-
Notifications
You must be signed in to change notification settings - Fork 3.5k
/
Copy pathtrain_fabric.py
187 lines (149 loc) · 7.33 KB
/
train_fabric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Here are 4 easy steps to use Fabric in your PyTorch code.
1. Create the Lightning Fabric object at the beginning of your script.
2. Remove all ``.to`` and ``.cuda`` calls since Fabric will take care of it.
3. Apply ``setup`` over each model and optimizers pair, ``setup_dataloaders`` on all your dataloaders,
and replace ``loss.backward()`` with ``self.backward(loss)``.
4. Run the script from the terminal using ``fabric run path/to/train.py``
Accelerate your training loop by setting the ``--accelerator``, ``--strategy``, ``--devices`` options directly from
the command line. See ``fabric run --help`` or learn more from the documentation:
https://lightning.ai/docs/fabric.
"""
import argparse
from os import path
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision.transforms as T
from torch.optim.lr_scheduler import StepLR
from torchmetrics.classification import Accuracy
from torchvision.datasets import MNIST
from lightning.fabric import Fabric, seed_everything
DATASETS_PATH = path.join(path.dirname(__file__), "..", "..", "..", "Datasets")
class Net(nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv1 = nn.Conv2d(1, 32, 3, 1)
self.conv2 = nn.Conv2d(32, 64, 3, 1)
self.dropout1 = nn.Dropout(0.25)
self.dropout2 = nn.Dropout(0.5)
self.fc1 = nn.Linear(9216, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.conv2(x)
x = F.relu(x)
x = F.max_pool2d(x, 2)
x = self.dropout1(x)
x = torch.flatten(x, 1)
x = self.fc1(x)
x = F.relu(x)
x = self.dropout2(x)
x = self.fc2(x)
return F.log_softmax(x, dim=1)
def run(hparams):
# Create the Lightning Fabric object. The parameters like accelerator, strategy, devices etc. will be proided
# by the command line. See all options: `fabric run --help`
fabric = Fabric()
seed_everything(hparams.seed) # instead of torch.manual_seed(...)
transform = T.Compose([T.ToTensor(), T.Normalize((0.1307,), (0.3081,))])
# Let rank 0 download the data first, then everyone will load MNIST
with fabric.rank_zero_first(local=False): # set `local=True` if your filesystem is not shared between machines
train_dataset = MNIST(DATASETS_PATH, download=fabric.is_global_zero, train=True, transform=transform)
test_dataset = MNIST(DATASETS_PATH, download=fabric.is_global_zero, train=False, transform=transform)
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=hparams.batch_size,
)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=hparams.batch_size)
# don't forget to call `setup_dataloaders` to prepare for dataloaders for distributed training.
train_loader, test_loader = fabric.setup_dataloaders(train_loader, test_loader)
model = Net() # remove call to .to(device)
optimizer = optim.Adadelta(model.parameters(), lr=hparams.lr)
# don't forget to call `setup` to prepare for model / optimizer for distributed training.
# the model is moved automatically to the right device.
model, optimizer = fabric.setup(model, optimizer)
scheduler = StepLR(optimizer, step_size=1, gamma=hparams.gamma)
# use torchmetrics instead of manually computing the accuracy
test_acc = Accuracy(task="multiclass", num_classes=10).to(fabric.device)
# EPOCH LOOP
for epoch in range(1, hparams.epochs + 1):
# TRAINING LOOP
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
# NOTE: no need to call `.to(device)` on the data, target
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
fabric.backward(loss) # instead of loss.backward()
optimizer.step()
if (batch_idx == 0) or ((batch_idx + 1) % hparams.log_interval == 0):
print(
f"Train Epoch: {epoch} [{batch_idx * len(data)}/{len(train_loader.dataset)}"
f" ({100.0 * batch_idx / len(train_loader):.0f}%)]\tLoss: {loss.item():.6f}"
)
if hparams.dry_run:
break
scheduler.step()
# TESTING LOOP
model.eval()
test_loss = 0
with torch.no_grad():
for data, target in test_loader:
# NOTE: no need to call `.to(device)` on the data, target
output = model(data)
test_loss += F.nll_loss(output, target, reduction="sum").item()
# WITHOUT TorchMetrics
# pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
# correct += pred.eq(target.view_as(pred)).sum().item()
# WITH TorchMetrics
test_acc(output, target)
if hparams.dry_run:
break
# all_gather is used to aggregated the value across processes
test_loss = fabric.all_gather(test_loss).sum() / len(test_loader.dataset)
print(f"\nTest set: Average loss: {test_loss:.4f}, Accuracy: ({100 * test_acc.compute():.0f}%)\n")
test_acc.reset()
if hparams.dry_run:
break
# When using distributed training, use `fabric.save`
# to ensure the current process is allowed to save a checkpoint
if hparams.save_model:
fabric.save(model.state_dict(), "mnist_cnn.pt")
if __name__ == "__main__":
# Arguments can be passed in through the CLI as normal and will be parsed here
# Example:
# fabric run image_classifier.py accelerator=cuda --epochs=3
parser = argparse.ArgumentParser(description="Fabric MNIST Example")
parser.add_argument(
"--batch-size", type=int, default=64, metavar="N", help="input batch size for training (default: 64)"
)
parser.add_argument("--epochs", type=int, default=14, metavar="N", help="number of epochs to train (default: 14)")
parser.add_argument("--lr", type=float, default=1.0, metavar="LR", help="learning rate (default: 1.0)")
parser.add_argument("--gamma", type=float, default=0.7, metavar="M", help="Learning rate step gamma (default: 0.7)")
parser.add_argument("--dry-run", action="store_true", default=False, help="quickly check a single pass")
parser.add_argument("--seed", type=int, default=1, metavar="S", help="random seed (default: 1)")
parser.add_argument(
"--log-interval",
type=int,
default=10,
metavar="N",
help="how many batches to wait before logging training status",
)
parser.add_argument("--save-model", action="store_true", default=False, help="For Saving the current Model")
hparams = parser.parse_args()
run(hparams)