-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils.py
203 lines (174 loc) · 6.35 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import os
import torch
import numpy as np
import random
def _seed_everything(random_seed=1223):
torch.manual_seed(random_seed)
torch.cuda.manual_seed(random_seed)
torch.cuda.manual_seed_all(random_seed) # if use multi-GPU
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(random_seed)
random.seed(random_seed)
def count_parameters(model):
"Couting number of trainable params"
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def set_trainable(model, boolean: bool = True, except_layers: list = [], device_ids: list = []):
if boolean:
for i, param in model.named_parameters():
param.requires_grad = True
if len(except_layers) > 0: # Except some layers
for layer in except_layers:
assert layer is not None
if len(device_ids) <= 1:
for param in getattr(model, layer).parameters():
param.requires_grad = False
else:
for param in getattr(model.module, layer).parameters():
param.requires_grad = False
else:
# assert len(except_layers) > 0, "Require free layer"
for i, param in model.named_parameters():
param.requires_grad = False
for layer in except_layers: # Except some layers
assert layer is not None
if len(device_ids) <= 1:
for param in getattr(model, layer).parameters():
param.requires_grad = True
else:
for param in getattr(model.module, layer).parameters():
param.requires_grad = True
print("Training params: ", count_parameters(model))
return model
class bcolors:
HEADER = '\033[95m'
OKBLUE = '\033[94m'
OKCYAN = '\033[96m'
OKGREEN = '\033[92m'
WARNING = '\033[93m'
FAIL = '\033[91m'
ENDC = '\033[0m'
BOLD = '\033[1m'
UNDERLINE = '\033[4m'
class AvgrageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.avg = 0
self.sum = 0
self.cnt = 0
def update(self, val, n=1):
if n > 0:
self.sum += val * n
self.cnt += n
self.avg = self.sum / self.cnt
def setup_device(n_gpu_use):
n_gpu = torch.cuda.device_count()
if n_gpu_use > 0 and n_gpu == 0:
print("Warning: There\'s no GPU available on this machine, training will be performed on CPU.")
n_gpu_use = 0
if n_gpu_use > n_gpu:
print("Warning: The number of GPU\'s configured to use is {}, but only {} are available on this machine.".format(
n_gpu_use, n_gpu))
n_gpu_use = n_gpu
device = torch.device('cuda:0' if n_gpu_use > 0 else 'cpu')
list_ids = list(range(n_gpu_use))
return device, list_ids
def check_folder(log_dir):
os.makedirs(log_dir, exist_ok =True)
return log_dir
class Logger(object):
def __init__(self, file):
self.open(file, 'a')
def open(self, file, mode=None):
if mode is None:
mode = 'w'
self.file = open(file, mode)
def log(self, message, display=True):
if display:
print(message)
self.file.write(message+"\n")
self.file.flush()
def close(self):
self.file.close()
class FixedLengthQueue:
"""
Queue class with fixed length
If the queue reach max length, and enqueue method is call, it will dequeue the first and append the item
"""
def __init__(self, max_length=10):
self.queue = []
self.max_length = max_length
def enqueue(self, item):
if self.size() < self.max_length:
self.queue.append(item)
elif self.is_full():
self.dequeue()
self.queue.append(item)
else:
raise ValueError("Queue is over the length")
def dequeue(self):
if self.queue:
return self.queue.pop(0)
else:
raise ValueError("Queue is empty")
def is_full(self):
return len(self.queue) == self.max_length
def is_empty(self):
return len(self.queue) == 0
def size(self):
return len(self.queue)
def avg(self):
if not self.is_empty():
return np.mean(self.queue)
else:
return 0.0
def std(self):
if not self.is_empty():
return np.std(self.queue)
else:
return 0.0
def nth_prime_number(n):
if n==1:
return 2
count = 1
num = 1
while(count < n):
num +=2 #optimization
if is_prime(num):
count +=1
return num
def is_prime(num):
factor = 2
while (factor * factor <= num):
if num % factor == 0:
return False
factor +=1
return True
def save_model(best_eval, cur_eval, model, epoch, optimizer, scheduler, config, **kwargs):
logger = kwargs.get('logger')
if (cur_eval["auc"]-cur_eval["HTER"])>=(best_eval["best_auc"]-best_eval["best_HTER"]):
best_eval["best_auc"] = cur_eval["auc"]
best_eval["best_HTER"] = cur_eval["HTER"]
best_eval["tpr95"] = cur_eval["tpr"]
best_eval["best_epoch"] = epoch
model_path = os.path.join(config.PATH.model_path, "{}_p{}_best.pth".format(config.MODEL.model_name, config.protocol))
torch.save({
'epoch': epoch,
'state_dict':model.state_dict(),
'optimizer':optimizer.state_dict(),
'scheduler':scheduler,
'args':config,
'eva': (cur_eval["HTER"], cur_eval["auc"])
}, model_path)
logger.log("[Best result]\t: epoch={}, HTER={:.4f}, AUC={:.4f}".format(best_eval["best_epoch"], best_eval["best_HTER"], best_eval["best_auc"]))
model_path = os.path.join(config.PATH.model_path, "{}_p{}_recent.pth".format(config.MODEL.model_name, config.protocol))
torch.save({
'epoch': epoch,
'state_dict':model.state_dict(),
'optimizer':optimizer.state_dict(),
'scheduler':scheduler,
'args':config,
'eva': (cur_eval["HTER"], cur_eval["auc"])
}, model_path)
return True