-
Notifications
You must be signed in to change notification settings - Fork 56
/
Copy pathdocker-compose-project.yml
executable file
·59 lines (54 loc) · 2.95 KB
/
docker-compose-project.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
version: '3.7'
services:
postgres: # create postgres container
image: postgres:9.6
container_name: postgres_container
environment:
- POSTGRES_USER=airflow
- POSTGRES_PASSWORD=airflow
- POSTGRES_DB=airflow
airflow: # create airflow container
build: './airflow_docker' # construct the container along the Dockerfile in this folder
container_name: airflow_container
restart: always
depends_on:
- postgres
environment:
- LOAD_EX=n
- EXECUTOR=Local
volumes: # mount the following local folders
- ./dags:/usr/local/airflow/dags
- ./data:/usr/local/airflow/data
- ./models:/usr/local/airflow/models
ports:
- "8080:8080" # expose port
command: webserver
healthcheck:
test: ["CMD-SHELL", "[ -f /usr/local/airflow/airflow-webserver.pid ]"]
interval: 30s
timeout: 30s
retries: 3
zookeeper: # create zookeeper container
image: wurstmeister/zookeeper
container_name: zookeeper_container
ports:
- "2181:2181" # expose port
kafka: # create an instance of a Kafka broker in a container
image: wurstmeister/kafka
container_name: kafka_container
ports:
- "9092:9092" # expose port
environment:
KAFKA_ADVERTISED_HOST_NAME: kafka # specify the docker host IP at which other containers can reach the broker
KAFKA_CREATE_TOPICS: "TopicA:1:1" # create a topic called 'TopicA" with 1 partition and 1 replica
KAFKA_ZOOKEEPER_CONNECT: zookeeper:2181 # specify where the broker can reach Zookeeper
KAFKA_LISTENERS: PLAINTEXT://:9092 # the list of addresses on which the Kafka broker will listen on for incoming connections.
KAFKA_ADVERTISED_LISTENERS: PLAINTEXT://kafka:9092 # Kafka sends the value of this variable to clients during their connection. After receiving that value, the clients use it for sending/consuming records to/from the Kafka broker.y connect to it.
volumes:
- /var/run/docker.sock:/var/run/docker.sock
mlflow: # create a MLFlow container
build: './mlflow_docker' # construct the container along the Dockerfile in this folder
container_name: mlflow_container
ports:
- "5000:5000" # expose port
command: 'mlflow server --backend-store-uri ./mlflow --host 0.0.0.0 --port 5000'