-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
59 lines (48 loc) · 1.97 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "2"
import torch
import numpy as np
import config
import utils
def train():
# 加载数据
train_dataset = torch.utils.data.DataLoader(
utils.Dataset(), batch_size=config.TRAIN_BATCH_SIZE, shuffle=True)
print("Data Loaders created")
utils.writelog("Data Loaders created")
# 加载模型
model = None
start_epoch = 0
optimizer = torch.optim.Adam(model.parameters(), lr=config.LEARNING_RATE)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.8)
if config.IS_CONTINUE:
model, start_epoch, optimizer, lr_scheduler = utils.get_checkpoint_state(
model, optimizer, lr_scheduler)
device = torch.device(
"cuda") if torch.cuda.is_available() else torch.device("cpu")
model.to(device)
print("Model loaded to device")
utils.writelog("Model loaded to device")
print("---------------- Training Started --------------")
utils.writelog("---------------- Training Started --------------")
min_loss = 10000000
for epoch in range(start_epoch, config.EPOCHS):
loss_value = engine.train_fn(
train_dataset, detector, optimizer, lr_scheduler, device)
print("epoch = {}, Training_loss = {}".format(epoch, loss_value))
utils.writelog("epoch = {}, Training_loss = {}".format(
epoch, loss_value))
utils.save_checkpoint_state(
epoch, model, optimizer, lr_scheduler, "models/model_{}.pth".format(epoch))
# Set the threshold as per needs
if loss_value < min_loss:
min_loss = loss_value
utils.save_checkpoint_state(epoch, model, optimizer, lr_scheduler)
utils.writelog(
">>>>>>>>>>>>>>>>>>>>> save min loss model <<<<<<<<<<<<<<<<<")
print("-" * 25)
utils.writelog("-" * 25)
print("Model Trained and Saved to Disk")
utils.writelog("Model Trained and Saved to Disk")
if __name__ == "__main__":
run()