-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconfigs.py
95 lines (80 loc) · 4.29 KB
/
configs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import numpy as np
import os, sys
import glob
import argparse
from methods import backbone
import logging
model_dict = dict(
Conv4=backbone.Conv4)
def parse_args(script):
parser = argparse.ArgumentParser(description='few-shot script %s' % (script))
parser.add_argument('--save_dir', default='./record')
parser.add_argument('--data_dir', default='./filelists/')
parser.add_argument('--log_path', default='logs/')
parser.add_argument('--dataset', default='miniImagenet', help='miniImagenet')
parser.add_argument('--model', default='Conv4', help='model: Conv4')
parser.add_argument('--method', default='matchingnet',
help='matchingnet')
parser.add_argument('--train_n_way', default=5, type=int,
help='class num to classify for training')
parser.add_argument('--test_n_way', default=5, type=int,
help='class num to classify for testing (validation) ')
parser.add_argument('--n_shot', default=5, type=int,
help='number of labeled data in each class, same as n_support')
parser.add_argument('--train_aug', default=False, type=bool,
help='perform data augmentation or not during training ') # still required for save_features.py and test.py to find the model path correctly
if script == 'train':
parser.add_argument('--num_classes', default=200, type=int,
help='total number of classes in softmax, only used in baseline') # make it larger than the maximum label value in base class
parser.add_argument('--save_freq', default=50, type=int, help='Save frequency')
parser.add_argument('--start_epoch', default=0, type=int, help='Starting epoch')
parser.add_argument('--stop_epoch', default=-1, type=int,
help='Stopping epoch')
parser.add_argument('--resume', default=True, type=bool, help='continue from previous trained model with largest epoch')
elif script == 'save_features':
parser.add_argument('--split', default='novel',
help='base/val/novel') # default novel, but you can also test base/val class accuracy if you want
parser.add_argument('--save_iter', default=-1, type=int, help='save feature from the model trained in x epoch, use the best model if x is -1')
elif script == 'test':
parser.add_argument('--split', default='novel',
help='base/val/novel') # default novel, but you can also test base/val class accuracy if you want
parser.add_argument('--save_iter', default=-1, type=int,
help='saved feature from the model trained in x epoch, use the best model if x is -1')
else:
raise ValueError('Unknown script')
return parser.parse_args()
def get_assigned_file(checkpoint_dir, num):
assign_file = os.path.join(checkpoint_dir, '{:d}.tar'.format(num))
return assign_file
def get_resume_file(checkpoint_dir):
filelist = glob.glob(os.path.join(checkpoint_dir, '*.tar'))
if len(filelist) == 0:
return None
filelist = [x for x in filelist if os.path.basename(x) != 'best_model.tar']
epochs = np.array([int(os.path.splitext(os.path.basename(x))[0]) for x in filelist])
max_epoch = np.max(epochs)
resume_file = os.path.join(checkpoint_dir, '{:d}.tar'.format(max_epoch))
return resume_file
def get_best_file(checkpoint_dir):
best_file = os.path.join(checkpoint_dir, 'best_model.tar')
if os.path.isfile(best_file):
return best_file
else:
return get_resume_file(checkpoint_dir)
def get_logger(filename, logger_name=None):
"""set logging file and format
Args:
filename: str, full path of the logger file to write
logger_name: str, the logger name, e.g., 'master_logger', 'local_logger'
Return:
logger: python logger
"""
log_format = "%(asctime)s %(message)s"
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
format=log_format, datefmt="%m%d %I:%M:%S %p")
# different name is needed when creating multiple logger in one process
logger = logging.getLogger(logger_name)
fh = logging.FileHandler(os.path.join(filename))
fh.setFormatter(logging.Formatter(log_format))
logger.addHandler(fh)
return logger