forked from surya-veer/movement-tracking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmovement-v2.py
99 lines (81 loc) · 2.94 KB
/
movement-v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import cv2
import keyboard
import time
color = {"blue":(255,0,0), "red":(0,0,255), "green":(0,255,0), "white":(255,255,255)}
# Method to detect nose
def detect_nose(img, faceCascade):
# convert image to gray-scale
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# detecting features in gray-scale image, returns coordinates, width and height of features
features = faceCascade.detectMultiScale(gray_img, 1.1, 8)
nose_cords = []
# drawing rectangle around the feature and labeling it
for (x, y, w, h) in features:
# cv2.rectangle(img, (x,y), (x+w, y+h), color['green'], 2) #uncomment if you want to see face boundary
cv2.circle(img, ((2*x+w)//2,(2*y+h)//2), 10, color['green'], 2)
nose_cords = ((2*x+w)//2,(2*y+h)//2)
return img, nose_cords
def draw_controller(img, cords):
size = 40
x1 = cords[0] - size
y1 = cords[1] - size
x2 = cords[0] + size
y2 = cords[1] + size
cv2.circle(img, cords, size, color['blue'], 2)
return [(x1,y1), (x2,y2)]
# tracking sudden changes
def get_movement(curr, prev, last_time_update, cmd):
if not (len(curr) > 0 and len(prev) > 0):
return last_time_update, cmd
xc, yc = nose_cords
tc = time.time()
ox,oy, to = prev_cords
diffx = xc - ox
diffy = yc - oy
thres_diff = 50
thres_diff_t = 1
if last_time_update + 0.4 > tc:
return last_time_update, cmd
if (abs(diffx)>thres_diff or abs(diffy) > thres_diff) and abs(tc-to)<thres_diff_t:
if abs(diffx) > abs(diffy):
if diffx > 0:
cmd = "right"
else:
cmd = "left"
else:
if diffy > 0:
cmd = "down"
else:
cmd = "up"
print("Movement detected: ", cmd, "\n")
keyboard.press_and_release(cmd)
last_time_update = time.time()
return last_time_update, cmd
# Loading classifiers
faceCascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
# Capturing real time video stream.
video_capture = cv2.VideoCapture(-1)
# get vcap property
width = video_capture.get(3) # float
height = video_capture.get(4) # float
cmd = ""
prev_cords = (0,0, time.time())
last_time_update = time.time()
while True:
# Reading image from video stream
_, img = video_capture.read()
img = cv2.flip( img, 1 )
# detect nose and draw
img, nose_cords = detect_nose(img, faceCascade)
cv2.putText(img, cmd, (10,50), cv2.FONT_HERSHEY_SIMPLEX, 1, color['red'], 1, cv2.LINE_AA)
last_time_update, cmd = get_movement(nose_cords, prev_cords, last_time_update, cmd)
x, y = (0,0) if len(nose_cords) == 0 else nose_cords
prev_cords = (x,y,time.time())
# Writing processed image in a new window
cv2.imshow("face detection", img)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# releasing web-cam
video_capture.release()
# Destroying output window
cv2.destroyAllWindows()