-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcoin_study.py
32 lines (23 loc) · 974 Bytes
/
coin_study.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import numpy as np
import time
user_fever_explain=np.array(['comic', 'love', 'act', 'war'])
user_fever=np.array([5 ,1 , 3, 4])
movie_egen_matrix=np.random.randint(5,size=(4,100))+1
movie_recommend=np.dot(user_fever,movie_egen_matrix)
print ('user_fever_matrix shape is: ',user_fever.shape)
print ('user_fever = ',user_fever_explain)
print ('\n')
print ('movie set egen = \n',movie_egen_matrix)
print ('\n')
print ('movie_egen_matrix shape is: ',movie_egen_matrix.shape)
print ('user_fever_matrix shape is: ',user_fever.shape)
print ('\n')
print ('movie recommand list : \n',movie_recommend)
print ('\n')
for num_of_movie in (100,1000,10000,100000, 1000000,10000000):
movie_egen_matrix=np.random.randint(5,size=(4,num_of_movie))+1
time_start=time.time()
np.dot(user_fever,movie_egen_matrix)
print ('It takes ',time.time()-time_start,' seconds to do ',num_of_movie, 'correlation calculate!')