19 12 6 15 20 7 9 1 3 73 24 0 0 + 30 6 0 0 126 62 0 1 126 40 1 0 13 4 0 62 112 21 2 0 + 0 1 20 121 32 25 12 26 46 14 0 10 18 3 0 0 126 91 4 6 + 126 76 0 0 18 18 4 21 126 100 1 0 0 0 0 14 37 7 9 13 + 24 12 3 22 4 1 6 18 126 18 0 2 94 61 2 5 45 4 0 1 + 126 45 0 0 0 0 0 8 +122.91 168.97 0.95 -0.674 + 0 0 1 25 117 19 0 0 6 0 0 34 133 38 1 4 109 0 0 1 + 15 7 4 49 26 1 1 10 8 7 29 29 0 0 5 67 128 32 0 0 + 11 6 4 85 133 32 0 1 133 27 5 14 21 2 0 14 53 5 2 40 + 36 11 7 19 0 5 27 133 64 28 4 1 25 2 3 112 133 15 0 4 + 133 10 1 6 19 1 0 36 62 3 0 2 16 13 7 26 1 1 1 11 + 76 59 19 7 19 1 0 4 133 76 3 3 133 17 0 0 7 10 4 12 + 54 8 2 1 8 6 0 3 +123.14 52.05 1.03 2.438 + 15 75 25 12 9 15 16 2 7 14 83 23 6 52 74 23 19 8 40 38 + 7 8 60 91 2 1 33 64 18 3 48 45 22 120 24 1 12 13 24 12 + 74 120 21 0 0 59 58 13 22 16 10 21 24 104 21 16 23 5 11 37 + 45 26 12 49 45 18 6 16 108 17 14 66 120 41 4 0 2 5 1 120 + 31 1 5 1 5 120 5 10 3 1 4 4 14 115 9 5 32 3 13 8 + 60 29 15 95 64 9 100 36 0 0 0 88 6 12 120 39 1 10 1 5 + 1 51 83 3 6 53 1 0 +121.62 39.90 0.92 1.460 + 0 0 1 60 30 0 0 0 54 10 27 101 17 0 0 23 35 5 12 7 + 0 0 7 65 5 2 21 3 0 0 1 11 5 2 1 113 116 0 0 0 + 116 29 8 72 46 0 0 27 58 11 57 106 1 0 0 19 3 16 107 48 + 11 0 0 0 16 2 1 116 116 10 0 14 116 28 5 59 44 1 0 76 + 48 17 26 116 52 1 3 53 33 13 17 21 82 30 9 39 32 0 0 14 + 116 22 1 24 91 2 0 47 59 4 1 70 88 17 3 44 37 2 2 72 + 25 4 2 60 94 12 4 36 +120.99 319.02 1.02 -3.139 + 44 0 0 0 0 0 0 0 203 0 0 0 0 0 0 7 113 1 0 0 + 14 1 0 7 33 1 0 3 56 2 0 1 56 0 0 0 0 0 0 0 + 203 1 0 0 0 0 0 8 136 2 0 0 17 0 0 6 43 0 0 1 + 71 2 0 2 59 0 0 0 0 0 0 1 203 2 0 0 0 0 0 5 + 135 3 0 0 18 0 0 3 45 0 0 1 73 1 0 1 47 0 0 0 + 0 0 0 1 203 3 0 0 0 0 0 4 106 4 0 1 14 0 0 0 + 38 0 0 2 55 0 0 1 +120.80 229.68 0.94 2.388 + 26 11 5 1 12 8 0 0 168 11 1 0 0 0 0 40 163 10 0 0 + 0 0 0 84 39 13 0 0 0 0 1 31 46 2 0 6 50 7 0 3 + 168 10 0 0 0 0 0 33 149 62 18 2 0 1 3 16 18 108 28 2 + 0 0 1 2 63 0 0 1 74 14 0 10 168 33 0 0 0 0 0 44 + 95 86 3 1 0 1 9 18 11 35 36 24 37 6 9 8 61 0 0 8 + 57 2 0 39 168 11 0 0 0 0 2 111 39 38 10 12 8 2 9 31 + 19 30 19 11 23 7 8 10 +120.37 159.51 0.94 1.323 + 2 1 118 25 0 0 65 29 0 1 118 46 1 9 66 16 8 2 116 54 + 0 7 52 45 3 0 59 22 0 0 103 82 9 7 21 7 8 1 64 74 + 5 9 26 118 63 26 56 20 118 70 30 40 7 8 24 45 99 5 0 0 + 0 0 36 77 23 35 3 2 13 7 0 4 11 9 4 37 118 118 18 11 + 118 15 4 8 12 33 26 97 118 16 1 0 0 0 0 14 5 52 62 3 + 0 0 0 0 11 29 49 38 26 13 4 7 86 36 6 3 4 6 8 77 + 27 33 22 2 0 0 0 10 +120.06 137.79 1.05 1.653 + 8 1 0 12 95 3 0 2 140 3 0 1 7 0 6 51 75 9 12 55 + 140 14 28 26 110 44 16 19 31 41 30 13 13 0 2 14 112 14 3 6 + 140 24 9 4 16 0 1 41 85 13 19 46 140 33 15 28 140 9 17 41 + 44 13 14 93 8 5 13 19 19 3 1 3 80 84 85 5 3 0 0 11 + 12 33 140 31 33 16 10 10 13 13 140 70 3 4 8 28 3 2 2 0 + 0 0 0 1 7 3 11 8 4 0 2 15 6 1 27 4 7 29 55 42 + 7 3 20 3 5 25 27 16 +119.98 134.99 1.11 1.549 + 7 4 0 1 14 11 9 3 43 10 4 1 2 3 72 57 6 25 41 10 + 10 22 134 15 3 27 60 2 0 53 67 1 21 4 0 2 85 8 2 2 + 134 13 0 2 32 4 18 41 70 26 20 48 134 22 38 13 134 40 11 9 + 32 72 39 10 19 1 1 6 100 21 2 3 134 37 13 4 31 2 1 11 + 73 13 29 22 134 48 16 32 134 10 29 73 36 8 8 53 5 2 12 19 + 23 5 1 2 52 51 62 6 3 0 0 4 6 14 134 33 15 10 8 6 + 4 4 87 56 2 1 5 9 +119.98 134.99 1.11 -1.589 + 1 1 5 8 3 4 86 56 14 10 8 6 6 13 134 32 3 0 0 4 + 50 51 63 6 22 5 1 2 6 3 11 18 35 8 8 53 134 10 30 75 + 134 48 17 33 72 13 31 22 32 2 1 11 134 37 14 4 98 20 2 4 + 20 1 1 6 33 72 38 11 134 40 11 9 134 21 36 13 71 26 20 48 + 33 4 17 41 134 12 0 2 85 8 1 2 21 4 0 2 0 54 67 1 + 3 27 59 2 11 23 134 15 6 25 41 11 2 3 73 58 45 10 4 1 + 15 11 9 3 7 3 0 1 +120.00 132.15 1.03 1.451 + 2 2 1 1 0 0 0 0 39 36 11 1 0 0 6 10 23 47 98 2 + 0 2 21 15 0 20 101 4 1 8 23 1 13 6 1 1 9 9 6 7 + 67 16 7 1 5 4 108 105 6 18 47 21 30 22 137 32 15 30 53 4 + 1 72 137 5 26 9 0 1 58 13 1 1 137 42 0 0 26 6 12 31 + 61 25 19 34 137 42 19 11 137 69 14 9 35 37 21 9 12 2 0 0 + 69 24 1 1 137 53 5 0 12 2 0 3 58 19 19 12 137 56 11 14 + 109 13 25 37 27 14 11 51 +120.00 132.15 1.03 0.112 + 18 6 2 43 53 1 2 16 80 1 4 54 62 2 0 84 39 23 133 43 + 13 9 26 83 5 65 130 5 14 51 26 6 15 28 51 67 34 0 0 1 + 133 20 7 31 31 19 18 64 23 17 55 27 23 90 133 17 18 42 45 5 + 13 37 133 29 12 6 16 11 4 1 0 0 109 97 91 6 2 2 4 8 + 10 84 133 1 0 8 45 2 0 34 133 23 14 13 51 2 3 0 4 4 + 1 0 1 4 6 5 16 4 0 7 38 13 0 8 44 2 0 10 54 0 + 3 14 47 2 0 3 31 5 +114.93 212.34 1.12 -1.497 + 45 42 19 9 5 0 8 49 26 48 109 16 5 0 3 22 117 117 19 0 + 0 0 0 2 14 34 25 21 4 0 0 0 36 117 76 14 19 2 1 2 + 75 65 73 20 26 8 10 84 112 97 26 0 0 0 1 82 8 41 82 32 + 4 1 0 0 49 96 51 1 1 21 25 42 117 105 57 1 0 1 4 53 + 38 79 117 3 1 2 2 17 15 61 62 13 16 5 4 13 30 100 2 0 + 0 3 7 17 91 104 10 0 0 0 1 20 85 38 12 1 1 3 6 17 + 31 23 22 3 3 7 12 47 +114.74 176.08 1.07 2.371 + 2 3 22 21 19 10 20 3 57 3 4 17 101 14 4 2 164 12 0 1 + 5 0 0 24 57 17 4 10 4 0 1 11 0 0 0 12 37 24 67 14 + 78 6 0 13 164 31 10 1 164 16 0 0 11 0 0 7 65 7 2 6 + 5 8 15 17 0 4 8 45 62 9 3 2 63 6 0 28 164 19 1 2 + 164 23 0 1 11 1 0 17 86 1 0 0 0 1 20 50 1 10 13 21 + 27 4 0 0 36 7 0 22 146 11 0 0 164 36 0 1 12 1 0 11 + 87 20 5 0 0 0 7 26 +114.82 119.31 0.89 0.467 + 17 0 0 70 51 0 4 29 46 0 0 82 52 0 0 79 22 1 1 116 + 72 1 4 47 10 0 0 4 17 16 13 48 47 0 0 63 47 0 0 79 + 35 3 3 124 124 0 0 42 124 13 7 72 39 1 1 42 23 1 0 29 + 53 13 3 18 51 0 0 80 70 0 0 82 35 3 0 124 124 0 0 12 + 124 48 4 21 18 0 0 10 22 13 5 32 71 7 2 4 22 0 0 119 + 105 0 0 26 10 3 0 77 74 0 3 12 49 95 9 1 1 0 2 5 + 33 45 9 3 10 7 6 11 +114.82 119.31 0.89 -3.076 + 0 0 1 1 14 68 20 0 14 0 3 9 11 25 12 0 141 1 0 3 + 9 0 0 5 90 0 0 5 106 0 0 3 18 18 5 5 10 56 46 5 + 24 1 0 0 85 141 28 2 141 1 0 2 30 13 1 15 109 0 0 17 + 119 0 0 4 81 26 2 3 10 8 2 6 37 8 0 3 119 117 3 6 + 141 0 0 2 52 36 3 42 100 0 0 14 116 0 0 7 34 22 5 1 + 4 1 0 8 17 23 9 28 73 7 1 1 141 1 0 9 52 3 2 25 + 71 0 0 12 88 0 0 6 +114.30 146.24 0.95 1.829 + 3 2 10 7 4 15 49 52 1 11 35 1 12 59 44 12 1 5 45 9 + 1 14 47 12 19 30 8 5 0 10 20 1 50 26 21 3 30 29 37 119 + 34 20 5 6 119 115 32 29 119 30 1 20 20 43 119 58 10 5 9 37 + 22 91 94 9 26 116 95 27 14 1 0 15 50 60 34 57 119 17 0 16 + 119 28 10 79 73 5 1 37 97 11 15 86 58 5 7 45 3 30 27 7 + 0 57 72 0 16 39 44 31 9 24 39 2 32 46 51 45 18 5 9 4 + 68 44 18 19 16 0 1 20 +114.30 146.24 0.95 -1.269 + 12 1 3 16 53 39 18 22 8 13 20 2 25 48 47 31 3 53 67 1 + 8 28 38 18 0 100 103 0 1 15 14 2 62 1 3 40 79 8 14 102 + 71 3 0 48 119 27 13 63 119 5 0 10 28 82 54 69 1 3 2 7 + 24 96 87 23 26 92 85 11 20 5 9 53 51 31 69 56 119 32 1 16 + 119 83 24 30 21 30 13 13 9 8 15 119 53 40 35 5 0 21 35 1 + 10 12 7 4 5 21 47 22 4 6 28 2 28 88 69 25 1 5 11 1 + 2 7 40 82 7 0 4 6 +113.51 215.01 1.07 -0.106 + 32 1 0 6 15 30 19 54 91 6 5 1 0 3 14 115 13 8 4 0 + 7 50 59 70 88 7 0 0 3 22 23 98 69 1 0 8 13 36 110 89 + 115 30 34 15 3 22 40 96 110 56 18 5 1 26 21 26 109 23 2 0 + 0 23 24 47 65 6 0 0 0 5 88 75 34 3 1 2 1 91 115 62 + 59 8 0 0 0 20 83 115 15 6 1 0 0 1 95 98 64 6 2 4 + 4 10 21 29 75 5 1 1 0 7 18 42 53 14 0 0 0 1 26 99 + 8 4 3 0 0 0 20 32 +113.51 215.01 1.07 -1.105 + 87 27 6 0 0 3 19 32 42 59 14 0 0 2 41 69 39 92 48 6 + 0 0 13 21 56 8 13 9 3 1 3 66 113 113 10 6 2 0 3 7 + 33 68 77 38 20 1 10 18 113 98 48 1 0 0 9 23 113 17 1 0 + 0 0 0 23 74 113 15 3 6 15 20 25 106 103 22 12 14 3 31 92 + 113 36 4 0 0 0 45 110 86 67 28 1 0 0 0 7 66 22 0 0 + 2 9 24 62 105 56 18 0 0 0 4 71 24 107 24 0 1 0 4 16 + 8 49 27 12 5 1 0 1 +113.51 215.01 1.07 -2.059 + 4 26 112 67 10 3 0 2 23 93 39 38 8 1 0 3 7 112 46 3 + 0 0 0 0 0 11 29 41 24 0 0 0 78 34 66 22 2 0 1 24 + 24 32 76 109 11 4 0 9 61 112 88 16 0 0 0 10 11 38 67 36 + 2 1 0 1 24 111 100 11 5 2 0 10 14 46 112 68 36 38 3 6 + 112 110 50 22 2 5 2 25 13 23 87 48 1 1 1 2 10 52 112 36 + 0 0 0 7 21 55 112 37 2 2 14 17 83 112 55 16 0 0 3 11 + 12 57 33 17 0 0 0 0 +111.50 251.70 0.93 -2.474 + 7 22 26 16 2 0 5 4 0 41 44 3 6 21 16 3 5 20 19 2 + 8 13 36 20 4 16 16 3 5 10 7 5 1 40 23 28 24 2 0 0 + 30 69 103 61 33 2 1 6 133 80 30 2 3 19 26 41 11 5 4 1 + 7 85 84 14 0 67 85 19 12 1 0 0 46 28 61 38 36 8 22 38 + 133 133 119 2 0 2 7 43 14 73 133 22 17 30 15 5 0 26 113 8 + 0 0 0 0 2 23 133 16 0 0 1 1 2 74 133 9 0 0 0 1 + 1 99 133 10 0 0 2 6 +111.38 54.86 0.89 2.332 + 1 4 128 50 0 0 14 20 7 94 111 3 1 10 23 8 38 100 10 0 + 1 39 3 1 11 10 2 0 0 60 9 3 0 0 7 8 8 5 64 128 + 18 22 3 35 93 49 58 23 128 82 2 7 15 6 2 5 47 5 0 0 + 0 68 9 4 0 0 0 93 40 1 11 91 38 2 2 128 105 2 3 14 + 128 6 1 12 7 0 0 66 55 0 0 0 0 11 1 13 0 0 0 128 + 38 0 0 5 61 0 0 74 19 0 0 66 128 0 0 0 0 0 0 112 + 18 0 0 5 1 0 0 9 +110.76 112.83 1.00 -0.080 + 10 22 19 7 8 33 44 14 83 29 8 3 37 24 16 16 94 10 0 0 + 122 13 0 1 65 6 0 0 122 16 0 3 7 33 45 15 15 38 11 5 + 109 32 25 11 38 15 5 29 112 9 0 0 122 24 0 5 93 7 0 0 + 122 20 0 3 3 23 40 5 4 40 55 3 86 52 7 3 25 15 48 51 + 97 13 0 1 122 23 1 9 96 11 1 2 122 16 0 0 22 48 26 0 + 0 15 55 18 51 15 1 0 20 8 42 55 54 4 0 0 122 22 3 7 + 81 7 0 1 122 23 0 0 +110.76 112.83 1.00 -3.064 + 123 0 0 5 46 11 1 21 123 1 0 15 96 0 0 12 85 3 20 30 + 19 1 0 7 0 11 47 48 37 32 3 0 123 0 0 10 79 7 2 32 + 123 1 0 20 110 1 0 18 59 14 55 60 74 23 2 8 0 48 59 10 + 19 44 19 0 123 2 0 17 80 0 0 25 123 1 0 21 104 1 0 16 + 45 6 3 51 108 26 17 9 18 34 10 5 6 28 41 8 123 0 0 10 + 72 0 0 22 123 0 0 13 82 1 0 15 24 31 14 28 70 18 16 7 + 15 38 23 8 15 30 18 6 +110.60 179.22 0.86 2.436 + 0 0 0 47 82 7 0 0 88 1 0 11 94 6 1 8 164 1 0 0 + 0 0 0 20 63 0 0 0 0 1 6 30 0 0 3 26 106 12 0 0 + 118 14 0 22 115 4 0 1 164 9 0 0 0 0 0 44 74 2 0 0 + 0 0 14 73 0 0 3 60 71 0 0 0 121 4 0 15 98 7 0 6 + 164 32 0 0 0 0 0 10 82 44 8 0 0 0 0 7 0 0 0 27 + 49 7 0 0 82 4 0 7 51 5 0 1 164 60 0 0 0 0 0 0 + 43 79 2 0 0 0 0 0 +109.34 134.86 1.07 -1.530 + 4 2 4 4 2 5 44 49 12 14 9 2 2 35 123 20 3 1 7 0 + 27 79 33 12 2 0 6 2 3 3 48 63 22 11 10 32 75 14 8 47 + 123 52 15 16 43 32 21 25 64 4 0 4 123 118 11 64 53 3 1 27 + 70 10 29 123 51 18 7 33 114 2 0 4 123 46 16 20 59 2 0 11 + 79 62 19 77 123 10 0 10 65 106 22 18 103 14 1 12 24 13 15 18 + 17 2 16 21 41 38 42 15 9 28 34 13 6 27 45 59 31 16 36 24 + 3 82 46 3 7 26 45 3 +109.48 132.42 0.89 1.302 + 0 1 28 31 25 4 12 7 3 34 56 30 14 0 6 8 2 14 61 36 + 20 5 6 2 9 1 6 25 28 10 15 13 10 3 93 35 5 24 42 4 + 81 10 19 23 5 15 61 110 14 7 16 10 71 115 66 29 90 32 2 6 + 29 25 7 15 32 16 2 0 10 115 103 9 115 42 0 0 16 77 21 31 + 62 22 0 0 115 115 7 11 93 32 0 0 76 55 2 3 96 44 0 14 + 57 39 4 3 56 89 3 35 102 32 1 1 42 115 21 5 86 49 1 0 + 21 4 10 14 48 68 27 18 +109.48 132.42 0.89 -1.371 + 15 5 4 46 73 2 2 16 125 25 9 18 19 3 1 52 54 2 0 7 + 125 56 5 30 22 0 0 2 52 17 18 125 43 7 4 54 99 0 0 10 + 125 21 8 16 22 0 0 51 70 18 11 114 125 4 0 13 125 53 2 26 + 46 2 1 50 21 8 11 24 17 10 39 25 81 78 75 19 6 27 18 11 + 14 37 78 125 55 7 15 5 49 125 23 17 18 8 9 0 13 0 0 1 + 0 9 37 39 1 1 10 5 10 81 26 11 5 2 11 5 2 29 64 53 + 1 32 8 0 0 67 60 3 +109.00 200.95 0.97 -2.666 + 11 18 125 92 0 0 0 2 76 30 125 36 0 0 1 51 32 4 16 15 + 10 38 21 62 25 0 0 17 32 12 8 54 64 10 79 49 0 0 0 16 + 125 36 14 5 1 1 1 103 49 12 32 36 31 25 7 50 8 1 30 106 + 39 3 2 14 65 7 2 1 0 0 1 90 125 86 52 17 2 0 0 50 + 16 34 125 104 7 1 2 7 20 10 66 54 3 2 11 27 19 19 2 0 + 0 50 72 40 39 46 20 12 4 22 21 32 12 3 21 15 5 5 105 84 + 15 2 3 0 0 0 59 125 +108.65 209.39 0.96 -0.839 + 1 2 1 6 8 1 1 2 16 56 11 0 0 0 11 20 127 127 20 0 + 0 1 13 10 127 29 4 6 0 0 7 36 14 0 0 1 4 5 3 10 + 68 1 0 0 0 6 37 91 127 62 1 0 15 33 57 32 127 127 15 21 + 8 1 3 14 27 1 0 0 4 35 7 3 127 23 0 0 1 4 5 19 + 71 23 0 0 23 42 71 73 127 67 2 0 2 4 36 127 4 0 0 0 + 1 63 79 6 109 15 0 0 0 28 27 17 127 8 0 0 0 0 15 64 + 63 39 2 0 0 0 8 68 +107.40 212.89 1.01 -0.684 + 15 4 0 2 5 0 0 11 96 30 0 0 0 0 3 94 74 20 0 0 + 0 0 9 102 69 55 9 1 2 11 13 43 10 13 2 2 1 1 4 10 + 81 134 12 0 0 2 13 16 134 87 3 0 0 1 6 92 54 12 4 1 + 1 22 80 76 33 0 0 0 0 1 13 57 74 16 1 0 8 31 71 55 + 134 95 6 11 4 5 6 57 47 80 41 39 4 2 11 21 92 1 0 0 + 0 4 3 21 66 6 0 0 22 30 40 36 134 81 3 3 10 11 43 134 + 38 28 7 11 4 9 75 67 +107.69 11.70 1.05 1.566 + 0 4 48 31 0 1 0 0 7 37 39 14 0 0 0 0 2 3 15 7 + 0 0 1 5 0 2 26 38 2 1 4 2 34 32 121 95 48 13 1 7 + 121 117 55 48 35 6 1 11 32 17 94 121 75 7 1 1 7 14 121 121 + 9 3 3 4 41 5 3 2 42 54 110 39 121 6 0 4 39 42 64 96 + 32 5 7 31 116 121 64 11 7 4 12 24 11 30 121 30 0 0 23 0 + 0 12 78 7 8 2 27 0 0 8 46 41 3 1 27 0 1 40 38 7 + 0 0 22 1 0 10 85 8 +106.65 136.44 0.95 -1.497 + 0 0 1 1 7 43 12 11 1 3 5 0 0 4 71 41 2 3 15 0 + 0 22 125 12 0 4 14 0 6 41 26 1 11 0 0 1 63 125 11 50 + 19 17 21 43 43 5 34 86 119 62 20 12 15 47 76 28 17 0 0 0 + 101 125 25 25 31 17 10 96 70 26 3 13 58 14 4 46 125 3 1 14 + 125 22 4 12 44 7 0 31 59 10 0 26 125 39 1 26 58 27 20 71 + 9 0 0 1 47 14 11 38 91 2 7 8 125 59 36 19 21 2 4 7 + 23 34 31 80 90 0 1 0 +106.53 133.89 1.05 -1.500 + 12 1 0 0 38 122 18 23 11 7 9 18 16 10 43 85 51 35 12 8 + 9 43 102 22 8 0 0 0 53 96 27 19 43 10 7 87 86 53 4 19 + 46 17 8 48 125 9 3 29 125 33 8 18 58 15 2 31 65 9 0 16 + 125 59 2 43 59 25 33 125 11 0 0 3 69 25 17 51 117 2 6 8 + 125 64 39 27 43 2 6 11 42 56 34 90 117 1 2 1 10 10 8 7 + 0 0 11 16 28 10 12 12 5 4 35 50 14 23 32 10 4 52 46 16 + 4 10 27 28 9 21 44 33 +103.48 188.90 0.97 -0.838 + 11 0 0 0 153 93 0 2 139 12 0 0 20 8 0 46 49 15 11 14 + 1 0 2 45 3 0 1 16 19 19 11 4 8 0 0 0 153 103 0 3 + 153 12 0 0 51 19 1 41 64 11 6 1 1 6 5 29 28 1 0 1 + 21 18 7 17 4 0 0 4 153 82 0 0 153 39 0 0 93 22 0 8 + 72 39 0 0 0 3 1 16 25 10 4 11 37 5 2 21 0 0 0 20 + 153 38 0 0 73 41 0 1 112 16 0 0 82 53 0 0 0 0 0 0 + 18 10 3 7 14 10 1 2 +103.28 96.07 1.07 1.774 + 49 81 51 16 0 0 0 8 0 27 106 13 0 0 0 0 2 39 74 6 + 0 0 1 0 0 15 26 6 1 0 0 0 34 34 51 103 14 4 4 33 + 97 66 100 24 4 4 19 61 27 47 75 62 25 13 49 37 16 28 99 37 + 3 4 27 25 25 8 9 28 14 84 76 46 106 74 13 19 16 66 62 51 + 78 36 25 106 87 58 26 27 97 47 24 40 17 10 31 48 88 13 7 5 + 0 32 31 54 7 3 1 0 1 43 106 30 12 5 0 1 11 106 91 17 + 17 18 7 12 9 38 78 25 +103.28 96.07 1.07 -1.900 + 1 2 37 12 0 0 5 6 0 2 57 84 10 3 1 0 1 20 108 68 + 53 44 6 3 28 16 55 56 24 23 11 30 9 25 108 77 23 48 15 3 + 84 51 88 70 36 64 36 21 11 32 73 43 69 108 30 8 85 11 14 28 + 43 21 11 54 39 12 14 35 72 90 35 31 108 26 20 34 48 51 27 68 + 10 4 12 44 85 60 87 80 28 0 0 0 9 32 98 108 19 9 18 33 + 12 4 38 71 5 1 3 7 6 22 71 81 0 0 1 4 1 6 63 80 + 0 0 0 0 0 2 20 25 +102.39 186.21 1.05 2.483 + 0 0 0 5 58 12 0 0 58 0 0 1 93 19 0 7 166 45 0 0 + 3 1 0 23 108 66 0 0 0 0 0 9 0 0 0 9 59 15 0 0 + 88 0 0 3 132 16 0 8 166 3 0 0 5 0 0 78 113 30 0 0 + 0 0 0 43 1 4 3 31 40 4 1 0 114 2 1 46 112 2 0 3 + 166 7 0 1 3 0 0 24 73 18 12 12 1 0 0 30 0 0 2 35 + 48 7 6 3 108 5 0 38 75 1 0 1 166 22 0 0 0 0 0 8 + 43 19 5 3 1 1 2 10 +100.08 51.96 0.98 2.953 + 0 2 70 27 0 0 2 7 2 34 58 12 39 9 0 0 3 6 5 6 + 98 33 8 3 2 6 35 26 10 31 71 5 10 17 128 73 0 0 0 2 + 128 128 98 19 17 1 0 8 39 17 7 19 126 11 1 2 5 4 30 93 + 27 6 28 22 13 2 21 5 0 0 49 117 128 11 2 0 11 3 21 128 + 37 0 0 3 128 27 4 20 23 18 4 7 30 30 26 34 0 4 60 11 + 0 0 82 128 9 42 74 10 9 1 22 105 10 13 5 2 102 19 2 10 + 13 7 7 13 25 39 10 10 +98.24 277.31 1.00 0.740 + 10 1 0 2 57 14 1 12 32 3 0 0 6 17 50 63 1 2 2 0 + 6 36 54 16 3 4 14 8 7 12 20 38 33 12 2 11 94 7 2 3 + 157 33 5 10 10 19 16 25 9 1 5 34 59 76 24 32 13 0 4 4 + 19 6 4 157 32 5 0 7 125 26 2 3 150 55 45 29 9 4 1 26 + 35 5 28 69 17 2 3 157 18 0 0 1 2 0 2 157 3 2 1 13 + 57 54 2 12 29 18 10 2 7 12 4 157 30 0 3 1 0 0 1 157 + 5 0 0 0 0 1 2 60 +97.87 11.33 1.04 1.393 + 0 0 7 20 4 2 10 3 7 28 31 25 4 0 2 2 2 7 67 54 + 10 0 1 1 0 26 92 6 0 0 0 0 3 4 81 123 27 0 1 1 + 123 89 56 100 40 5 0 7 41 13 69 72 123 44 3 3 24 70 114 22 + 13 6 14 9 9 7 46 74 28 15 72 29 123 7 2 21 22 7 54 103 + 56 2 0 0 123 111 51 23 6 3 1 4 13 24 123 41 0 0 1 0 + 1 17 123 39 13 0 5 3 0 2 82 64 6 0 15 4 5 25 29 17 + 0 1 26 5 0 3 59 16 +97.87 11.33 1.04 -1.565 + 0 19 99 3 0 1 16 0 7 30 59 8 1 2 20 0 3 8 37 26 + 3 0 22 1 0 8 85 9 0 0 19 1 9 39 123 15 17 8 8 12 + 123 76 83 16 18 0 1 3 41 10 62 123 123 0 0 6 9 21 123 39 + 11 3 10 25 7 2 6 5 30 106 117 15 123 8 3 8 34 19 76 83 + 39 1 1 53 123 53 44 84 8 2 3 7 11 12 117 123 0 0 0 0 + 0 26 58 3 5 0 1 1 7 14 56 42 2 0 0 1 17 40 50 38 + 2 1 4 1 0 1 25 44 +96.16 174.67 0.98 1.308 + 80 56 2 4 25 23 12 16 47 30 2 0 0 6 48 56 39 1 0 0 + 0 3 64 72 6 1 4 21 4 16 102 9 52 103 6 11 88 77 18 17 + 114 114 16 4 0 1 12 46 36 9 71 65 0 0 3 31 3 3 89 114 + 3 0 0 0 15 3 2 8 26 110 50 19 75 56 63 19 8 25 31 25 + 5 14 114 114 9 2 0 0 2 6 97 114 8 0 1 3 1 17 59 14 + 1 8 7 4 0 8 40 39 58 23 14 0 11 16 64 109 114 13 3 4 + 54 26 40 23 5 1 11 33 +96.16 174.67 0.98 -3.063 + 65 10 4 10 1 0 4 50 8 4 21 79 17 14 6 5 2 23 122 85 + 23 24 37 22 2 45 116 21 2 10 38 19 47 122 61 13 1 0 1 11 + 75 16 9 29 9 42 53 73 5 1 1 9 18 107 122 82 0 2 3 12 + 28 62 104 42 122 59 8 0 2 7 17 61 122 36 0 0 0 6 7 29 + 35 4 0 3 29 73 34 10 0 0 0 30 77 62 8 1 62 36 2 3 + 10 18 7 18 122 63 0 0 0 0 0 9 48 15 0 13 26 18 12 6 + 0 0 0 100 122 17 2 0 +94.92 180.49 0.90 -1.946 + 1 0 0 0 14 115 39 22 6 4 2 7 15 80 42 15 30 13 2 1 + 1 51 90 44 1 0 0 0 5 115 96 4 0 0 37 49 47 36 2 4 + 15 25 27 107 115 40 4 4 115 98 18 14 6 18 8 25 36 4 0 0 + 1 67 94 33 2 1 26 61 57 4 0 2 16 4 9 33 94 57 82 46 + 115 18 2 1 4 11 71 115 54 26 25 0 0 2 25 28 8 6 11 19 + 18 9 31 38 17 0 1 2 1 3 74 115 6 1 0 0 1 4 108 115 + 3 7 11 8 48 41 54 21 +93.12 304.12 0.97 -0.795 + 16 19 49 50 19 5 1 58 66 93 15 11 1 0 0 43 37 45 5 1 + 1 1 1 13 0 1 2 1 2 12 2 0 17 4 18 62 17 19 15 99 + 115 43 33 56 10 6 1 54 69 27 54 108 1 0 0 46 28 46 34 12 + 0 0 0 6 3 1 3 14 63 115 82 3 115 97 43 33 74 56 9 18 + 39 40 52 115 2 0 11 115 47 18 8 5 0 0 6 115 0 0 0 0 + 57 81 18 0 17 17 6 4 67 115 84 95 18 6 2 0 0 0 17 115 + 0 0 0 1 2 0 2 31 +93.13 257.53 1.08 1.267 + 78 30 0 0 1 1 0 5 120 120 4 0 0 0 0 1 111 106 16 0 + 1 8 1 7 23 21 10 27 24 20 12 11 52 22 0 0 1 3 0 9 + 120 57 12 1 0 0 0 48 111 98 84 15 0 0 0 6 19 95 32 29 + 24 1 0 0 25 38 1 0 6 68 31 6 89 120 73 4 0 4 20 24 + 51 95 120 17 1 2 2 15 25 120 57 18 6 3 1 2 15 4 2 3 + 7 61 120 23 10 18 7 5 30 81 86 8 36 84 27 2 12 18 2 7 + 14 52 63 9 2 2 0 1 +91.84 113.33 1.11 0.050 + 8 17 21 18 27 18 64 18 78 18 14 9 7 17 30 24 55 8 0 41 + 113 0 0 11 89 0 0 45 102 0 0 25 6 33 72 21 22 10 10 6 + 105 42 49 15 15 6 2 33 88 7 0 27 119 1 1 29 95 0 0 49 + 119 0 0 27 5 18 23 10 13 71 64 18 119 44 10 14 23 42 18 28 + 100 8 0 33 119 0 0 22 66 0 0 62 119 0 0 17 4 13 46 39 + 15 10 8 7 75 18 17 23 28 9 5 42 93 6 1 37 88 0 0 11 + 44 0 0 58 119 0 0 4 +92.30 52.86 0.95 3.035 + 0 2 18 1 0 0 119 126 17 15 24 2 10 1 45 126 7 3 1 2 + 125 9 4 18 12 10 3 1 26 37 16 15 2 19 126 22 0 3 34 28 + 103 126 126 12 6 0 6 13 39 27 5 7 115 6 0 3 13 6 14 34 + 32 21 7 13 4 4 44 4 0 47 126 11 126 28 13 2 6 13 101 126 + 51 3 0 16 99 2 2 21 9 7 8 11 18 6 15 29 0 2 1 0 + 0 28 102 4 2 0 0 0 21 8 72 56 6 0 0 7 103 4 3 13 + 8 6 21 10 14 25 3 9 +90.58 242.95 1.02 1.065 + 2 0 0 0 0 18 28 4 56 4 1 0 0 2 10 109 115 25 0 0 + 3 28 23 120 45 8 0 0 10 67 26 40 14 2 0 3 18 21 13 5 + 121 16 0 1 1 1 14 121 98 18 0 0 1 4 33 119 46 4 0 4 + 9 33 54 32 10 18 10 63 41 6 0 0 121 121 10 11 1 0 0 9 + 121 100 1 1 1 0 3 49 33 4 7 54 25 5 9 29 4 8 8 103 + 5 0 0 0 121 121 6 9 0 0 0 0 121 121 4 2 1 0 0 4 + 25 23 6 14 29 24 9 8 +89.94 46.52 1.04 -1.100 + 19 12 28 114 7 1 6 39 50 31 41 16 6 11 7 43 0 82 24 4 + 13 15 2 1 0 56 11 1 19 81 37 3 14 1 15 61 60 2 27 114 + 111 18 59 34 36 5 13 73 27 19 13 13 74 23 17 29 24 58 26 5 + 7 14 9 7 8 0 3 62 114 21 14 43 114 40 2 17 78 15 4 29 + 56 18 19 98 114 22 3 15 26 30 84 26 13 12 24 43 0 0 0 9 + 28 75 47 4 50 3 1 22 62 32 65 74 54 4 8 114 94 15 7 85 + 31 5 14 39 8 5 40 114 +88.99 132.53 1.04 0.043 + 1 0 1 1 0 2 0 1 10 22 29 4 1 3 17 15 1 19 116 6 + 0 0 73 101 4 9 85 12 10 10 109 88 14 3 2 3 0 0 0 2 + 116 15 2 4 0 0 55 116 15 7 42 45 2 0 116 116 1 3 37 116 + 49 5 58 53 13 7 1 3 4 0 0 0 116 116 51 10 2 0 3 20 + 26 116 106 76 12 3 7 25 9 20 26 40 116 34 2 12 4 0 0 1 + 6 1 0 3 29 26 14 3 11 13 22 54 7 116 45 8 27 23 14 8 + 15 91 34 10 32 30 1 1 +88.99 132.53 1.04 -0.920 + 18 13 26 134 33 0 0 15 134 1 2 56 16 1 1 76 70 1 2 22 + 134 87 9 30 0 1 0 2 38 89 50 6 23 11 22 35 10 1 2 12 + 134 44 8 9 19 2 1 62 67 23 34 89 114 37 5 9 13 12 74 71 + 7 60 52 5 8 10 3 1 2 0 0 2 66 134 86 9 6 2 0 6 + 16 48 134 134 28 7 2 10 11 6 83 76 6 30 29 19 0 0 2 2 + 4 0 0 0 0 8 13 1 2 4 0 0 18 24 19 9 0 7 2 5 + 38 78 2 0 6 35 23 14 +88.68 229.97 1.11 1.993 + 0 0 8 49 44 7 0 0 87 0 0 13 48 9 0 9 181 16 0 0 + 0 0 0 25 157 98 0 0 0 0 0 9 0 0 2 54 50 4 0 0 + 107 9 1 19 30 5 0 4 181 25 0 0 0 0 0 16 112 58 6 1 + 1 1 0 9 0 0 2 40 20 6 2 3 81 1 2 10 5 2 14 53 + 181 23 0 0 0 0 1 34 99 25 1 3 2 2 4 17 3 0 0 0 + 11 15 17 14 56 8 0 0 0 0 26 69 181 21 0 0 0 0 2 48 + 67 50 11 11 1 0 0 0 +87.49 158.43 1.01 2.470 + 0 0 0 6 72 30 3 0 3 56 3 6 50 58 1 0 48 137 1 0 + 3 46 5 5 9 102 1 0 1 137 8 0 0 0 10 31 54 16 0 0 + 14 10 5 49 122 18 1 0 118 83 4 9 9 13 35 38 18 137 5 0 + 1 63 32 7 0 1 24 93 27 2 0 0 39 4 10 118 68 0 0 8 + 137 11 0 6 9 9 15 53 42 35 3 0 1 105 36 8 0 0 0 69 + 72 1 0 0 70 3 6 53 21 0 0 46 137 1 0 0 0 1 1 109 + 30 4 0 0 2 21 5 14 +86.24 159.33 1.12 2.363 + 0 0 0 5 59 37 1 0 10 34 4 11 57 45 4 3 37 128 11 2 + 2 22 24 19 1 128 22 0 0 128 28 1 0 0 19 62 35 8 0 0 + 40 14 4 77 122 5 0 2 128 48 2 5 10 19 39 32 18 92 20 0 + 1 95 52 4 0 0 6 64 87 10 0 0 71 4 6 94 53 0 0 20 + 128 9 1 2 2 2 1 73 42 8 1 0 2 44 16 11 0 0 0 41 + 120 0 0 0 113 1 0 23 52 0 0 66 128 0 0 0 1 1 4 121 + 22 0 0 0 4 4 14 27 +85.77 138.27 0.97 2.547 + 14 55 50 0 0 0 4 2 38 119 28 2 8 6 19 12 61 13 0 22 + 29 9 24 81 10 0 0 107 109 23 4 10 3 6 5 2 1 0 0 2 + 119 71 3 2 0 0 0 60 119 20 5 119 70 0 3 51 1 0 0 119 + 105 0 13 37 4 2 0 4 0 0 0 0 98 119 17 5 0 0 0 12 + 41 68 42 119 47 5 21 57 2 0 4 54 19 3 71 119 0 0 0 0 + 0 0 0 0 10 32 3 1 0 0 1 0 92 103 9 4 1 0 10 45 + 19 31 37 95 13 4 12 63 +85.77 138.27 0.97 -1.211 + 1 0 0 0 0 60 66 2 0 0 0 2 1 28 22 0 1 0 0 0 + 0 5 6 1 3 0 0 0 0 0 0 2 35 5 1 40 87 89 62 31 + 50 8 2 22 39 84 108 39 5 0 0 0 39 131 73 8 4 0 0 0 + 7 9 2 1 44 4 3 131 131 1 0 21 131 28 3 33 47 22 16 24 + 45 3 0 4 131 131 39 8 0 1 0 1 14 64 98 21 20 5 14 105 + 95 1 0 1 131 68 0 7 12 2 0 1 60 26 5 30 85 52 8 0 + 7 13 19 57 12 28 51 6 +82.46 58.64 1.18 -2.478 + 0 1 0 0 57 118 0 0 96 92 0 0 22 44 0 0 106 78 0 0 + 4 26 0 0 0 2 0 0 22 118 11 0 0 35 44 6 68 94 0 0 + 83 34 3 5 118 108 0 2 118 71 0 0 5 3 0 5 8 1 1 23 + 4 21 10 0 0 87 96 17 20 74 5 2 50 13 44 52 85 21 16 85 + 118 6 8 23 5 1 2 94 7 1 11 74 4 3 3 5 1 3 6 3 + 1 118 55 12 4 1 12 16 1 12 68 118 14 0 16 26 0 0 12 69 + 0 0 6 20 7 12 11 28 +80.99 132.61 1.02 1.454 + 0 1 0 2 1 0 0 0 0 3 7 3 1 0 12 4 0 2 10 1 + 0 2 12 3 1 1 8 4 0 0 9 8 12 4 0 2 12 27 7 7 + 77 10 1 1 6 17 111 97 7 1 1 2 91 92 98 20 85 15 1 3 + 16 5 26 54 27 9 0 1 47 141 1 1 141 42 0 0 30 29 13 28 + 47 4 0 1 141 95 12 8 141 23 0 1 46 11 3 10 10 36 13 5 + 71 141 1 1 141 56 9 4 42 56 4 6 46 21 25 16 141 56 18 2 + 67 15 12 10 23 23 49 22 +80.99 132.61 1.02 -1.440 + 12 7 22 49 135 3 1 4 135 34 25 5 14 2 12 43 59 12 3 31 + 135 23 18 16 118 52 3 8 31 29 24 17 33 1 8 58 135 4 0 9 + 135 23 14 16 27 0 0 41 54 12 12 93 135 2 0 4 135 129 1 8 + 36 4 0 0 16 9 23 27 18 1 4 5 75 88 112 18 6 2 1 8 + 6 16 91 91 87 3 1 1 65 66 6 3 12 2 1 3 0 0 1 1 + 0 2 7 0 0 2 13 1 0 7 6 0 1 2 11 2 0 2 3 5 + 2 6 5 1 1 1 0 0 +77.75 215.78 1.06 1.650 + 3 8 2 6 28 21 17 5 9 24 4 2 9 89 6 1 2 28 23 4 + 36 95 2 0 1 35 68 9 11 6 2 0 1 1 2 22 101 26 38 13 + 127 38 11 24 60 32 10 17 45 1 0 0 79 127 20 14 3 6 3 0 + 18 62 66 9 5 0 0 10 127 84 15 17 127 16 0 10 80 40 9 18 + 110 15 0 0 83 127 7 6 0 1 0 0 27 96 53 11 11 17 1 0 + 41 127 15 3 70 15 0 0 11 116 113 29 44 27 2 10 51 24 31 18 + 2 7 3 21 71 22 4 2 +77.75 215.78 1.06 -0.928 + 34 58 14 3 3 4 2 2 82 23 8 0 3 4 4 50 36 30 26 18 + 31 2 15 52 12 94 26 7 5 15 29 3 33 90 32 9 3 2 0 0 + 128 47 10 15 5 0 0 24 50 16 14 128 119 1 0 15 128 125 19 47 + 19 0 0 17 67 18 1 0 8 40 11 21 128 46 12 61 23 1 0 14 + 28 9 8 128 90 4 8 89 128 14 13 14 3 0 0 128 34 6 0 0 + 47 54 9 4 100 32 1 10 23 7 1 2 27 16 5 11 25 12 9 66 + 24 29 40 2 0 0 4 50 +77.75 75.78 0.94 -2.031 + 12 0 0 0 85 27 0 1 126 7 0 0 12 1 0 13 42 1 0 12 + 126 7 0 5 121 3 0 3 23 5 6 43 12 1 0 0 126 13 0 0 + 126 11 0 0 12 4 0 4 67 3 0 0 126 79 2 5 126 32 0 0 + 29 22 2 9 8 1 0 0 126 17 0 0 126 18 0 0 9 3 0 2 + 105 5 0 0 31 118 20 7 62 4 0 0 8 60 52 65 3 0 0 0 + 126 10 0 0 126 18 0 0 10 0 0 0 123 12 0 0 0 11 7 0 + 1 0 0 0 0 9 22 12 +76.27 222.89 1.03 -2.413 + 0 8 29 34 29 23 13 1 20 23 10 4 13 8 22 78 10 1 2 3 + 0 0 56 118 0 2 24 5 0 3 89 41 15 51 105 99 14 38 36 9 + 118 118 28 5 1 4 14 69 62 3 18 107 17 3 4 53 0 12 118 118 + 13 15 4 3 11 6 13 29 14 74 81 20 118 89 11 6 1 9 23 58 + 32 55 24 67 38 26 29 4 0 9 29 38 20 118 71 0 0 3 8 14 + 10 35 37 0 24 74 6 1 6 16 16 5 6 74 79 10 3 1 5 2 + 0 31 118 9 2 33 11 0 +76.61 197.71 0.97 2.241 + 10 20 26 100 36 0 0 3 87 128 39 33 16 4 0 15 6 14 54 128 + 51 11 3 1 4 3 41 93 14 2 3 3 44 29 17 85 128 6 0 6 + 128 61 12 25 42 8 1 25 12 2 6 83 128 18 0 1 29 25 20 16 + 18 2 4 8 69 17 1 24 128 39 0 14 128 60 29 94 29 7 0 25 + 4 3 29 128 73 5 0 1 9 36 39 20 3 0 0 6 19 8 0 15 + 70 62 17 10 60 23 6 31 46 32 13 32 2 2 4 38 73 35 9 15 + 5 3 4 14 5 1 10 25 +76.61 197.71 0.97 -1.511 + 47 56 12 4 5 2 1 7 29 41 24 12 41 70 18 9 46 119 21 2 + 21 66 14 3 30 113 2 0 4 60 9 1 45 31 8 11 16 3 4 18 + 119 42 3 0 13 50 19 63 31 39 5 0 92 119 36 20 119 100 1 0 + 3 27 16 18 26 4 0 0 3 10 40 39 119 119 2 0 4 8 2 22 + 46 67 3 0 38 119 29 9 73 11 0 0 24 66 64 30 3 3 7 9 + 12 21 29 11 77 26 1 1 6 10 5 48 119 32 18 4 4 15 33 77 + 12 43 19 1 3 58 119 25 +74.75 226.21 0.94 1.941 + 0 50 35 1 4 47 14 0 8 2 50 27 6 60 83 9 5 2 21 97 + 73 12 15 3 9 13 5 58 37 3 2 4 3 113 100 20 6 0 0 0 + 4 22 125 125 52 3 1 0 46 54 125 125 21 7 3 8 36 8 1 32 + 10 12 4 27 15 25 13 14 21 15 25 43 19 14 16 76 125 125 28 16 + 125 48 15 12 15 59 29 58 47 16 1 0 5 54 19 17 53 16 2 1 + 1 8 13 25 5 0 0 3 24 125 30 7 38 10 0 0 5 62 81 85 + 9 6 2 12 33 25 30 28 +74.75 226.21 0.94 -2.180 + 12 18 27 6 4 10 7 6 0 4 46 35 35 33 14 0 7 21 9 14 + 47 17 21 18 4 10 4 5 1 0 50 42 0 6 80 82 76 28 7 0 + 19 79 126 98 17 37 12 3 126 126 33 5 6 6 32 80 26 0 4 4 + 0 0 68 126 0 4 26 35 54 70 44 2 36 23 28 27 23 126 94 49 + 126 53 7 5 0 7 28 126 46 5 33 100 12 6 1 40 1 3 21 17 + 10 39 24 4 25 15 18 13 14 34 17 8 112 99 7 4 1 1 3 20 + 11 43 14 32 16 31 17 2 +73.84 138.31 0.98 3.039 + 28 6 0 0 0 0 0 0 135 68 16 23 27 2 0 0 4 9 136 64 + 63 19 25 1 0 2 134 31 1 2 49 7 18 3 0 0 1 4 0 1 + 136 36 1 3 11 5 27 64 22 10 20 4 28 32 136 73 0 1 22 14 + 5 20 136 30 18 1 0 0 1 2 1 1 136 49 18 11 4 0 4 22 + 48 81 136 50 15 1 36 25 9 42 123 97 31 5 28 4 10 4 0 0 + 0 0 1 1 101 47 9 7 12 0 0 0 23 47 41 36 66 3 0 0 + 15 35 58 38 24 0 0 0 +73.84 138.31 0.98 1.688 + 10 0 0 30 129 4 3 5 129 2 0 4 18 1 4 75 86 0 3 30 + 118 52 23 41 0 4 30 31 53 49 22 0 6 2 32 33 129 57 54 7 + 129 27 14 9 9 12 42 76 84 14 28 109 129 29 5 10 0 0 32 71 + 57 46 30 0 0 11 129 18 5 10 9 0 34 107 129 12 1 4 6 8 + 9 56 129 30 45 17 6 0 0 6 83 30 21 31 31 0 0 1 8 0 + 0 0 1 1 0 7 17 0 0 0 3 3 2 12 40 0 0 0 0 1 + 0 4 35 9 2 0 0 0 +73.85 132.60 0.95 1.413 + 0 0 8 3 0 0 0 1 16 12 8 5 0 0 7 5 69 78 10 1 + 0 0 9 20 6 18 18 40 42 14 3 4 11 3 3 3 20 26 18 13 + 65 11 3 1 2 5 120 123 16 24 10 15 43 30 132 62 2 5 35 38 + 29 27 23 8 31 12 0 4 132 61 6 2 132 56 0 1 12 11 17 43 + 60 6 6 26 132 131 50 15 0 0 25 42 60 60 45 1 14 1 0 0 + 132 60 18 7 132 56 1 0 8 5 18 21 70 32 10 45 132 37 5 0 + 0 0 13 52 54 29 39 3 +73.85 132.60 0.95 0.077 + 9 19 33 32 16 20 16 9 28 7 8 21 35 32 21 21 22 0 0 4 + 47 39 49 44 23 0 0 0 17 42 48 33 15 24 79 37 2 0 0 1 + 136 32 23 19 8 18 38 52 39 18 24 1 14 53 136 105 12 1 15 4 + 26 104 120 40 17 5 3 3 15 2 0 1 136 118 98 3 1 1 6 13 + 14 102 136 4 0 4 32 12 10 42 136 21 7 18 31 3 8 1 0 3 + 8 1 2 7 15 11 22 3 1 13 88 37 1 16 66 3 0 18 136 6 + 57 23 42 1 6 12 68 32 +72.69 267.68 0.99 1.043 + 126 4 0 0 0 0 1 101 112 9 1 0 0 0 29 102 32 7 10 13 + 22 76 65 43 38 50 1 1 14 78 23 9 126 30 19 10 0 0 0 32 + 126 54 13 9 10 0 0 12 75 18 21 41 47 8 1 7 44 9 2 9 + 28 43 15 14 126 7 5 9 3 4 25 77 126 20 22 24 10 1 9 84 + 103 13 22 30 33 6 12 90 31 4 2 9 48 41 19 49 126 21 10 4 + 0 0 6 42 35 41 51 14 7 2 2 25 126 45 15 19 12 5 4 40 + 23 16 16 72 54 11 5 11 +67.07 257.98 1.05 2.848 + 0 0 0 0 26 121 48 0 5 0 0 0 21 121 26 15 121 1 0 0 + 1 11 9 121 65 6 11 3 2 10 11 85 0 0 1 38 121 69 9 0 + 28 0 0 20 112 75 20 12 121 24 1 1 9 9 7 64 38 18 31 23 + 5 0 0 8 0 0 9 69 81 29 110 19 6 2 10 23 40 105 120 10 + 111 43 10 2 9 46 26 19 16 26 41 58 7 0 0 0 1 0 21 70 + 76 22 58 22 23 17 26 69 65 32 37 52 13 7 7 6 20 83 22 17 + 1 3 41 39 19 15 0 0 +65.18 277.05 1.03 -2.675 + 1 1 0 107 70 0 0 0 43 1 2 132 132 0 0 39 52 2 1 15 + 16 22 21 89 35 9 0 1 5 17 9 15 3 1 0 132 132 0 0 0 + 132 15 2 132 78 0 0 49 71 12 8 24 11 2 0 27 12 9 3 6 + 11 3 4 7 9 1 0 132 132 5 5 3 132 72 5 29 20 3 3 8 + 53 55 25 11 1 0 0 11 20 9 1 1 8 9 4 15 5 0 0 72 + 82 25 18 37 51 66 3 4 38 18 6 3 71 84 2 0 0 0 0 8 + 20 42 2 1 4 6 3 12 +62.85 269.90 1.00 -2.070 + 132 10 2 15 11 5 2 75 117 41 19 2 0 0 16 72 29 9 10 18 + 8 3 13 39 33 25 11 26 12 4 4 12 132 24 0 5 2 0 0 77 + 132 27 0 1 1 3 34 88 21 1 1 22 72 33 31 27 27 28 12 23 + 42 7 1 11 132 12 0 0 0 0 10 132 132 28 18 24 3 0 3 49 + 27 29 34 68 71 31 5 2 11 62 25 20 69 65 2 0 95 40 0 0 + 0 0 8 99 36 12 14 30 30 29 11 49 40 93 52 39 26 43 10 0 + 12 41 48 15 67 80 1 0 +62.17 219.53 0.90 1.159 + 0 0 0 0 0 73 55 1 114 7 0 0 0 35 38 28 125 38 1 0 + 0 0 3 43 125 32 0 0 0 0 8 66 8 0 0 0 3 78 56 18 + 62 1 0 0 3 101 37 23 125 20 0 0 0 1 4 59 125 32 0 0 + 0 0 0 74 1 1 18 14 8 35 29 13 17 7 22 39 23 75 16 4 + 125 92 5 1 1 4 4 6 117 125 3 0 0 0 0 1 3 2 5 6 + 7 76 50 5 1 9 15 23 14 125 28 0 29 125 25 6 13 33 5 0 + 40 125 27 7 3 0 0 0 +61.67 174.69 0.93 0.550 + 9 71 49 74 32 2 14 8 40 6 8 88 50 1 3 21 87 35 31 31 + 5 4 35 43 2 4 41 80 30 18 23 11 31 82 77 45 2 1 4 3 + 121 23 14 33 3 5 30 105 23 17 27 39 31 109 67 39 6 4 36 40 + 10 28 55 121 25 13 20 17 3 19 87 30 121 108 17 10 1 6 20 40 + 33 35 14 35 23 33 43 94 10 4 2 1 3 9 49 121 7 8 16 38 + 5 6 52 41 58 33 10 7 0 1 46 121 45 14 3 2 0 0 15 121 + 6 11 31 9 1 0 5 37 +59.56 235.76 0.98 -1.529 + 27 3 0 0 0 0 0 5 128 4 0 0 0 0 0 44 88 8 2 4 + 16 29 10 64 62 3 4 3 9 17 17 122 30 5 0 0 0 2 2 2 + 128 9 0 0 0 0 0 64 97 16 1 0 2 2 16 112 128 2 0 0 + 1 2 12 128 32 3 2 0 0 2 0 3 128 72 1 0 0 0 0 18 + 105 128 5 0 0 0 2 28 128 72 0 0 0 0 0 25 27 6 1 0 + 10 38 15 3 128 15 0 0 0 0 3 48 100 43 2 0 0 0 2 82 + 128 36 3 4 0 0 0 11 +59.68 224.64 0.94 1.829 + 8 11 23 9 36 13 0 1 56 4 2 1 6 4 3 78 52 0 0 0 + 0 0 22 126 18 0 0 0 0 2 33 126 31 17 5 20 89 20 0 0 + 126 27 2 1 1 0 0 39 126 17 1 0 0 0 0 50 122 2 0 0 + 0 0 1 51 27 7 3 19 79 44 28 24 126 32 17 23 3 2 10 53 + 126 126 31 17 1 0 0 3 126 72 8 0 0 0 0 7 1 0 5 23 + 20 26 24 10 10 3 33 108 10 0 7 20 22 126 66 58 8 0 0 0 + 20 126 78 0 0 0 0 0 +56.64 187.86 0.92 2.778 + 49 0 0 1 0 0 0 30 138 0 0 0 0 0 0 93 138 0 0 0 + 0 0 0 48 28 0 0 0 2 3 1 13 88 0 0 0 0 0 0 53 + 138 19 0 0 0 0 0 106 126 13 0 0 0 0 1 73 21 1 1 4 + 4 1 0 17 100 2 0 0 0 0 0 36 138 138 0 0 0 0 0 11 + 123 138 1 0 0 0 0 12 10 14 5 6 13 8 6 13 51 6 2 0 + 0 0 0 26 40 67 14 0 0 0 0 3 31 138 62 0 0 0 0 0 + 3 96 124 32 4 1 0 0 +55.19 226.46 1.05 2.682 + 1 17 37 6 13 22 31 15 39 20 23 2 0 3 31 101 18 2 0 0 + 0 0 45 139 0 0 0 0 0 24 122 40 15 31 96 30 0 0 0 0 + 141 60 43 2 0 0 1 94 75 5 0 0 0 0 22 141 0 0 0 0 + 12 10 32 32 29 8 12 20 1 0 0 15 141 76 2 1 0 0 0 60 + 141 75 8 0 0 0 2 17 1 4 15 31 14 2 4 2 52 0 0 0 + 0 0 2 31 141 47 13 0 0 0 0 58 29 141 86 4 0 0 0 1 + 0 23 99 53 0 0 0 0 +54.10 277.42 0.95 2.972 + 4 0 0 0 125 46 0 1 41 0 1 0 32 54 21 20 1 17 13 0 + 16 102 10 2 9 37 23 0 3 5 0 0 5 0 0 0 125 55 0 0 + 125 5 0 0 65 41 12 34 24 1 0 0 51 125 24 15 6 12 0 0 + 11 84 37 1 2 0 0 0 125 49 0 0 125 34 0 0 101 32 1 4 + 88 12 0 0 5 125 26 6 0 0 0 0 0 125 83 0 0 0 0 0 + 109 29 0 0 120 37 0 0 120 32 0 0 112 33 0 0 3 10 3 1 + 0 0 0 0 4 44 14 0 +53.55 153.21 1.01 1.468 + 76 5 3 118 90 1 0 24 118 27 6 19 13 1 0 50 98 19 9 64 + 28 6 0 7 109 16 0 0 0 0 0 24 108 10 1 27 13 35 6 18 + 118 30 1 6 17 11 2 40 97 34 4 26 61 37 2 12 118 80 0 0 + 0 0 0 0 37 1 0 0 4 73 63 31 118 52 19 31 17 2 8 29 + 39 73 26 114 77 1 0 1 116 118 4 3 0 0 0 0 0 0 0 0 + 25 41 10 1 2 14 13 20 20 21 8 1 30 18 13 73 36 21 19 31 + 108 63 5 4 1 0 2 41 +52.78 96.38 1.07 1.071 + 41 0 0 15 110 0 0 4 128 0 0 1 5 0 0 26 49 0 0 36 + 128 0 0 6 89 0 0 8 26 0 0 11 54 2 0 23 83 10 20 7 + 128 19 0 4 14 0 4 20 61 2 0 50 128 0 0 4 124 0 0 5 + 18 0 0 19 10 5 31 4 10 50 128 11 113 18 19 9 21 4 67 74 + 50 3 3 44 128 0 0 12 127 0 0 1 9 0 0 31 0 17 97 3 + 3 17 33 1 2 28 128 21 10 5 13 14 32 4 51 55 34 0 5 66 + 55 0 0 0 1 0 0 67 +52.78 96.38 1.07 -2.201 + 0 0 0 68 55 0 0 0 23 0 5 77 36 2 58 55 11 8 13 13 + 2 7 129 23 2 9 43 3 0 1 112 5 6 0 0 18 129 1 0 0 + 129 8 0 8 50 4 9 29 26 1 57 74 97 24 33 7 12 23 129 18 + 12 3 26 4 6 0 0 2 129 5 0 0 129 1 0 0 57 8 0 11 + 39 0 3 7 129 56 0 2 66 7 16 4 80 14 0 5 4 0 0 0 + 108 5 0 0 129 0 0 1 41 3 0 7 32 0 0 0 129 14 0 1 + 58 3 0 0 90 7 0 0 +51.25 67.69 0.95 2.650 + 4 3 19 2 0 0 91 124 20 16 20 3 23 2 20 124 38 2 0 7 + 107 3 0 6 68 5 0 2 22 0 0 2 10 29 124 37 0 2 24 29 + 116 124 98 12 21 0 2 10 59 11 2 9 112 1 0 8 77 0 0 2 + 31 0 0 10 14 8 47 7 0 33 124 30 124 27 7 2 21 5 61 124 + 75 3 0 10 97 2 0 14 69 1 0 2 36 0 0 7 0 0 13 2 + 0 22 120 18 4 2 5 6 40 4 51 71 52 2 0 17 93 2 1 5 + 57 2 0 3 29 0 0 3 +44.79 165.53 0.96 1.218 + 14 27 85 94 45 4 0 7 93 25 71 80 9 1 4 61 41 24 7 4 + 6 24 25 42 12 11 8 10 31 71 24 17 16 16 41 37 94 28 7 18 + 116 27 11 16 15 12 9 116 47 19 27 116 65 21 14 42 15 72 92 62 + 16 16 6 9 7 20 52 14 12 13 2 1 88 116 107 26 3 1 0 5 + 27 46 116 116 38 0 0 3 30 35 29 88 71 10 0 9 0 1 2 2 + 14 66 23 0 0 15 61 19 34 37 1 0 11 71 89 13 4 0 0 0 + 23 68 22 27 39 35 1 1 +44.79 165.53 0.96 -2.681 + 10 57 45 0 0 0 5 14 14 43 61 4 0 0 13 32 8 14 33 7 + 0 2 17 34 11 23 17 0 0 0 19 43 12 2 1 0 0 20 98 68 + 66 5 0 0 0 25 96 120 11 9 8 5 36 120 101 45 42 103 27 6 + 21 17 17 43 65 60 17 0 8 40 48 18 120 64 2 0 8 31 34 65 + 46 22 11 13 120 120 18 10 97 31 7 3 69 88 19 94 105 41 2 0 + 4 23 28 103 56 17 22 7 13 19 74 73 15 11 34 29 44 32 17 8 + 38 16 3 6 24 41 23 25 +42.63 205.58 0.97 -2.225 + 59 31 1 1 2 20 16 6 40 18 4 26 48 53 31 21 138 36 2 8 + 8 3 6 78 11 1 0 21 79 20 3 9 41 15 3 10 14 40 24 13 + 60 43 14 131 118 24 3 7 138 112 7 21 16 5 1 23 20 5 0 5 + 74 29 1 3 14 6 5 22 24 18 33 15 47 3 0 34 120 101 14 28 + 138 37 0 1 7 24 12 95 28 7 0 0 32 78 13 11 15 19 21 40 + 10 1 2 5 12 6 2 34 38 25 17 23 93 138 25 19 28 12 3 5 + 21 133 44 20 23 22 5 1 +38.49 238.58 1.01 -0.402 + 0 1 20 70 26 23 49 15 3 1 2 70 118 65 18 52 11 10 3 0 + 7 7 33 122 4 1 1 2 0 0 32 122 3 2 32 122 11 0 0 0 + 105 16 4 73 20 1 2 117 46 12 18 0 0 0 2 122 6 4 32 37 + 0 0 0 23 8 9 12 89 44 0 0 0 122 115 17 18 6 0 0 7 + 34 48 122 16 0 0 0 4 0 3 101 122 1 0 1 2 2 9 7 33 + 26 16 0 0 33 96 42 17 7 10 2 1 12 40 122 32 0 0 0 7 + 12 4 52 53 2 0 7 52 +38.00 211.91 1.07 -2.007 + 145 42 0 0 0 0 0 5 145 51 0 0 0 0 0 32 72 37 5 4 + 1 0 0 10 13 17 18 18 5 7 2 0 145 29 0 0 0 0 0 9 + 145 45 0 0 0 4 3 35 77 21 4 1 6 39 9 20 46 10 3 7 + 11 40 11 10 127 14 0 0 0 0 6 125 145 40 0 0 0 2 8 104 + 110 5 0 1 16 56 16 21 43 9 8 54 27 14 8 9 106 15 0 0 + 0 1 4 91 145 6 0 0 0 0 2 74 63 8 6 11 7 7 21 16 + 6 0 3 33 65 23 10 9 +37.86 210.76 1.15 -2.057 + 143 54 0 0 0 0 0 4 143 49 0 0 0 0 0 26 48 40 8 7 + 3 4 1 6 13 14 18 23 7 15 5 2 143 43 0 0 0 0 0 10 + 143 69 0 0 0 9 5 26 84 21 3 0 5 52 13 17 45 9 4 22 + 20 42 15 11 128 12 0 0 0 0 7 139 143 32 0 0 0 2 7 113 + 91 6 0 3 17 40 24 18 38 11 8 73 57 17 8 11 121 31 0 1 + 1 2 4 53 143 20 0 0 0 0 0 42 55 16 14 26 7 4 14 8 + 22 2 2 26 50 26 9 18 +37.64 224.59 0.94 0.797 + 0 0 0 4 82 97 0 0 29 0 0 0 75 53 1 19 101 0 0 0 + 0 10 82 124 4 0 0 0 0 84 132 16 0 0 0 10 132 28 0 0 + 74 0 0 0 132 55 1 8 132 25 0 0 3 3 10 43 41 23 0 0 + 0 50 49 12 0 0 0 6 117 67 0 0 40 1 0 2 106 71 4 11 + 132 78 1 0 3 6 2 14 27 107 12 0 0 2 0 0 0 0 12 68 + 50 15 0 0 12 4 6 40 68 14 3 9 107 38 1 2 3 1 2 22 + 23 57 13 0 0 0 0 4 +33.14 256.33 0.99 -2.966 + 14 16 9 11 5 4 0 1 0 0 3 56 51 4 1 2 58 0 0 24 + 67 4 4 95 127 3 0 0 0 0 0 127 21 18 5 7 9 1 1 4 + 12 2 1 69 87 1 0 2 127 19 1 20 17 0 0 127 127 24 3 0 + 0 0 0 116 17 6 4 27 14 0 2 8 14 9 1 75 105 0 0 0 + 127 127 3 7 12 0 0 14 109 127 17 2 0 0 0 12 6 8 5 60 + 17 0 1 1 1 1 1 71 27 0 0 0 127 41 0 2 4 0 0 9 + 127 37 24 7 0 0 0 15 +29.06 150.90 0.97 1.709 + 3 2 3 44 84 2 0 0 135 18 7 18 15 0 0 18 131 25 2 0 + 0 0 1 39 18 22 3 4 8 3 18 35 15 5 4 58 138 5 0 0 + 138 33 6 17 27 0 0 25 138 25 1 0 0 0 0 81 32 11 5 16 + 32 3 5 22 22 0 0 33 138 24 0 1 138 27 0 3 33 5 0 12 + 124 92 6 0 0 0 0 22 12 44 20 15 35 3 3 15 12 2 1 26 + 123 26 0 1 138 37 2 7 23 6 0 9 130 38 0 0 0 0 0 34 + 34 4 0 7 56 12 12 46 +26.89 302.59 0.94 -2.143 + 1 4 61 74 1 0 0 1 13 32 81 72 39 2 0 1 75 28 4 59 + 48 3 11 50 24 16 9 9 35 66 42 33 9 4 29 91 35 46 29 12 + 111 29 25 19 40 57 8 36 59 95 15 6 48 111 23 7 16 70 84 53 + 26 10 32 23 5 2 1 8 111 48 46 14 111 79 40 17 73 22 2 21 + 57 28 39 14 13 62 67 54 6 4 12 3 0 8 111 66 0 1 0 5 + 111 54 20 2 15 26 13 6 44 32 85 111 30 6 7 2 0 0 20 111 + 4 0 1 3 0 0 8 11 +26.43 219.70 0.89 1.503 + 0 0 1 16 10 1 0 0 28 4 4 16 8 0 0 11 80 6 0 0 + 2 18 35 116 52 4 0 1 25 70 30 14 0 0 0 18 15 0 0 0 + 112 1 0 8 13 0 0 23 145 9 0 0 26 31 16 140 58 6 0 0 + 145 96 13 20 0 0 0 3 22 20 3 0 117 7 0 2 7 0 0 17 + 145 142 5 8 30 4 0 12 55 34 9 25 145 25 0 3 0 0 0 0 + 29 132 5 0 60 1 0 0 2 16 3 36 93 92 14 5 1 2 5 25 + 25 40 25 47 79 1 0 0 +25.59 201.26 1.05 -1.998 + 6 6 0 2 23 15 0 3 62 24 5 0 0 0 0 11 135 15 0 0 + 0 0 0 45 105 32 4 0 0 1 0 26 5 0 0 0 75 93 4 9 + 51 18 2 5 3 1 2 18 135 77 0 0 0 0 0 13 135 55 1 0 + 0 4 0 9 2 0 0 0 135 135 0 2 34 3 0 1 10 12 6 57 + 135 22 0 0 0 0 2 109 114 38 0 0 0 0 0 21 1 0 0 0 + 135 135 0 0 79 13 0 0 51 55 0 20 80 62 11 8 3 0 0 24 + 43 94 8 1 0 0 0 1 +24.01 232.36 1.06 -1.656 + 8 0 0 0 133 17 0 0 104 9 0 0 43 31 17 22 28 11 0 0 + 25 111 12 4 101 22 0 0 3 7 1 13 9 0 0 0 133 25 0 0 + 133 11 0 0 69 12 1 16 37 3 0 5 111 59 3 9 133 23 0 1 + 31 13 0 1 6 0 0 0 133 24 0 0 133 18 1 1 91 8 0 3 + 49 6 2 21 133 7 0 2 84 58 1 9 47 2 0 0 1 0 0 2 + 133 14 0 0 81 48 16 2 83 7 0 0 15 25 48 28 67 7 0 0 + 21 37 3 10 44 8 0 0 +23.76 229.04 0.92 -1.492 + 8 0 0 30 139 0 0 1 139 0 0 5 48 0 0 49 36 0 0 19 + 103 16 2 21 72 0 0 8 64 10 0 5 22 0 0 40 139 0 0 3 + 139 8 1 9 49 0 0 44 35 2 1 64 139 0 0 8 94 24 0 31 + 53 0 0 4 23 3 0 42 139 0 0 1 133 85 42 11 27 0 0 6 + 8 25 55 59 122 2 0 0 54 42 2 13 66 4 0 0 9 0 0 24 + 139 0 0 6 21 20 17 1 13 15 11 20 0 19 35 39 21 9 1 0 + 22 21 5 32 19 0 0 0 +22.84 160.20 0.91 -1.630 + 40 4 0 0 156 11 0 0 156 23 0 1 18 1 0 2 9 2 0 3 + 29 18 8 1 0 0 0 0 86 41 4 0 44 3 0 0 156 17 0 0 + 156 14 0 0 20 4 7 16 21 1 0 1 14 39 36 8 0 0 0 1 + 107 48 3 0 40 2 0 0 156 19 0 0 156 23 0 0 24 2 1 6 + 42 8 1 13 36 16 6 5 0 0 0 27 112 19 0 0 24 2 0 0 + 156 8 0 0 156 24 0 0 24 1 0 6 41 8 2 14 44 10 1 6 + 0 0 0 8 56 34 0 0 +23.06 155.71 1.11 -1.548 + 10 0 0 10 152 0 0 0 152 2 0 3 64 2 2 18 32 1 0 7 + 25 27 13 7 0 0 0 9 119 22 0 0 17 0 0 20 152 0 0 0 + 152 8 0 6 69 1 0 23 41 4 1 24 68 12 1 9 0 0 0 17 + 108 35 0 0 20 0 0 12 152 0 0 0 152 25 2 7 61 0 0 9 + 32 10 5 34 30 15 5 2 0 0 0 7 84 36 1 0 19 0 0 7 + 152 1 0 1 152 2 0 1 43 0 0 18 29 2 0 3 11 18 12 7 + 0 0 0 9 64 29 2 0 +7.49 318.86 1.13 -1.670 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 8 0 0 0 0 + 0 0 60 7 0 0 0 0 0 0 67 12 9 2 0 1 2 1 0 4 + 111 4 0 0 1 1 100 166 17 0 0 0 0 1 173 102 0 0 0 0 + 0 1 173 55 19 3 0 1 4 3 1 1 173 74 0 0 0 1 10 44 + 126 24 0 0 6 8 74 30 0 0 4 11 8 6 50 5 6 0 0 0 + 3 3 0 0 173 42 0 0 1 0 0 0 171 23 0 0 3 2 3 2 + 1 0 3 16 52 8 2 3 +7.49 318.86 1.13 -2.998 + 9 0 0 0 0 0 0 1 168 0 0 0 0 0 0 62 159 0 0 0 + 2 2 2 44 3 5 0 2 28 37 23 2 26 0 0 0 0 0 0 5 + 168 41 7 0 0 0 0 86 130 32 57 0 0 0 7 40 3 8 37 0 + 0 6 13 4 14 3 0 0 0 0 1 1 121 164 91 0 0 0 1 7 + 20 118 168 0 0 0 1 2 0 86 168 0 0 0 0 0 0 0 0 0 + 0 0 1 0 0 6 13 1 1 2 3 0 0 9 50 0 0 1 6 2 + 0 19 60 0 0 0 4 1 diff --git a/vlfeat-0.9.21/data/river1.jpg b/vlfeat-0.9.21/data/river1.jpg new file mode 100644 index 0000000..e32f2f3 Binary files /dev/null and b/vlfeat-0.9.21/data/river1.jpg differ diff --git a/vlfeat-0.9.21/data/river2.jpg b/vlfeat-0.9.21/data/river2.jpg new file mode 100644 index 0000000..f289c22 Binary files /dev/null and b/vlfeat-0.9.21/data/river2.jpg differ diff --git a/vlfeat-0.9.21/data/roofs1.jpg b/vlfeat-0.9.21/data/roofs1.jpg new file mode 100644 index 0000000..6e7cc15 Binary files /dev/null and b/vlfeat-0.9.21/data/roofs1.jpg differ diff --git a/vlfeat-0.9.21/data/roofs2.jpg b/vlfeat-0.9.21/data/roofs2.jpg new file mode 100644 index 0000000..97a2991 Binary files /dev/null and b/vlfeat-0.9.21/data/roofs2.jpg differ diff --git a/vlfeat-0.9.21/data/spots.jpg b/vlfeat-0.9.21/data/spots.jpg new file mode 100644 index 0000000..7638714 Binary files /dev/null and b/vlfeat-0.9.21/data/spots.jpg differ diff --git a/vlfeat-0.9.21/docsrc/about.html b/vlfeat-0.9.21/docsrc/about.html new file mode 100644 index 0000000..7730b56 --- /dev/null +++ b/vlfeat-0.9.21/docsrc/about.html @@ -0,0 +1,168 @@ + + + + + +img.photo { + float: left ; + margin: 0px 13px 0px 0px ; + width: 100px ; +} + + +%tableofcontents; + +

VLFeat is a cross-platform open source collection of vision +algorithms with a special focus on visual features (for instance SIFT +and MSER) and clustering (k-means, hierarchical k-means, agglomerative +information bottleneck). It bundles a MATLAB toolbox, a clean and +portable C library and a number of command line utilities. Thus it is +possible to use the same algorithm both from MATLAB, the command line, +and your own programs.

+ +

Many parties make the development of VLFeat possible:

+ + +

Sponsors

+ + +

In 2012 the development of VLFeat is +supported by the PASCAL Harvest programme. Several people have been +working in Oxford to add new functionalities to the library. Moreover, +leading researchers in computer vision were consulted as +advisors of the project. Some of +these advancements have been presented at a +tutorial at +the European Conference in Computer Vision (ECCV) 2012. See +the PASCAL Harvest Roadmap for further +details.

+ + +Yandex
+credits + + +

Team

+ + +

VLFeat is developed by a team of computer vision +researchers, including master and PhD students, postgraduates, and +senior researchers, as listed below. VLFeat was created by Andrea +Vedaldi and Brian Fulkerson in 2007, based on previously published +software by the same authors.

+ +

+ Andrea Vedaldi picture + + Andrea Vedaldi joined + the faculty at the University of Oxford in 2012. Since 2008 he was + junior research fellow in the Oxford Visual Geometry Group. He + received the Ph.D. and Master's degrees in Computer Science from the + University of California - Los Angeles, in 2008 and 2005, and the + Bachelor's degree in Information Engineering from the University of + Padova, Italy, in 2003. He is the recipient of the UCLA outstanding + Master's and Ph.D. awards. +

+ +

+ Brian Fulkerson picture + + Brian + Fulkerson received his B.S. in Computer Engineering from the + University of California - San Diego in 2004, and his M.S. and Ph.D. + in Computer Science from the University of California - Los Angeles + Vision Lab in 2006 and 2010. +

+ +

+ Karel Lenc picture + + Karel Lenc received his B.S. degree in Cybernetics and + Measurements from the Czech Technical University in 2010. He is + currently pursuing M.S. degree in Computer Vision and Computer + Engineering at the CTU, Center for Machine Perception. He visited the + Department of Engineering Mathematics, University of Bristol in 2011 + and the Oxford Visual Geometry Group in 2012.

+ +

+ Daniele Perrone picture + + Daniele + Perrone received his B.S. degree in Computer Engineering from + Università della Calabria in 2007, and his M.S. degree in + Artificial Intelligence from "Sapienza" Università di Roma in + 2009. He started his Ph.D. in June 2010 at Heriot-Watt University, + Edinburgh, UK. From June 2012 he joined the Computer Vision Group at + the Universität Bern, Switzerland. +

+ +

+ Michal Perdoch picture + + Michal Perdoch + received his Bachelor's degree in Software Engineering from the + Slovak University of Technology in Bratislava in 2001, Master's + degree in Computer Science and Ph.D. degree in Artificial + Intelligence and Biocybernetics from the Czech Technical University + in Prague, in 2004 and 2011. He is currently a postdoctoral + researcher at the CTU Center for Machine Perception. +

+ +

+ Milan Sulc picture + + Milan Sulc + received his Bachelor's degree in Cybernetics and Robotics from the + Czech Technical University in 2012. + He is currently pursuing Master degrees in Computer Vision + and Artificial Intelligence at the CTU + and Entrepreneurship and Commercial Engineering in Industry at CTU. + He is a student intern at the CTU Center for Machine Perception. +

+ +

+ Hana Sarbortova picture + + Hana Sarbortova +received her Bachelor of Engineering degree in Digital Signal and Image Processing from the +University of Central Lancashire in 2012. She is currently studying Computer Vision and Digital Image +at the Czech Technical University in Prague. She is a student intern at the CTU Center for Machine Perception. +

+ + +

Advisors

+ + +

The development of VLFeat is supported by a number of computer +vision groups and researchers:

+ +
    +
  • Prof. Andrew +Zisserman, Oxford VGG +Lab.
  • +
  • Prof. Jiri Matas, Czech Technical University in Prague.
  • +
  • Prof. Tinne Tuytelaars, KU Leuven.
  • +
  • Dr. Cordelia Schmid, LEAR, Grenoble.
  • +
  • Dr. Krystian Mikolajczyk, Surrey.
  • +
  • Prof. Stefano Soatto, UCLA Vision +Lab.
  • +
+ + +

Users and community

+ + +

The authors would like to thank the many colleagues that have +contributed to VLFeat by testing and providing helpful suggestions and +comments.

+ +
diff --git a/vlfeat-0.9.21/docsrc/api.html b/vlfeat-0.9.21/docsrc/api.html new file mode 100644 index 0000000..b3f98ec --- /dev/null +++ b/vlfeat-0.9.21/docsrc/api.html @@ -0,0 +1 @@ + diff --git a/vlfeat-0.9.21/docsrc/apps.html b/vlfeat-0.9.21/docsrc/apps.html new file mode 100644 index 0000000..5eb7c44 --- /dev/null +++ b/vlfeat-0.9.21/docsrc/apps.html @@ -0,0 +1,114 @@ + + + + + +#content table.checker { + border-collapse: collapse ; + margin-left: auto ; + margin-right: auto ; +} +#content table.checker td { + background-color: #f6f6f6 ; + border: 1px solid #DDD ; + padding: 0.5em ; +} + + +

This page lists a number of example VLFeat applications. The code +can be found in the VLROOT/apps/ subdirectory in the +VLFeat package.

+ +

Basic recognition

+ + + + + +Caltech-101 Collage + +

This sample application uses VLFeat to train an test an image +classifier on the Caltech-101 data. The classifier achieves 65% +average accuracy by using a single feature and 15 training images per +class. It uses:

+
    +
  • PHOW features (dense multi-scale SIFT descriptors)
  • +
  • Elkan k-means for fast visual word dictionary +construction
  • +
  • Spatial histograms as image descriptors
  • +
  • A homogeneous kernel map to transform a Chi2 support vector +machine (SVM) into a linear one
  • +
  • SVM classifiers
  • +
+ +

The program is fully contained in +a single MATLAB M-file, +and can also be simply adapted to use your own data (change +conf.calDir).

+ +

Advanced encodings for recognition

+ + + + + +

This example application extends the Caltech-101 demo above in many +ways: it supports multiple encoding methods, including BoVW, VLAD, and +Fisher Vectors, tweaked image features, and multiple benchmark +datasets. The code is located int apps/recognition. Start +from the main +file.

+ +

The following tables report results on a few standard benchmark +datasets (PASCAL VOC 2007 classification challenge, Caltech 101 30 +training images, MIT Scene 67, and Flickr Material Dataset) for a +number of different encodings:

+ + + + + + + + +
methodVOC07Caltech 101Scene 67FMD
FV59.12% mAP73.02% Acc58.25% Acc59.60% Acc
FV + aug.60.25% mAP75.61% Acc57.57% Acc60.80% Acc
FV + s.p.62.23% mAP77.63% Acc61.83% Acc60.80% Acc
VLAD + aug.54.66% mAP78.68% Acc53.29% Acc49.40% Acc
BOVW + aug.49.87% mAP75.98% Acc50.22% Acc46.00% Acc
+ +

The baseline feature is SIFT (vl_dsift) computed at +seven scales with a factor $\sqrt{2}$ between successive scales, bins +8 pixel wide, and computed with a step of 4 pixels. All experiments +but the Caltech-101 ones start by doubling the resolution of the input +image. The details of the encodings are as follows:

+ +
    +
  • Bag-of-visual-words uses 4096 vector quantized visual words +histogram square rooting, followed by $L^2$ normalization (Hellinger's +kernel).
  • +
  • VLAD uses 256 vector quantized visual +words, signed square-rooting, component wise $L^2$ normalization, and +global $L^2$ normalization (see vl_vlad).
  • +
  • Fisher vectors uses a 256 visual words +GMM and the improved formulation (signed square-rooting followed by +$L^2$ normalization, see vl_fisher).
  • +
  • Learning uses a linear SVM +(see vl_svmtrain). The parameter $C$ is set to 10 for all +dataset except PASCAL VOC, for which it is set to 1.
  • +
  • Experiments labelled with “aug.” encode spatial +information by appending the feature coordinates to the descriptor; +the ones labelled with “s.p.” use a spatial pyramid with +1x1 and 3x1 subdivisions.
  • +
+ +

SIFT mosaic

+ + + + + +SIFT mosaic + +

This sample application uses VLFeat to extract SIFT features form a +pair of images and match them. It then filters the matches based on +RANSAC and produces a mosaic. Read +the code.

+ +
diff --git a/vlfeat-0.9.21/docsrc/compiling.html b/vlfeat-0.9.21/docsrc/compiling.html new file mode 100644 index 0000000..aac6c12 --- /dev/null +++ b/vlfeat-0.9.21/docsrc/compiling.html @@ -0,0 +1,143 @@ + + + +

These instructions explain how to compile VLFeat from sources. +While this is necessary in order to develop or modify VLFeat, using +the pre-compiled binaries will work in +most other cases.

+ +

VLFeat is largely self-contained and hence easy to compile. While +certain features such as multi-core computation and vector instruction +support may require specific compilers, most compilers and +environments should be capable of producing fully functional version +of the library. Compiling MATLAB or Octave support requires the +corresponding applications to be installed too.

+ + + + + +%tableofcontents; + + +

General instructions

+ + +

Compiling for UNIX-like platforms (e.g. GNU/Linux, Mac OS X) +assumes that the standard GNU toolchain is available. In particular, +while compilers other than GCC can be used, the compilation scripts +require GNU/make.

+ +

To compile the library, it is usually sufficient to change to +VLFeat root directory, denoted VLFEATROOT in the +following, and type make:

+ + +$ cd VLFEATROOT +$ make + + +

The make script attempts to automatically detect the host +architecture and configure itself accordingly. If the architecture is +not detected correctly, it can be specified manually. For instance

+ + +$ make ARCH=glnx86 + + +

compiles for GNU/Linux 32-bit. make help can be used +to obtain a list of other useful options. You can also use make +info to obtain a list of the configuration parameters used by +the Makefile, which might allow you do debug any potential issue.

+ + +

Compiling MATLAB support

+ + +

In order for MATLAB support to be compiled, the +MATLAB mex script must be in the current path. If it is +not, its location must be passed to make as +follows. First, determine MATLAB's root directory by running a MATLAB +session and issuing the matlabroot +command. Let MATLABROOT denote the returned path +(e.g. /Applications/MATLAB_R2009b.app/). The mex +script is usually located in MALTABROOT/bin/mex. Then run +the compilation with the command

+ + +$ make MEX=MATLABROOT/bin/mex + + +

VLFeat must be compiled for the architecture used by MATLAB (run +MATLAB's computer command to obtain this information). On +Mac OS X it is often necessary to turn on 64-bit support explicitly by +setting ARCH=maci64 as both the 32 and 64 bit versions +are plausible targets on 64-bit machines.

+ + +

Compiling Octave support

+ + +

Octave support is still experimental. Similarly to MATLAB, Octave +requires compiling MEX files. This can be turned on by passing to make +the path to the mkoctfile command:

+ + +$ make MKOCTFILE=/path/to/mkoctfile + + + +

Mac OS X troubleshooting

+ + +

Since macOS CLang compiler does not support OpenMP, this is + disabled by default on this platform. To use it, + install Brew llvm:

+ +$ brew install llvm + +

Then, use the Brew CLang compiler to compile VLFeat, as follows::

+ +$ make CC=BREWROOT/opt/llvm/bin/clang DISABLE_OPENMP=no + +

Here BREWROOT is the path to Brew installation.

+
+ + + + + +

For Windows, the library bundles an NMake makefile +(Makefile.mak). In order to use it, you must edit +Makefile.mak to adjust the values of a number of configuration +variables to match your setup. Once you have done that, start the +Visual Studio Command Prompt and type

+ + +$ nmake /f Makefile.mak # for the Windows 64 target +$ nmake /f Makefile.mak ARCH=win32 # for the Windows 32 target + + +

For Windows platform, it is also possible to compile just the +MATLAB MEX files from within MATLAB (using the vl_compile +command). This is meant to help less experienced users that may need +to recompile the mex file due to binary incompatibilities with older +MATLAB versions.

+ +

Windows troubleshooting

+ +
+
syntax error: '=' unexpected:
+

Use nmake /f Makefile.mak. + Without /f, nmake will default to the wrong + makefile.

+
'long' followed by 'long' is illegal:
+

This error is usually caused by + attempting to compile outside of the Visual Studio Command Prompt.

+
+
+ +
diff --git a/vlfeat-0.9.21/docsrc/doc.html b/vlfeat-0.9.21/docsrc/doc.html new file mode 100644 index 0000000..c399ac9 --- /dev/null +++ b/vlfeat-0.9.21/docsrc/doc.html @@ -0,0 +1,35 @@ + + + +

The VLFeat reference documentation has three parts:

+ + + + + + + +
+

MATLAB functions

+

The reference documentation of VLFeat MATLAB commands (this + is an on-line version of the documentation built in the + command themsevles).

+
+

C API + reference

This documentation + includes descriptions of all the algorithms and hence + it is useful even if you do not plan to use the C library + directly.

+
+

Man pages

+

The documentation of the command line + utilities bundled with VLFeat (this is an on-line version + of the Unix man found in the src/ + subdirectory.

+
+ +

In addition to the documentation, there are also +tutorials which introduce many of the +algorithms contained in the library.

+ +
diff --git a/vlfeat-0.9.21/docsrc/download.html b/vlfeat-0.9.21/docsrc/download.html new file mode 100644 index 0000000..3038ea3 --- /dev/null +++ b/vlfeat-0.9.21/docsrc/download.html @@ -0,0 +1,66 @@ + + + +

The latest version of VLFeat is %env:VERSION;. To use +VLFeat, simply download and unpack the latest binary package and add +the appropriate paths to your environment (see below for details).

+ + + + + + +
+

Downloads

+ +
+

Install

+ +
+ +
&nsbp;
+ +

Repository access

+ +

VLFeat is under active development. You +can browse our +Git repository or download it by

+ +git clone git://github.com/vlfeat/vlfeat.git + +

(This will require Git to be +installed). The top of the master branch corresponds to the most +recent version of VLFeat, but it could be unstable.

+ +

We welcome contributions to both the documentation and the source +code of VLFeat. You can create patches against our Git repository and +send them to us for inclusion in the next version. There are two ways +to contribute. For minor changes, simply clone our public repository, +as explained above. Once you have made and committed your changes +locally, you can submit them to the project via e-mail using a command +like git format-patch: +

+ +git format-patch origin + +

For major additions, we prefer to handle collaboration through +github. Follow +their tutorial +to fork our project +and submit your modifications using a pull request.

+ +
diff --git a/vlfeat-0.9.21/docsrc/doxygen.conf b/vlfeat-0.9.21/docsrc/doxygen.conf new file mode 100644 index 0000000..fec99d3 --- /dev/null +++ b/vlfeat-0.9.21/docsrc/doxygen.conf @@ -0,0 +1,2297 @@ +# Doxyfile 1.8.5 + +# This file describes the settings to be used by the documentation system +# doxygen (www.doxygen.org) for a project. +# +# All text after a double hash (##) is considered a comment and is placed in +# front of the TAG it is preceding. +# +# All text after a single hash (#) is considered a comment and will be ignored. +# The format is: +# TAG = value [value, ...] +# For lists, items can also be appended using: +# TAG += value [value, ...] +# Values that contain spaces should be placed between quotes (\" \"). + +#--------------------------------------------------------------------------- +# Project related configuration options +#--------------------------------------------------------------------------- + +# This tag specifies the encoding used for all characters in the config file +# that follow. The default is UTF-8 which is also the encoding used for all text +# before the first occurrence of this tag. Doxygen uses libiconv (or the iconv +# built into libc) for the transcoding. See http://www.gnu.org/software/libiconv +# for the list of possible encodings. +# The default value is: UTF-8. + +DOXYFILE_ENCODING = UTF-8 + +# The PROJECT_NAME tag is a single word (or a sequence of words surrounded by +# double-quotes, unless you are using Doxywizard) that should identify the +# project for which the documentation is generated. This name is used in the +# title of most generated pages and in a few other places. +# The default value is: My Project. + +PROJECT_NAME = VLFeat + +# The PROJECT_NUMBER tag can be used to enter a project or revision number. This +# could be handy for archiving the generated documentation or if some version +# control system is used. + +PROJECT_NUMBER = + +# Using the PROJECT_BRIEF tag one can provide an optional one line description +# for a project that appears at the top of each page and should give viewer a +# quick idea about the purpose of the project. Keep the description short. + +PROJECT_BRIEF = + +# With the PROJECT_LOGO tag one can specify an logo or icon that is included in +# the documentation. The maximum height of the logo should not exceed 55 pixels +# and the maximum width should not exceed 200 pixels. Doxygen will copy the logo +# to the output directory. + +PROJECT_LOGO = + +# The OUTPUT_DIRECTORY tag is used to specify the (relative or absolute) path +# into which the generated documentation will be written. If a relative path is +# entered, it will be relative to the location where doxygen was started. If +# left blank the current directory will be used. + +OUTPUT_DIRECTORY = doc/ + +# If the CREATE_SUBDIRS tag is set to YES, then doxygen will create 4096 sub- +# directories (in 2 levels) under the output directory of each output format and +# will distribute the generated files over these directories. Enabling this +# option can be useful when feeding doxygen a huge amount of source files, where +# putting all generated files in the same directory would otherwise causes +# performance problems for the file system. +# The default value is: NO. + +CREATE_SUBDIRS = NO + +# The OUTPUT_LANGUAGE tag is used to specify the language in which all +# documentation generated by doxygen is written. Doxygen will use this +# information to generate all constant output in the proper language. +# Possible values are: Afrikaans, Arabic, Brazilian, Catalan, Chinese, Chinese- +# Traditional, Croatian, Czech, Danish, Dutch, English, Esperanto, Farsi, +# Finnish, French, German, Greek, Hungarian, Italian, Japanese, Japanese-en, +# Korean, Korean-en, Latvian, Norwegian, Macedonian, Persian, Polish, +# Portuguese, Romanian, Russian, Serbian, Slovak, Slovene, Spanish, Swedish, +# Turkish, Ukrainian and Vietnamese. +# The default value is: English. + +OUTPUT_LANGUAGE = English + +# If the BRIEF_MEMBER_DESC tag is set to YES doxygen will include brief member +# descriptions after the members that are listed in the file and class +# documentation (similar to Javadoc). Set to NO to disable this. +# The default value is: YES. + +BRIEF_MEMBER_DESC = YES + +# If the REPEAT_BRIEF tag is set to YES doxygen will prepend the brief +# description of a member or function before the detailed description +# +# Note: If both HIDE_UNDOC_MEMBERS and BRIEF_MEMBER_DESC are set to NO, the +# brief descriptions will be completely suppressed. +# The default value is: YES. + +REPEAT_BRIEF = NO + +# This tag implements a quasi-intelligent brief description abbreviator that is +# used to form the text in various listings. Each string in this list, if found +# as the leading text of the brief description, will be stripped from the text +# and the result, after processing the whole list, is used as the annotated +# text. Otherwise, the brief description is used as-is. If left blank, the +# following values are used ($name is automatically replaced with the name of +# the entity):The $name class, The $name widget, The $name file, is, provides, +# specifies, contains, represents, a, an and the. + +ABBREVIATE_BRIEF = + +# If the ALWAYS_DETAILED_SEC and REPEAT_BRIEF tags are both set to YES then +# doxygen will generate a detailed section even if there is only a brief +# description. +# The default value is: NO. + +ALWAYS_DETAILED_SEC = NO + +# If the INLINE_INHERITED_MEMB tag is set to YES, doxygen will show all +# inherited members of a class in the documentation of that class as if those +# members were ordinary class members. Constructors, destructors and assignment +# operators of the base classes will not be shown. +# The default value is: NO. + +INLINE_INHERITED_MEMB = NO + +# If the FULL_PATH_NAMES tag is set to YES doxygen will prepend the full path +# before files name in the file list and in the header files. If set to NO the +# shortest path that makes the file name unique will be used +# The default value is: YES. + +FULL_PATH_NAMES = NO + +# The STRIP_FROM_PATH tag can be used to strip a user-defined part of the path. +# Stripping is only done if one of the specified strings matches the left-hand +# part of the path. The tag can be used to show relative paths in the file list. +# If left blank the directory from which doxygen is run is used as the path to +# strip. +# +# Note that you can specify absolute paths here, but also relative paths, which +# will be relative from the directory where doxygen is started. +# This tag requires that the tag FULL_PATH_NAMES is set to YES. + +STRIP_FROM_PATH = + +# The STRIP_FROM_INC_PATH tag can be used to strip a user-defined part of the +# path mentioned in the documentation of a class, which tells the reader which +# header file to include in order to use a class. If left blank only the name of +# the header file containing the class definition is used. Otherwise one should +# specify the list of include paths that are normally passed to the compiler +# using the -I flag. + +STRIP_FROM_INC_PATH = + +# If the SHORT_NAMES tag is set to YES, doxygen will generate much shorter (but +# less readable) file names. This can be useful is your file systems doesn't +# support long names like on DOS, Mac, or CD-ROM. +# The default value is: NO. + +SHORT_NAMES = NO + +# If the JAVADOC_AUTOBRIEF tag is set to YES then doxygen will interpret the +# first line (until the first dot) of a Javadoc-style comment as the brief +# description. If set to NO, the Javadoc-style will behave just like regular Qt- +# style comments (thus requiring an explicit @brief command for a brief +# description.) +# The default value is: NO. + +JAVADOC_AUTOBRIEF = NO + +# If the QT_AUTOBRIEF tag is set to YES then doxygen will interpret the first +# line (until the first dot) of a Qt-style comment as the brief description. If +# set to NO, the Qt-style will behave just like regular Qt-style comments (thus +# requiring an explicit \brief command for a brief description.) +# The default value is: NO. + +QT_AUTOBRIEF = NO + +# The MULTILINE_CPP_IS_BRIEF tag can be set to YES to make doxygen treat a +# multi-line C++ special comment block (i.e. a block of //! or /// comments) as +# a brief description. This used to be the default behavior. The new default is +# to treat a multi-line C++ comment block as a detailed description. Set this +# tag to YES if you prefer the old behavior instead. +# +# Note that setting this tag to YES also means that rational rose comments are +# not recognized any more. +# The default value is: NO. + +MULTILINE_CPP_IS_BRIEF = NO + +# If the INHERIT_DOCS tag is set to YES then an undocumented member inherits the +# documentation from any documented member that it re-implements. +# The default value is: YES. + +INHERIT_DOCS = YES + +# If the SEPARATE_MEMBER_PAGES tag is set to YES, then doxygen will produce a +# new page for each member. If set to NO, the documentation of a member will be +# part of the file/class/namespace that contains it. +# The default value is: NO. + +SEPARATE_MEMBER_PAGES = NO + +# The TAB_SIZE tag can be used to set the number of spaces in a tab. Doxygen +# uses this value to replace tabs by spaces in code fragments. +# Minimum value: 1, maximum value: 16, default value: 4. + +TAB_SIZE = 2 + +# This tag can be used to specify a number of aliases that act as commands in +# the documentation. An alias has the form: +# name=value +# For example adding +# "sideeffect=@par Side Effects:\n" +# will allow you to put the command \sideeffect (or @sideeffect) in the +# documentation, which will result in a user-defined paragraph with heading +# "Side Effects:". You can put \n's in the value part of an alias to insert +# newlines. + +ALIASES = + +# This tag can be used to specify a number of word-keyword mappings (TCL only). +# A mapping has the form "name=value". For example adding "class=itcl::class" +# will allow you to use the command class in the itcl::class meaning. + +TCL_SUBST = + +# Set the OPTIMIZE_OUTPUT_FOR_C tag to YES if your project consists of C sources +# only. Doxygen will then generate output that is more tailored for C. For +# instance, some of the names that are used will be different. The list of all +# members will be omitted, etc. +# The default value is: NO. + +OPTIMIZE_OUTPUT_FOR_C = YES + +# Set the OPTIMIZE_OUTPUT_JAVA tag to YES if your project consists of Java or +# Python sources only. Doxygen will then generate output that is more tailored +# for that language. For instance, namespaces will be presented as packages, +# qualified scopes will look different, etc. +# The default value is: NO. + +OPTIMIZE_OUTPUT_JAVA = NO + +# Set the OPTIMIZE_FOR_FORTRAN tag to YES if your project consists of Fortran +# sources. Doxygen will then generate output that is tailored for Fortran. +# The default value is: NO. + +OPTIMIZE_FOR_FORTRAN = NO + +# Set the OPTIMIZE_OUTPUT_VHDL tag to YES if your project consists of VHDL +# sources. Doxygen will then generate output that is tailored for VHDL. +# The default value is: NO. + +OPTIMIZE_OUTPUT_VHDL = NO + +# Doxygen selects the parser to use depending on the extension of the files it +# parses. With this tag you can assign which parser to use for a given +# extension. Doxygen has a built-in mapping, but you can override or extend it +# using this tag. The format is ext=language, where ext is a file extension, and +# language is one of the parsers supported by doxygen: IDL, Java, Javascript, +# C#, C, C++, D, PHP, Objective-C, Python, Fortran, VHDL. For instance to make +# doxygen treat .inc files as Fortran files (default is PHP), and .f files as C +# (default is Fortran), use: inc=Fortran f=C. +# +# Note For files without extension you can use no_extension as a placeholder. +# +# Note that for custom extensions you also need to set FILE_PATTERNS otherwise +# the files are not read by doxygen. + +EXTENSION_MAPPING = + +# If the MARKDOWN_SUPPORT tag is enabled then doxygen pre-processes all comments +# according to the Markdown format, which allows for more readable +# documentation. See http://daringfireball.net/projects/markdown/ for details. +# The output of markdown processing is further processed by doxygen, so you can +# mix doxygen, HTML, and XML commands with Markdown formatting. Disable only in +# case of backward compatibilities issues. +# The default value is: YES. + +MARKDOWN_SUPPORT = YES + +# When enabled doxygen tries to link words that correspond to documented +# classes, or namespaces to their corresponding documentation. Such a link can +# be prevented in individual cases by by putting a % sign in front of the word +# or globally by setting AUTOLINK_SUPPORT to NO. +# The default value is: YES. + +AUTOLINK_SUPPORT = YES + +# If you use STL classes (i.e. std::string, std::vector, etc.) but do not want +# to include (a tag file for) the STL sources as input, then you should set this +# tag to YES in order to let doxygen match functions declarations and +# definitions whose arguments contain STL classes (e.g. func(std::string); +# versus func(std::string) {}). This also make the inheritance and collaboration +# diagrams that involve STL classes more complete and accurate. +# The default value is: NO. + +BUILTIN_STL_SUPPORT = NO + +# If you use Microsoft's C++/CLI language, you should set this option to YES to +# enable parsing support. +# The default value is: NO. + +CPP_CLI_SUPPORT = NO + +# Set the SIP_SUPPORT tag to YES if your project consists of sip (see: +# http://www.riverbankcomputing.co.uk/software/sip/intro) sources only. Doxygen +# will parse them like normal C++ but will assume all classes use public instead +# of private inheritance when no explicit protection keyword is present. +# The default value is: NO. + +SIP_SUPPORT = NO + +# For Microsoft's IDL there are propget and propput attributes to indicate +# getter and setter methods for a property. Setting this option to YES will make +# doxygen to replace the get and set methods by a property in the documentation. +# This will only work if the methods are indeed getting or setting a simple +# type. If this is not the case, or you want to show the methods anyway, you +# should set this option to NO. +# The default value is: YES. + +IDL_PROPERTY_SUPPORT = YES + +# If member grouping is used in the documentation and the DISTRIBUTE_GROUP_DOC +# tag is set to YES, then doxygen will reuse the documentation of the first +# member in the group (if any) for the other members of the group. By default +# all members of a group must be documented explicitly. +# The default value is: NO. + +DISTRIBUTE_GROUP_DOC = NO + +# Set the SUBGROUPING tag to YES to allow class member groups of the same type +# (for instance a group of public functions) to be put as a subgroup of that +# type (e.g. under the Public Functions section). Set it to NO to prevent +# subgrouping. Alternatively, this can be done per class using the +# \nosubgrouping command. +# The default value is: YES. + +SUBGROUPING = YES + +# When the INLINE_GROUPED_CLASSES tag is set to YES, classes, structs and unions +# are shown inside the group in which they are included (e.g. using \ingroup) +# instead of on a separate page (for HTML and Man pages) or section (for LaTeX +# and RTF). +# +# Note that this feature does not work in combination with +# SEPARATE_MEMBER_PAGES. +# The default value is: NO. + +INLINE_GROUPED_CLASSES = NO + +# When the INLINE_SIMPLE_STRUCTS tag is set to YES, structs, classes, and unions +# with only public data fields or simple typedef fields will be shown inline in +# the documentation of the scope in which they are defined (i.e. file, +# namespace, or group documentation), provided this scope is documented. If set +# to NO, structs, classes, and unions are shown on a separate page (for HTML and +# Man pages) or section (for LaTeX and RTF). +# The default value is: NO. + +INLINE_SIMPLE_STRUCTS = NO + +# When TYPEDEF_HIDES_STRUCT tag is enabled, a typedef of a struct, union, or +# enum is documented as struct, union, or enum with the name of the typedef. So +# typedef struct TypeS {} TypeT, will appear in the documentation as a struct +# with name TypeT. When disabled the typedef will appear as a member of a file, +# namespace, or class. And the struct will be named TypeS. This can typically be +# useful for C code in case the coding convention dictates that all compound +# types are typedef'ed and only the typedef is referenced, never the tag name. +# The default value is: NO. + +TYPEDEF_HIDES_STRUCT = YES + +# The size of the symbol lookup cache can be set using LOOKUP_CACHE_SIZE. This +# cache is used to resolve symbols given their name and scope. Since this can be +# an expensive process and often the same symbol appears multiple times in the +# code, doxygen keeps a cache of pre-resolved symbols. If the cache is too small +# doxygen will become slower. If the cache is too large, memory is wasted. The +# cache size is given by this formula: 2^(16+LOOKUP_CACHE_SIZE). The valid range +# is 0..9, the default is 0, corresponding to a cache size of 2^16=65536 +# symbols. At the end of a run doxygen will report the cache usage and suggest +# the optimal cache size from a speed point of view. +# Minimum value: 0, maximum value: 9, default value: 0. + +LOOKUP_CACHE_SIZE = 0 + +#--------------------------------------------------------------------------- +# Build related configuration options +#--------------------------------------------------------------------------- + +# If the EXTRACT_ALL tag is set to YES doxygen will assume all entities in +# documentation are documented, even if no documentation was available. Private +# class members and static file members will be hidden unless the +# EXTRACT_PRIVATE respectively EXTRACT_STATIC tags are set to YES. +# Note: This will also disable the warnings about undocumented members that are +# normally produced when WARNINGS is set to YES. +# The default value is: NO. + +EXTRACT_ALL = NO + +# If the EXTRACT_PRIVATE tag is set to YES all private members of a class will +# be included in the documentation. +# The default value is: NO. + +EXTRACT_PRIVATE = YES + +# If the EXTRACT_PACKAGE tag is set to YES all members with package or internal +# scope will be included in the documentation. +# The default value is: NO. + +EXTRACT_PACKAGE = NO + +# If the EXTRACT_STATIC tag is set to YES all static members of a file will be +# included in the documentation. +# The default value is: NO. + +EXTRACT_STATIC = YES + +# If the EXTRACT_LOCAL_CLASSES tag is set to YES classes (and structs) defined +# locally in source files will be included in the documentation. If set to NO +# only classes defined in header files are included. Does not have any effect +# for Java sources. +# The default value is: YES. + +EXTRACT_LOCAL_CLASSES = YES + +# This flag is only useful for Objective-C code. When set to YES local methods, +# which are defined in the implementation section but not in the interface are +# included in the documentation. If set to NO only methods in the interface are +# included. +# The default value is: NO. + +EXTRACT_LOCAL_METHODS = NO + +# If this flag is set to YES, the members of anonymous namespaces will be +# extracted and appear in the documentation as a namespace called +# 'anonymous_namespace{file}', where file will be replaced with the base name of +# the file that contains the anonymous namespace. By default anonymous namespace +# are hidden. +# The default value is: NO. + +EXTRACT_ANON_NSPACES = NO + +# If the HIDE_UNDOC_MEMBERS tag is set to YES, doxygen will hide all +# undocumented members inside documented classes or files. If set to NO these +# members will be included in the various overviews, but no documentation +# section is generated. This option has no effect if EXTRACT_ALL is enabled. +# The default value is: NO. + +HIDE_UNDOC_MEMBERS = YES + +# If the HIDE_UNDOC_CLASSES tag is set to YES, doxygen will hide all +# undocumented classes that are normally visible in the class hierarchy. If set +# to NO these classes will be included in the various overviews. This option has +# no effect if EXTRACT_ALL is enabled. +# The default value is: NO. + +HIDE_UNDOC_CLASSES = YES + +# If the HIDE_FRIEND_COMPOUNDS tag is set to YES, doxygen will hide all friend +# (class|struct|union) declarations. If set to NO these declarations will be +# included in the documentation. +# The default value is: NO. + +HIDE_FRIEND_COMPOUNDS = NO + +# If the HIDE_IN_BODY_DOCS tag is set to YES, doxygen will hide any +# documentation blocks found inside the body of a function. If set to NO these +# blocks will be appended to the function's detailed documentation block. +# The default value is: NO. + +HIDE_IN_BODY_DOCS = NO + +# The INTERNAL_DOCS tag determines if documentation that is typed after a +# \internal command is included. If the tag is set to NO then the documentation +# will be excluded. Set it to YES to include the internal documentation. +# The default value is: NO. + +INTERNAL_DOCS = YES + +# If the CASE_SENSE_NAMES tag is set to NO then doxygen will only generate file +# names in lower-case letters. If set to YES upper-case letters are also +# allowed. This is useful if you have classes or files whose names only differ +# in case and if your file system supports case sensitive file names. Windows +# and Mac users are advised to set this option to NO. +# The default value is: system dependent. + +CASE_SENSE_NAMES = YES + +# If the HIDE_SCOPE_NAMES tag is set to NO then doxygen will show members with +# their full class and namespace scopes in the documentation. If set to YES the +# scope will be hidden. +# The default value is: NO. + +HIDE_SCOPE_NAMES = NO + +# If the SHOW_INCLUDE_FILES tag is set to YES then doxygen will put a list of +# the files that are included by a file in the documentation of that file. +# The default value is: YES. + +SHOW_INCLUDE_FILES = YES + +# If the FORCE_LOCAL_INCLUDES tag is set to YES then doxygen will list include +# files with double quotes in the documentation rather than with sharp brackets. +# The default value is: NO. + +FORCE_LOCAL_INCLUDES = NO + +# If the INLINE_INFO tag is set to YES then a tag [inline] is inserted in the +# documentation for inline members. +# The default value is: YES. + +INLINE_INFO = YES + +# If the SORT_MEMBER_DOCS tag is set to YES then doxygen will sort the +# (detailed) documentation of file and class members alphabetically by member +# name. If set to NO the members will appear in declaration order. +# The default value is: YES. + +SORT_MEMBER_DOCS = YES + +# If the SORT_BRIEF_DOCS tag is set to YES then doxygen will sort the brief +# descriptions of file, namespace and class members alphabetically by member +# name. If set to NO the members will appear in declaration order. +# The default value is: NO. + +SORT_BRIEF_DOCS = NO + +# If the SORT_MEMBERS_CTORS_1ST tag is set to YES then doxygen will sort the +# (brief and detailed) documentation of class members so that constructors and +# destructors are listed first. If set to NO the constructors will appear in the +# respective orders defined by SORT_BRIEF_DOCS and SORT_MEMBER_DOCS. +# Note: If SORT_BRIEF_DOCS is set to NO this option is ignored for sorting brief +# member documentation. +# Note: If SORT_MEMBER_DOCS is set to NO this option is ignored for sorting +# detailed member documentation. +# The default value is: NO. + +SORT_MEMBERS_CTORS_1ST = NO + +# If the SORT_GROUP_NAMES tag is set to YES then doxygen will sort the hierarchy +# of group names into alphabetical order. If set to NO the group names will +# appear in their defined order. +# The default value is: NO. + +SORT_GROUP_NAMES = NO + +# If the SORT_BY_SCOPE_NAME tag is set to YES, the class list will be sorted by +# fully-qualified names, including namespaces. If set to NO, the class list will +# be sorted only by class name, not including the namespace part. +# Note: This option is not very useful if HIDE_SCOPE_NAMES is set to YES. +# Note: This option applies only to the class list, not to the alphabetical +# list. +# The default value is: NO. + +SORT_BY_SCOPE_NAME = NO + +# If the STRICT_PROTO_MATCHING option is enabled and doxygen fails to do proper +# type resolution of all parameters of a function it will reject a match between +# the prototype and the implementation of a member function even if there is +# only one candidate or it is obvious which candidate to choose by doing a +# simple string match. By disabling STRICT_PROTO_MATCHING doxygen will still +# accept a match between prototype and implementation in such cases. +# The default value is: NO. + +STRICT_PROTO_MATCHING = NO + +# The GENERATE_TODOLIST tag can be used to enable ( YES) or disable ( NO) the +# todo list. This list is created by putting \todo commands in the +# documentation. +# The default value is: YES. + +GENERATE_TODOLIST = YES + +# The GENERATE_TESTLIST tag can be used to enable ( YES) or disable ( NO) the +# test list. This list is created by putting \test commands in the +# documentation. +# The default value is: YES. + +GENERATE_TESTLIST = YES + +# The GENERATE_BUGLIST tag can be used to enable ( YES) or disable ( NO) the bug +# list. This list is created by putting \bug commands in the documentation. +# The default value is: YES. + +GENERATE_BUGLIST = YES + +# The GENERATE_DEPRECATEDLIST tag can be used to enable ( YES) or disable ( NO) +# the deprecated list. This list is created by putting \deprecated commands in +# the documentation. +# The default value is: YES. + +GENERATE_DEPRECATEDLIST= YES + +# The ENABLED_SECTIONS tag can be used to enable conditional documentation +# sections, marked by \if ... \endif and \cond +# ... \endcond blocks. + +ENABLED_SECTIONS = + +# The MAX_INITIALIZER_LINES tag determines the maximum number of lines that the +# initial value of a variable or macro / define can have for it to appear in the +# documentation. If the initializer consists of more lines than specified here +# it will be hidden. Use a value of 0 to hide initializers completely. The +# appearance of the value of individual variables and macros / defines can be +# controlled using \showinitializer or \hideinitializer command in the +# documentation regardless of this setting. +# Minimum value: 0, maximum value: 10000, default value: 30. + +MAX_INITIALIZER_LINES = 30 + +# Set the SHOW_USED_FILES tag to NO to disable the list of files generated at +# the bottom of the documentation of classes and structs. If set to YES the list +# will mention the files that were used to generate the documentation. +# The default value is: YES. + +SHOW_USED_FILES = YES + +# Set the SHOW_FILES tag to NO to disable the generation of the Files page. This +# will remove the Files entry from the Quick Index and from the Folder Tree View +# (if specified). +# The default value is: YES. + +SHOW_FILES = YES + +# Set the SHOW_NAMESPACES tag to NO to disable the generation of the Namespaces +# page. This will remove the Namespaces entry from the Quick Index and from the +# Folder Tree View (if specified). +# The default value is: YES. + +SHOW_NAMESPACES = YES + +# The FILE_VERSION_FILTER tag can be used to specify a program or script that +# doxygen should invoke to get the current version for each file (typically from +# the version control system). Doxygen will invoke the program by executing (via +# popen()) the command command input-file, where command is the value of the +# FILE_VERSION_FILTER tag, and input-file is the name of an input file provided +# by doxygen. Whatever the program writes to standard output is used as the file +# version. For an example see the documentation. + +FILE_VERSION_FILTER = + +# The LAYOUT_FILE tag can be used to specify a layout file which will be parsed +# by doxygen. The layout file controls the global structure of the generated +# output files in an output format independent way. To create the layout file +# that represents doxygen's defaults, run doxygen with the -l option. You can +# optionally specify a file name after the option, if omitted DoxygenLayout.xml +# will be used as the name of the layout file. +# +# Note that if you run doxygen from a directory containing a file called +# DoxygenLayout.xml, doxygen will parse it automatically even if the LAYOUT_FILE +# tag is left empty. + +LAYOUT_FILE = + +# The CITE_BIB_FILES tag can be used to specify one or more bib files containing +# the reference definitions. This must be a list of .bib files. The .bib +# extension is automatically appended if omitted. This requires the bibtex tool +# to be installed. See also http://en.wikipedia.org/wiki/BibTeX for more info. +# For LaTeX the style of the bibliography can be controlled using +# LATEX_BIB_STYLE. To use this feature you need bibtex and perl available in the +# search path. Do not use file names with spaces, bibtex cannot handle them. See +# also \cite for info how to create references. + +CITE_BIB_FILES = vlfeat.bib + +#--------------------------------------------------------------------------- +# Configuration options related to warning and progress messages +#--------------------------------------------------------------------------- + +# The QUIET tag can be used to turn on/off the messages that are generated to +# standard output by doxygen. If QUIET is set to YES this implies that the +# messages are off. +# The default value is: NO. + +QUIET = NO + +# The WARNINGS tag can be used to turn on/off the warning messages that are +# generated to standard error ( stderr) by doxygen. If WARNINGS is set to YES +# this implies that the warnings are on. +# +# Tip: Turn warnings on while writing the documentation. +# The default value is: YES. + +WARNINGS = YES + +# If the WARN_IF_UNDOCUMENTED tag is set to YES, then doxygen will generate +# warnings for undocumented members. If EXTRACT_ALL is set to YES then this flag +# will automatically be disabled. +# The default value is: YES. + +WARN_IF_UNDOCUMENTED = YES + +# If the WARN_IF_DOC_ERROR tag is set to YES, doxygen will generate warnings for +# potential errors in the documentation, such as not documenting some parameters +# in a documented function, or documenting parameters that don't exist or using +# markup commands wrongly. +# The default value is: YES. + +WARN_IF_DOC_ERROR = YES + +# This WARN_NO_PARAMDOC option can be enabled to get warnings for functions that +# are documented, but have no documentation for their parameters or return +# value. If set to NO doxygen will only warn about wrong or incomplete parameter +# documentation, but not about the absence of documentation. +# The default value is: NO. + +WARN_NO_PARAMDOC = NO + +# The WARN_FORMAT tag determines the format of the warning messages that doxygen +# can produce. The string should contain the $file, $line, and $text tags, which +# will be replaced by the file and line number from which the warning originated +# and the warning text. Optionally the format may contain $version, which will +# be replaced by the version of the file (if it could be obtained via +# FILE_VERSION_FILTER) +# The default value is: $file:$line: $text. + +WARN_FORMAT = "$file:$line: $text" + +# The WARN_LOGFILE tag can be used to specify a file to which warning and error +# messages should be written. If left blank the output is written to standard +# error (stderr). + +WARN_LOGFILE = + +#--------------------------------------------------------------------------- +# Configuration options related to the input files +#--------------------------------------------------------------------------- + +# The INPUT tag is used to specify the files and/or directories that contain +# documented source files. You may enter file names like myfile.cpp or +# directories like /usr/src/myproject. Separate the files or directories with +# spaces. +# Note: If this tag is empty the current directory is searched. + +INPUT = vl \ + toolbox/mexutils.h \ + src/generic-driver.h + +# This tag can be used to specify the character encoding of the source files +# that doxygen parses. Internally doxygen uses the UTF-8 encoding. Doxygen uses +# libiconv (or the iconv built into libc) for the transcoding. See the libiconv +# documentation (see: http://www.gnu.org/software/libiconv) for the list of +# possible encodings. +# The default value is: UTF-8. + +INPUT_ENCODING = UTF-8 + +# If the value of the INPUT tag contains directories, you can use the +# FILE_PATTERNS tag to specify one or more wildcard patterns (like *.cpp and +# *.h) to filter out the source-files in the directories. If left blank the +# following patterns are tested:*.c, *.cc, *.cxx, *.cpp, *.c++, *.java, *.ii, +# *.ixx, *.ipp, *.i++, *.inl, *.idl, *.ddl, *.odl, *.h, *.hh, *.hxx, *.hpp, +# *.h++, *.cs, *.d, *.php, *.php4, *.php5, *.phtml, *.inc, *.m, *.markdown, +# *.md, *.mm, *.dox, *.py, *.f90, *.f, *.for, *.tcl, *.vhd, *.vhdl, *.ucf, +# *.qsf, *.as and *.js. + +FILE_PATTERNS = *.h \ + *.c \ + *.tc + +# The RECURSIVE tag can be used to specify whether or not subdirectories should +# be searched for input files as well. +# The default value is: NO. + +RECURSIVE = NO + +# The EXCLUDE tag can be used to specify files and/or directories that should be +# excluded from the INPUT source files. This way you can easily exclude a +# subdirectory from a directory tree whose root is specified with the INPUT tag. +# +# Note that relative paths are relative to the directory from which doxygen is +# run. + +EXCLUDE = + +# The EXCLUDE_SYMLINKS tag can be used to select whether or not files or +# directories that are symbolic links (a Unix file system feature) are excluded +# from the input. +# The default value is: NO. + +EXCLUDE_SYMLINKS = NO + +# If the value of the INPUT tag contains directories, you can use the +# EXCLUDE_PATTERNS tag to specify one or more wildcard patterns to exclude +# certain files from those directories. +# +# Note that the wildcards are matched against the file with absolute path, so to +# exclude all test directories for example use the pattern */test/* + +EXCLUDE_PATTERNS = test_* + +# The EXCLUDE_SYMBOLS tag can be used to specify one or more symbol names +# (namespaces, classes, functions, etc.) that should be excluded from the +# output. The symbol name can be a fully qualified name, a word, or if the +# wildcard * is used, a substring. Examples: ANamespace, AClass, +# AClass::ANamespace, ANamespace::*Test +# +# Note that the wildcards are matched against the file with absolute path, so to +# exclude all test directories use the pattern */test/* + +EXCLUDE_SYMBOLS = + +# The EXAMPLE_PATH tag can be used to specify one or more files or directories +# that contain example code fragments that are included (see the \include +# command). + +EXAMPLE_PATH = vl/doc + +# If the value of the EXAMPLE_PATH tag contains directories, you can use the +# EXAMPLE_PATTERNS tag to specify one or more wildcard pattern (like *.cpp and +# *.h) to filter out the source-files in the directories. If left blank all +# files are included. + +EXAMPLE_PATTERNS = + +# If the EXAMPLE_RECURSIVE tag is set to YES then subdirectories will be +# searched for input files to be used with the \include or \dontinclude commands +# irrespective of the value of the RECURSIVE tag. +# The default value is: NO. + +EXAMPLE_RECURSIVE = NO + +# The IMAGE_PATH tag can be used to specify one or more files or directories +# that contain images that are to be included in the documentation (see the +# \image command). + +IMAGE_PATH = doc/figures + +# The INPUT_FILTER tag can be used to specify a program that doxygen should +# invoke to filter for each input file. Doxygen will invoke the filter program +# by executing (via popen()) the command: +# +# +# +# where is the value of the INPUT_FILTER tag, and is the +# name of an input file. Doxygen will then use the output that the filter +# program writes to standard output. If FILTER_PATTERNS is specified, this tag +# will be ignored. +# +# Note that the filter must not add or remove lines; it is applied before the +# code is scanned, but not when the output code is generated. If lines are added +# or removed, the anchors will not be placed correctly. + +INPUT_FILTER = "\ +sed -e 's/\/\*\* -----------* *$/\/** /g' \ + -e \"s/__VLFEAT_VERSION__/$(cat VERSION)/g\" \ + -e \"s/@cite{\([a-zA-Z0-9-]*\)}/@cite \1 /g\" \ + -e 's/\([^f]\)\$/\1@f$/g' \ + -e 's/^\$/@f$/g' \ + -e 's/\\\[/@f[/g' \ + -e 's/\\\]/@f]/g' \ +" +# The FILTER_PATTERNS tag can be used to specify filters on a per file pattern +# basis. Doxygen will compare the file name with each pattern and apply the +# filter if there is a match. The filters are a list of the form: pattern=filter +# (like *.cpp=my_cpp_filter). See INPUT_FILTER for further information on how +# filters are used. If the FILTER_PATTERNS tag is empty or if none of the +# patterns match the file name, INPUT_FILTER is applied. + +FILTER_PATTERNS = + +# If the FILTER_SOURCE_FILES tag is set to YES, the input filter (if set using +# INPUT_FILTER ) will also be used to filter the input files that are used for +# producing the source files to browse (i.e. when SOURCE_BROWSER is set to YES). +# The default value is: NO. + +FILTER_SOURCE_FILES = NO + +# The FILTER_SOURCE_PATTERNS tag can be used to specify source filters per file +# pattern. A pattern will override the setting for FILTER_PATTERN (if any) and +# it is also possible to disable source filtering for a specific pattern using +# *.ext= (so without naming a filter). +# This tag requires that the tag FILTER_SOURCE_FILES is set to YES. + +FILTER_SOURCE_PATTERNS = + +# If the USE_MDFILE_AS_MAINPAGE tag refers to the name of a markdown file that +# is part of the input, its contents will be placed on the main page +# (index.html). This can be useful if you have a project on for instance GitHub +# and want to reuse the introduction page also for the doxygen output. + +USE_MDFILE_AS_MAINPAGE = + +#--------------------------------------------------------------------------- +# Configuration options related to source browsing +#--------------------------------------------------------------------------- + +# If the SOURCE_BROWSER tag is set to YES then a list of source files will be +# generated. Documented entities will be cross-referenced with these sources. +# +# Note: To get rid of all source code in the generated output, make sure that +# also VERBATIM_HEADERS is set to NO. +# The default value is: NO. + +SOURCE_BROWSER = NO + +# Setting the INLINE_SOURCES tag to YES will include the body of functions, +# classes and enums directly into the documentation. +# The default value is: NO. + +INLINE_SOURCES = NO + +# Setting the STRIP_CODE_COMMENTS tag to YES will instruct doxygen to hide any +# special comment blocks from generated source code fragments. Normal C, C++ and +# Fortran comments will always remain visible. +# The default value is: YES. + +STRIP_CODE_COMMENTS = YES + +# If the REFERENCED_BY_RELATION tag is set to YES then for each documented +# function all documented functions referencing it will be listed. +# The default value is: NO. + +REFERENCED_BY_RELATION = NO + +# If the REFERENCES_RELATION tag is set to YES then for each documented function +# all documented entities called/used by that function will be listed. +# The default value is: NO. + +REFERENCES_RELATION = NO + +# If the REFERENCES_LINK_SOURCE tag is set to YES and SOURCE_BROWSER tag is set +# to YES, then the hyperlinks from functions in REFERENCES_RELATION and +# REFERENCED_BY_RELATION lists will link to the source code. Otherwise they will +# link to the documentation. +# The default value is: YES. + +REFERENCES_LINK_SOURCE = NO + +# If SOURCE_TOOLTIPS is enabled (the default) then hovering a hyperlink in the +# source code will show a tooltip with additional information such as prototype, +# brief description and links to the definition and documentation. Since this +# will make the HTML file larger and loading of large files a bit slower, you +# can opt to disable this feature. +# The default value is: YES. +# This tag requires that the tag SOURCE_BROWSER is set to YES. + +SOURCE_TOOLTIPS = YES + +# If the USE_HTAGS tag is set to YES then the references to source code will +# point to the HTML generated by the htags(1) tool instead of doxygen built-in +# source browser. The htags tool is part of GNU's global source tagging system +# (see http://www.gnu.org/software/global/global.html). You will need version +# 4.8.6 or higher. +# +# To use it do the following: +# - Install the latest version of global +# - Enable SOURCE_BROWSER and USE_HTAGS in the config file +# - Make sure the INPUT points to the root of the source tree +# - Run doxygen as normal +# +# Doxygen will invoke htags (and that will in turn invoke gtags), so these +# tools must be available from the command line (i.e. in the search path). +# +# The result: instead of the source browser generated by doxygen, the links to +# source code will now point to the output of htags. +# The default value is: NO. +# This tag requires that the tag SOURCE_BROWSER is set to YES. + +USE_HTAGS = NO + +# If the VERBATIM_HEADERS tag is set the YES then doxygen will generate a +# verbatim copy of the header file for each class for which an include is +# specified. Set to NO to disable this. +# See also: Section \class. +# The default value is: YES. + +VERBATIM_HEADERS = NO + +#--------------------------------------------------------------------------- +# Configuration options related to the alphabetical class index +#--------------------------------------------------------------------------- + +# If the ALPHABETICAL_INDEX tag is set to YES, an alphabetical index of all +# compounds will be generated. Enable this if the project contains a lot of +# classes, structs, unions or interfaces. +# The default value is: YES. + +ALPHABETICAL_INDEX = YES + +# The COLS_IN_ALPHA_INDEX tag can be used to specify the number of columns in +# which the alphabetical index list will be split. +# Minimum value: 1, maximum value: 20, default value: 5. +# This tag requires that the tag ALPHABETICAL_INDEX is set to YES. + +COLS_IN_ALPHA_INDEX = 5 + +# In case all classes in a project start with a common prefix, all classes will +# be put under the same header in the alphabetical index. The IGNORE_PREFIX tag +# can be used to specify a prefix (or a list of prefixes) that should be ignored +# while generating the index headers. +# This tag requires that the tag ALPHABETICAL_INDEX is set to YES. + +IGNORE_PREFIX = + +#--------------------------------------------------------------------------- +# Configuration options related to the HTML output +#--------------------------------------------------------------------------- + +# If the GENERATE_HTML tag is set to YES doxygen will generate HTML output +# The default value is: YES. + +GENERATE_HTML = YES + +# The HTML_OUTPUT tag is used to specify where the HTML docs will be put. If a +# relative path is entered the value of OUTPUT_DIRECTORY will be put in front of +# it. +# The default directory is: html. +# This tag requires that the tag GENERATE_HTML is set to YES. + +HTML_OUTPUT = api + +# The HTML_FILE_EXTENSION tag can be used to specify the file extension for each +# generated HTML page (for example: .htm, .php, .asp). +# The default value is: .html. +# This tag requires that the tag GENERATE_HTML is set to YES. + +HTML_FILE_EXTENSION = .html + +# The HTML_HEADER tag can be used to specify a user-defined HTML header file for +# each generated HTML page. If the tag is left blank doxygen will generate a +# standard header. +# +# To get valid HTML the header file that includes any scripts and style sheets +# that doxygen needs, which is dependent on the configuration options used (e.g. +# the setting GENERATE_TREEVIEW). It is highly recommended to start with a +# default header using +# doxygen -w html new_header.html new_footer.html new_stylesheet.css +# YourConfigFile +# and then modify the file new_header.html. See also section "Doxygen usage" +# for information on how to generate the default header that doxygen normally +# uses. +# Note: The header is subject to change so you typically have to regenerate the +# default header when upgrading to a newer version of doxygen. For a description +# of the possible markers and block names see the documentation. +# This tag requires that the tag GENERATE_HTML is set to YES. + +HTML_HEADER = doc/build/doxygen_header.html + +# The HTML_FOOTER tag can be used to specify a user-defined HTML footer for each +# generated HTML page. If the tag is left blank doxygen will generate a standard +# footer. See HTML_HEADER for more information on how to generate a default +# footer and what special commands can be used inside the footer. See also +# section "Doxygen usage" for information on how to generate the default footer +# that doxygen normally uses. +# This tag requires that the tag GENERATE_HTML is set to YES. + +HTML_FOOTER = doc/build/doxygen_footer.html + +# The HTML_STYLESHEET tag can be used to specify a user-defined cascading style +# sheet that is used by each HTML page. It can be used to fine-tune the look of +# the HTML output. If left blank doxygen will generate a default style sheet. +# See also section "Doxygen usage" for information on how to generate the style +# sheet that doxygen normally uses. +# Note: It is recommended to use HTML_EXTRA_STYLESHEET instead of this tag, as +# it is more robust and this tag (HTML_STYLESHEET) will in the future become +# obsolete. +# This tag requires that the tag GENERATE_HTML is set to YES. + +HTML_STYLESHEET = + +# The HTML_EXTRA_STYLESHEET tag can be used to specify an additional user- +# defined cascading style sheet that is included after the standard style sheets +# created by doxygen. Using this option one can overrule certain style aspects. +# This is preferred over using HTML_STYLESHEET since it does not replace the +# standard style sheet and is therefor more robust against future updates. +# Doxygen will copy the style sheet file to the output directory. For an example +# see the documentation. +# This tag requires that the tag GENERATE_HTML is set to YES. + +HTML_EXTRA_STYLESHEET = + +# The HTML_EXTRA_FILES tag can be used to specify one or more extra images or +# other source files which should be copied to the HTML output directory. Note +# that these files will be copied to the base HTML output directory. Use the +# $relpath^ marker in the HTML_HEADER and/or HTML_FOOTER files to load these +# files. In the HTML_STYLESHEET file, use the file name only. Also note that the +# files will be copied as-is; there are no commands or markers available. +# This tag requires that the tag GENERATE_HTML is set to YES. + +HTML_EXTRA_FILES = + +# The HTML_COLORSTYLE_HUE tag controls the color of the HTML output. Doxygen +# will adjust the colors in the stylesheet and background images according to +# this color. Hue is specified as an angle on a colorwheel, see +# http://en.wikipedia.org/wiki/Hue for more information. For instance the value +# 0 represents red, 60 is yellow, 120 is green, 180 is cyan, 240 is blue, 300 +# purple, and 360 is red again. +# Minimum value: 0, maximum value: 359, default value: 220. +# This tag requires that the tag GENERATE_HTML is set to YES. + +HTML_COLORSTYLE_HUE = 220 + +# The HTML_COLORSTYLE_SAT tag controls the purity (or saturation) of the colors +# in the HTML output. For a value of 0 the output will use grayscales only. A +# value of 255 will produce the most vivid colors. +# Minimum value: 0, maximum value: 255, default value: 100. +# This tag requires that the tag GENERATE_HTML is set to YES. + +HTML_COLORSTYLE_SAT = 100 + +# The HTML_COLORSTYLE_GAMMA tag controls the gamma correction applied to the +# luminance component of the colors in the HTML output. Values below 100 +# gradually make the output lighter, whereas values above 100 make the output +# darker. The value divided by 100 is the actual gamma applied, so 80 represents +# a gamma of 0.8, The value 220 represents a gamma of 2.2, and 100 does not +# change the gamma. +# Minimum value: 40, maximum value: 240, default value: 80. +# This tag requires that the tag GENERATE_HTML is set to YES. + +HTML_COLORSTYLE_GAMMA = 80 + +# If the HTML_TIMESTAMP tag is set to YES then the footer of each generated HTML +# page will contain the date and time when the page was generated. Setting this +# to NO can help when comparing the output of multiple runs. +# The default value is: YES. +# This tag requires that the tag GENERATE_HTML is set to YES. + +HTML_TIMESTAMP = YES + +# If the HTML_DYNAMIC_SECTIONS tag is set to YES then the generated HTML +# documentation will contain sections that can be hidden and shown after the +# page has loaded. +# The default value is: NO. +# This tag requires that the tag GENERATE_HTML is set to YES. + +HTML_DYNAMIC_SECTIONS = NO + +# With HTML_INDEX_NUM_ENTRIES one can control the preferred number of entries +# shown in the various tree structured indices initially; the user can expand +# and collapse entries dynamically later on. Doxygen will expand the tree to +# such a level that at most the specified number of entries are visible (unless +# a fully collapsed tree already exceeds this amount). So setting the number of +# entries 1 will produce a full collapsed tree by default. 0 is a special value +# representing an infinite number of entries and will result in a full expanded +# tree by default. +# Minimum value: 0, maximum value: 9999, default value: 100. +# This tag requires that the tag GENERATE_HTML is set to YES. + +HTML_INDEX_NUM_ENTRIES = 100 + +# If the GENERATE_DOCSET tag is set to YES, additional index files will be +# generated that can be used as input for Apple's Xcode 3 integrated development +# environment (see: http://developer.apple.com/tools/xcode/), introduced with +# OSX 10.5 (Leopard). To create a documentation set, doxygen will generate a +# Makefile in the HTML output directory. Running make will produce the docset in +# that directory and running make install will install the docset in +# ~/Library/Developer/Shared/Documentation/DocSets so that Xcode will find it at +# startup. See http://developer.apple.com/tools/creatingdocsetswithdoxygen.html +# for more information. +# The default value is: NO. +# This tag requires that the tag GENERATE_HTML is set to YES. + +GENERATE_DOCSET = NO + +# This tag determines the name of the docset feed. A documentation feed provides +# an umbrella under which multiple documentation sets from a single provider +# (such as a company or product suite) can be grouped. +# The default value is: Doxygen generated docs. +# This tag requires that the tag GENERATE_DOCSET is set to YES. + +DOCSET_FEEDNAME = "Doxygen generated docs" + +# This tag specifies a string that should uniquely identify the documentation +# set bundle. This should be a reverse domain-name style string, e.g. +# com.mycompany.MyDocSet. Doxygen will append .docset to the name. +# The default value is: org.doxygen.Project. +# This tag requires that the tag GENERATE_DOCSET is set to YES. + +DOCSET_BUNDLE_ID = org.doxygen.Project + +# The DOCSET_PUBLISHER_ID tag specifies a string that should uniquely identify +# the documentation publisher. This should be a reverse domain-name style +# string, e.g. com.mycompany.MyDocSet.documentation. +# The default value is: org.doxygen.Publisher. +# This tag requires that the tag GENERATE_DOCSET is set to YES. + +DOCSET_PUBLISHER_ID = org.doxygen.Publisher + +# The DOCSET_PUBLISHER_NAME tag identifies the documentation publisher. +# The default value is: Publisher. +# This tag requires that the tag GENERATE_DOCSET is set to YES. + +DOCSET_PUBLISHER_NAME = Publisher + +# If the GENERATE_HTMLHELP tag is set to YES then doxygen generates three +# additional HTML index files: index.hhp, index.hhc, and index.hhk. The +# index.hhp is a project file that can be read by Microsoft's HTML Help Workshop +# (see: http://www.microsoft.com/en-us/download/details.aspx?id=21138) on +# Windows. +# +# The HTML Help Workshop contains a compiler that can convert all HTML output +# generated by doxygen into a single compiled HTML file (.chm). Compiled HTML +# files are now used as the Windows 98 help format, and will replace the old +# Windows help format (.hlp) on all Windows platforms in the future. Compressed +# HTML files also contain an index, a table of contents, and you can search for +# words in the documentation. The HTML workshop also contains a viewer for +# compressed HTML files. +# The default value is: NO. +# This tag requires that the tag GENERATE_HTML is set to YES. + +GENERATE_HTMLHELP = NO + +# The CHM_FILE tag can be used to specify the file name of the resulting .chm +# file. You can add a path in front of the file if the result should not be +# written to the html output directory. +# This tag requires that the tag GENERATE_HTMLHELP is set to YES. + +CHM_FILE = + +# The HHC_LOCATION tag can be used to specify the location (absolute path +# including file name) of the HTML help compiler ( hhc.exe). If non-empty +# doxygen will try to run the HTML help compiler on the generated index.hhp. +# The file has to be specified with full path. +# This tag requires that the tag GENERATE_HTMLHELP is set to YES. + +HHC_LOCATION = + +# The GENERATE_CHI flag controls if a separate .chi index file is generated ( +# YES) or that it should be included in the master .chm file ( NO). +# The default value is: NO. +# This tag requires that the tag GENERATE_HTMLHELP is set to YES. + +GENERATE_CHI = NO + +# The CHM_INDEX_ENCODING is used to encode HtmlHelp index ( hhk), content ( hhc) +# and project file content. +# This tag requires that the tag GENERATE_HTMLHELP is set to YES. + +CHM_INDEX_ENCODING = + +# The BINARY_TOC flag controls whether a binary table of contents is generated ( +# YES) or a normal table of contents ( NO) in the .chm file. +# The default value is: NO. +# This tag requires that the tag GENERATE_HTMLHELP is set to YES. + +BINARY_TOC = NO + +# The TOC_EXPAND flag can be set to YES to add extra items for group members to +# the table of contents of the HTML help documentation and to the tree view. +# The default value is: NO. +# This tag requires that the tag GENERATE_HTMLHELP is set to YES. + +TOC_EXPAND = NO + +# If the GENERATE_QHP tag is set to YES and both QHP_NAMESPACE and +# QHP_VIRTUAL_FOLDER are set, an additional index file will be generated that +# can be used as input for Qt's qhelpgenerator to generate a Qt Compressed Help +# (.qch) of the generated HTML documentation. +# The default value is: NO. +# This tag requires that the tag GENERATE_HTML is set to YES. + +GENERATE_QHP = NO + +# If the QHG_LOCATION tag is specified, the QCH_FILE tag can be used to specify +# the file name of the resulting .qch file. The path specified is relative to +# the HTML output folder. +# This tag requires that the tag GENERATE_QHP is set to YES. + +QCH_FILE = + +# The QHP_NAMESPACE tag specifies the namespace to use when generating Qt Help +# Project output. For more information please see Qt Help Project / Namespace +# (see: http://qt-project.org/doc/qt-4.8/qthelpproject.html#namespace). +# The default value is: org.doxygen.Project. +# This tag requires that the tag GENERATE_QHP is set to YES. + +QHP_NAMESPACE = org.doxygen.Project + +# The QHP_VIRTUAL_FOLDER tag specifies the namespace to use when generating Qt +# Help Project output. For more information please see Qt Help Project / Virtual +# Folders (see: http://qt-project.org/doc/qt-4.8/qthelpproject.html#virtual- +# folders). +# The default value is: doc. +# This tag requires that the tag GENERATE_QHP is set to YES. + +QHP_VIRTUAL_FOLDER = doc + +# If the QHP_CUST_FILTER_NAME tag is set, it specifies the name of a custom +# filter to add. For more information please see Qt Help Project / Custom +# Filters (see: http://qt-project.org/doc/qt-4.8/qthelpproject.html#custom- +# filters). +# This tag requires that the tag GENERATE_QHP is set to YES. + +QHP_CUST_FILTER_NAME = + +# The QHP_CUST_FILTER_ATTRS tag specifies the list of the attributes of the +# custom filter to add. For more information please see Qt Help Project / Custom +# Filters (see: http://qt-project.org/doc/qt-4.8/qthelpproject.html#custom- +# filters). +# This tag requires that the tag GENERATE_QHP is set to YES. + +QHP_CUST_FILTER_ATTRS = + +# The QHP_SECT_FILTER_ATTRS tag specifies the list of the attributes this +# project's filter section matches. Qt Help Project / Filter Attributes (see: +# http://qt-project.org/doc/qt-4.8/qthelpproject.html#filter-attributes). +# This tag requires that the tag GENERATE_QHP is set to YES. + +QHP_SECT_FILTER_ATTRS = + +# The QHG_LOCATION tag can be used to specify the location of Qt's +# qhelpgenerator. If non-empty doxygen will try to run qhelpgenerator on the +# generated .qhp file. +# This tag requires that the tag GENERATE_QHP is set to YES. + +QHG_LOCATION = + +# If the GENERATE_ECLIPSEHELP tag is set to YES, additional index files will be +# generated, together with the HTML files, they form an Eclipse help plugin. To +# install this plugin and make it available under the help contents menu in +# Eclipse, the contents of the directory containing the HTML and XML files needs +# to be copied into the plugins directory of eclipse. The name of the directory +# within the plugins directory should be the same as the ECLIPSE_DOC_ID value. +# After copying Eclipse needs to be restarted before the help appears. +# The default value is: NO. +# This tag requires that the tag GENERATE_HTML is set to YES. + +GENERATE_ECLIPSEHELP = NO + +# A unique identifier for the Eclipse help plugin. When installing the plugin +# the directory name containing the HTML and XML files should also have this +# name. Each documentation set should have its own identifier. +# The default value is: org.doxygen.Project. +# This tag requires that the tag GENERATE_ECLIPSEHELP is set to YES. + +ECLIPSE_DOC_ID = org.doxygen.Project + +# If you want full control over the layout of the generated HTML pages it might +# be necessary to disable the index and replace it with your own. The +# DISABLE_INDEX tag can be used to turn on/off the condensed index (tabs) at top +# of each HTML page. A value of NO enables the index and the value YES disables +# it. Since the tabs in the index contain the same information as the navigation +# tree, you can set this option to YES if you also set GENERATE_TREEVIEW to YES. +# The default value is: NO. +# This tag requires that the tag GENERATE_HTML is set to YES. + +DISABLE_INDEX = NO + +# The GENERATE_TREEVIEW tag is used to specify whether a tree-like index +# structure should be generated to display hierarchical information. If the tag +# value is set to YES, a side panel will be generated containing a tree-like +# index structure (just like the one that is generated for HTML Help). For this +# to work a browser that supports JavaScript, DHTML, CSS and frames is required +# (i.e. any modern browser). Windows users are probably better off using the +# HTML help feature. Via custom stylesheets (see HTML_EXTRA_STYLESHEET) one can +# further fine-tune the look of the index. As an example, the default style +# sheet generated by doxygen has an example that shows how to put an image at +# the root of the tree instead of the PROJECT_NAME. Since the tree basically has +# the same information as the tab index, you could consider setting +# DISABLE_INDEX to YES when enabling this option. +# The default value is: NO. +# This tag requires that the tag GENERATE_HTML is set to YES. + +GENERATE_TREEVIEW = NONE + +# The ENUM_VALUES_PER_LINE tag can be used to set the number of enum values that +# doxygen will group on one line in the generated HTML documentation. +# +# Note that a value of 0 will completely suppress the enum values from appearing +# in the overview section. +# Minimum value: 0, maximum value: 20, default value: 4. +# This tag requires that the tag GENERATE_HTML is set to YES. + +ENUM_VALUES_PER_LINE = 4 + +# If the treeview is enabled (see GENERATE_TREEVIEW) then this tag can be used +# to set the initial width (in pixels) of the frame in which the tree is shown. +# Minimum value: 0, maximum value: 1500, default value: 250. +# This tag requires that the tag GENERATE_HTML is set to YES. + +TREEVIEW_WIDTH = 250 + +# When the EXT_LINKS_IN_WINDOW option is set to YES doxygen will open links to +# external symbols imported via tag files in a separate window. +# The default value is: NO. +# This tag requires that the tag GENERATE_HTML is set to YES. + +EXT_LINKS_IN_WINDOW = NO + +# Use this tag to change the font size of LaTeX formulas included as images in +# the HTML documentation. When you change the font size after a successful +# doxygen run you need to manually remove any form_*.png images from the HTML +# output directory to force them to be regenerated. +# Minimum value: 8, maximum value: 50, default value: 10. +# This tag requires that the tag GENERATE_HTML is set to YES. + +FORMULA_FONTSIZE = 13 + +# Use the FORMULA_TRANPARENT tag to determine whether or not the images +# generated for formulas are transparent PNGs. Transparent PNGs are not +# supported properly for IE 6.0, but are supported on all modern browsers. +# +# Note that when changing this option you need to delete any form_*.png files in +# the HTML output directory before the changes have effect. +# The default value is: YES. +# This tag requires that the tag GENERATE_HTML is set to YES. + +FORMULA_TRANSPARENT = YES + +# Enable the USE_MATHJAX option to render LaTeX formulas using MathJax (see +# http://www.mathjax.org) which uses client side Javascript for the rendering +# instead of using prerendered bitmaps. Use this if you do not have LaTeX +# installed or if you want to formulas look prettier in the HTML output. When +# enabled you may also need to install MathJax separately and configure the path +# to it using the MATHJAX_RELPATH option. +# The default value is: NO. +# This tag requires that the tag GENERATE_HTML is set to YES. + +USE_MATHJAX = YES + +# When MathJax is enabled you can set the default output format to be used for +# the MathJax output. See the MathJax site (see: +# http://docs.mathjax.org/en/latest/output.html) for more details. +# Possible values are: HTML-CSS (which is slower, but has the best +# compatibility), NativeMML (i.e. MathML) and SVG. +# The default value is: HTML-CSS. +# This tag requires that the tag USE_MATHJAX is set to YES. + +MATHJAX_FORMAT = HTML-CSS + +# When MathJax is enabled you need to specify the location relative to the HTML +# output directory using the MATHJAX_RELPATH option. The destination directory +# should contain the MathJax.js script. For instance, if the mathjax directory +# is located at the same level as the HTML output directory, then +# MATHJAX_RELPATH should be ../mathjax. The default value points to the MathJax +# Content Delivery Network so you can quickly see the result without installing +# MathJax. However, it is strongly recommended to install a local copy of +# MathJax from http://www.mathjax.org before deployment. +# The default value is: http://cdn.mathjax.org/mathjax/latest. +# This tag requires that the tag USE_MATHJAX is set to YES. + +MATHJAX_RELPATH = http://www.mathjax.org/mathjax + +# The MATHJAX_EXTENSIONS tag can be used to specify one or more MathJax +# extension names that should be enabled during MathJax rendering. For example +# MATHJAX_EXTENSIONS = TeX/AMSmath TeX/AMSsymbols +# This tag requires that the tag USE_MATHJAX is set to YES. + +MATHJAX_EXTENSIONS = + +# The MATHJAX_CODEFILE tag can be used to specify a file with javascript pieces +# of code that will be used on startup of the MathJax code. See the MathJax site +# (see: http://docs.mathjax.org/en/latest/output.html) for more details. For an +# example see the documentation. +# This tag requires that the tag USE_MATHJAX is set to YES. + +MATHJAX_CODEFILE = + +# When the SEARCHENGINE tag is enabled doxygen will generate a search box for +# the HTML output. The underlying search engine uses javascript and DHTML and +# should work on any modern browser. Note that when using HTML help +# (GENERATE_HTMLHELP), Qt help (GENERATE_QHP), or docsets (GENERATE_DOCSET) +# there is already a search function so this one should typically be disabled. +# For large projects the javascript based search engine can be slow, then +# enabling SERVER_BASED_SEARCH may provide a better solution. It is possible to +# search using the keyboard; to jump to the search box use + S +# (what the is depends on the OS and browser, but it is typically +# , /