-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathdata_reader.py
36 lines (31 loc) · 1.33 KB
/
data_reader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
# -*- coding: utf-8 -*-
"""
Created on Thu May 24 22:34:32 2018
@author: mwahdan
"""
import pandas as pd
def read_SICK_data(file_path, normalize_scores=True):
df = pd.read_csv(file_path, sep='\t')
df = df[['pair_ID', 'sentence_A', 'sentence_B', 'relatedness_score', 'SemEval_set']]
# relatedness_score: semantic relatedness gold score (on a 1-5 continuous scale)
# normalize score to range [0,1]
if normalize_scores:
min_score = 1.0
max_score = 5.0
df['relatedness_score'] = (df['relatedness_score'] - min_score) / (max_score - min_score)
# split dataset
train_df = df[df['SemEval_set'] == 'TRAIN']
dev_df = df[df['SemEval_set'] == 'TRIAL']
test_df = df[df['SemEval_set'] == 'TEST']
return train_df, dev_df, test_df
def read_SEMEVAL_data(file_path, normalize_scores=True):
df = pd.read_csv(file_path, sep='\t', header=None, names=['relatedness_score', 'sentence_A', 'sentence_B'])
# relatedness_score: semantic relatedness gold score (on a 0-5 continuous scale)
# normalize score to range [0,1]
if normalize_scores:
min_score = 0.0
max_score = 5.0
df['relatedness_score'] = (df['relatedness_score'] - min_score) / (max_score - min_score)
return df
if __name__ == '__main__':
df = read_SEMEVAL_data('./data/sts/semeval-sts/2013/OnWN.test.tsv')