forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelpers.py
228 lines (186 loc) · 8.54 KB
/
helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# Copyright 2021 DeepMind Technologies Limited.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Helpers for a galaxy merger model evaluation."""
import glob
import os
from astropy import cosmology
from astropy.io import fits
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
import tensorflow.compat.v2 as tf
def restore_checkpoint(checkpoint_dir, experiment):
checkpoint_path = tf.train.latest_checkpoint(checkpoint_dir)
global_step = tf.Variable(
0, dtype=tf.int32, trainable=False, name='global_step')
checkpoint = tf.train.Checkpoint(
_global_step_=global_step, **experiment.checkpoint_items)
checkpoint.restore(checkpoint_path)
def sum_average_transformed_mu_and_sigma(mu, log_sigma_sq):
"""Computes <mu>, var(mu) + <var> in transformed representation.
This corresponds to assuming that the output distribution is a sum of
Gaussian and computing the mean and variance of the resulting (non-Gaussian)
distribution.
Args:
mu: Tensor of shape [B, ...] representing the means of the input
distributions.
log_sigma_sq: Tensor of shape [B, ...] representing log(sigma**2) of the
input distributions. Can be None, in which case the variance is assumed
to be zero.
Returns:
mu: Tensor of shape [...] representing the means of the output
distributions.
log_sigma_sq: Tensor of shape [...] representing log(sigma**2) of the
output distributions.
"""
av_mu = tf.reduce_mean(mu, axis=0)
var_mu = tf.math.reduce_std(mu, axis=0)**2
if log_sigma_sq is None:
return av_mu, tf.math.log(var_mu)
max_log_sigma_sq = tf.reduce_max(log_sigma_sq, axis=0)
log_sigma_sq -= max_log_sigma_sq
# (sigma/sigma_0)**2
sigma_sq = tf.math.exp(log_sigma_sq)
# (<sigma**2>)/sigma_0**2 (<1)
av_sigma_sq = tf.reduce_mean(sigma_sq, axis=0)
# (<sigma**2> + var(mu))/sigma_0**2
av_sigma_sq += var_mu * tf.math.exp(-max_log_sigma_sq)
# log(<sigma**2> + var(mu))
log_av_sigma_sq = tf.math.log(av_sigma_sq) + max_log_sigma_sq
return av_mu, log_av_sigma_sq
def aggregate_regression_ensemble(logits_or_times, ensemble_size,
use_uncertainty, test_time_ensembling):
"""Aggregate output of model ensemble."""
out_shape = logits_or_times.shape.as_list()[1:]
logits_or_times = tf.reshape(logits_or_times, [ensemble_size, -1] + out_shape)
mus = logits_or_times[..., 0]
log_sigma_sqs = logits_or_times[..., -1] if use_uncertainty else None
if test_time_ensembling == 'sum':
mu, log_sigma_sq = sum_average_transformed_mu_and_sigma(mus, log_sigma_sqs)
elif test_time_ensembling == 'none':
mu = mus[0]
log_sigma_sq = log_sigma_sqs[0] if use_uncertainty else None
else:
raise ValueError('Unexpected test_time_ensembling')
return mu, log_sigma_sq
def aggregate_classification_ensemble(logits_or_times, ensemble_size,
test_time_ensembling):
"""Averages the output logits across models in the ensemble."""
out_shape = logits_or_times.shape.as_list()[1:]
logits = tf.reshape(logits_or_times, [ensemble_size, -1] + out_shape)
if test_time_ensembling == 'sum':
logits = tf.reduce_mean(logits, axis=0)
return logits, None
elif test_time_ensembling == 'none':
return logits, None
else:
raise ValueError('Unexpected test_time_ensembling')
def unpack_evaluator_output(data, return_seq_info=False, return_redshift=False):
"""Unpack evaluator.run_model_on_dataset output."""
mus = np.array(data[1]['mu']).flatten()
sigmas = np.array(data[1]['sigma']).flatten()
regression_targets = np.array(data[1]['regression_targets']).flatten()
outputs = [mus, sigmas, regression_targets]
if return_seq_info:
seq_ids = np.array(data[2][0]).flatten()
seq_ids = np.array([seq_id.decode('UTF-8') for seq_id in seq_ids])
time_idxs = np.array(data[2][1]).flatten()
axes = np.array(data[2][2]).flatten()
outputs += [seq_ids, axes, time_idxs]
if return_redshift:
redshifts = np.array(data[2][6]).flatten()
outputs += [redshifts]
return outputs
def process_data_into_myrs(redshifts, *data_lists):
"""Converts normalized time to virial time using Planck cosmology."""
# small hack to avoid build tools not recognizing non-standard trickery
# done in the astropy library:
# https://github.com/astropy/astropy/blob/master/astropy/cosmology/core.py#L3290
# that dynamically generates and imports new classes.
planck13 = getattr(cosmology, 'Plank13')
hubble_constants = planck13.H(redshifts) # (km/s)/megaparsec
inv_hubble_constants = 1/hubble_constants # (megaparsec*s) / km
megaparsec_to_km = 1e19*3.1
seconds_to_gigayears = 1e-15/31.556
conversion_factor = megaparsec_to_km * seconds_to_gigayears
hubble_time_gigayears = conversion_factor * inv_hubble_constants
hubble_to_virial_time = 0.14 # approximate simulation-based conversion factor
virial_dyn_time = hubble_to_virial_time*hubble_time_gigayears.value
return [data_list*virial_dyn_time for data_list in data_lists]
def print_rmse_and_class_accuracy(mus, regression_targets, redshifts):
"""Convert to virial dynamical time and print stats."""
time_pred, time_gt = process_data_into_myrs(
redshifts, mus, regression_targets)
time_sq_errors = (time_pred-time_gt)**2
rmse = np.sqrt(np.mean(time_sq_errors))
labels = regression_targets > 0
class_preds = mus > 0
accuracy = sum((labels == class_preds).astype(np.int8)) / len(class_preds)
print(f'95% Error: {np.percentile(np.sqrt(time_sq_errors), 95)}')
print(f'RMSE: {rmse}')
print(f'Classification Accuracy: {accuracy}')
def print_stats(vec, do_print=True):
fvec = vec.flatten()
if do_print:
print(len(fvec), min(fvec), np.mean(fvec), np.median(fvec), max(fvec))
return (len(fvec), min(fvec), np.mean(fvec), np.median(fvec), max(fvec))
def get_image_from_fits(base_dir, seq='475_31271', time='497', axis=2):
"""Read *.fits galaxy image from directory."""
axis_map = {0: 'x', 1: 'y', 2: 'z'}
fits_glob = f'{base_dir}/{seq}/fits_of_flux_psf/{time}/*_{axis_map[axis]}_*.fits'
def get_freq_from_path(p):
return int(p.split('/')[-1].split('_')[2][1:])
fits_image_paths = sorted(glob.glob(fits_glob), key=get_freq_from_path)
assert len(fits_image_paths) == 7
combined_frequencies = []
for fit_path in fits_image_paths:
with open(fit_path, 'rb') as f:
fits_data = np.array(fits.open(f)[0].data.astype(np.float32))
combined_frequencies.append(fits_data)
fits_image = np.transpose(np.array(combined_frequencies), (1, 2, 0))
return fits_image
def stack_desired_galaxy_images(base_dir, seq, n_time_slices):
"""Searth through galaxy image directory gathering images."""
fits_sequence_dir = os.path.join(base_dir, seq, 'fits_of_flux_psf')
all_times_for_seq = os.listdir(fits_sequence_dir)
hop = (len(all_times_for_seq)-1)//(n_time_slices-1)
desired_time_idxs = [k*hop for k in range(n_time_slices)]
all_imgs = []
for j in desired_time_idxs:
time = all_times_for_seq[j]
img = get_image_from_fits(base_dir=base_dir, seq=seq, time=time, axis=2)
all_imgs.append(img)
min_img_size = min([img.shape[0] for img in all_imgs])
return all_imgs, min_img_size
def draw_galaxy_image(image, target_size=None, color_map='viridis'):
normalized_image = image / max(image.flatten())
color_map = plt.get_cmap(color_map)
colored_image = color_map(normalized_image)[:, :, :3]
colored_image = (colored_image * 255).astype(np.uint8)
colored_image = Image.fromarray(colored_image, mode='RGB')
if target_size:
colored_image = colored_image.resize(target_size, Image.ANTIALIAS)
return colored_image
def collect_merger_sequence(ds, seq=b'370_11071', n_examples_to_sift=5000):
images, targets, redshifts = [], [], []
for i, all_inputs in enumerate(ds):
if all_inputs[4][0].numpy() == seq:
images.append(all_inputs[0][0].numpy())
targets.append(all_inputs[2][0].numpy())
redshifts.append(all_inputs[10][0].numpy())
if i > n_examples_to_sift: break
return np.squeeze(images), np.squeeze(targets), np.squeeze(redshifts)
def take_samples(sample_idxs, *data_lists):
return [np.take(l, sample_idxs, axis=0) for l in data_lists]