-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
166 lines (143 loc) · 6.04 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
import random
import torch
import torchvision
import torchvision.transforms as transforms
import numpy as np
import torch.backends.cudnn as cudnn
import argparse
from sklearn.metrics import classification_report
from tqdm import tqdm
import models
from utils import performance_display
import warnings
warnings.filterwarnings("ignore")
def seed_torch(seed=1):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
cudnn.benchmark = True
def parse_arguments():
parser = argparse.ArgumentParser(
description='PyTorch Image Classification Example'
)
parser.add_argument('--model-name', type=str, default='resnet50', help='model name')
# dataset
parser.add_argument('--batch-size', type=int, default=32, metavar='N', help='input batch size for training (default: 128)')
parser.add_argument('--test-batch-size', type=int, default=32, metavar='N', help='input batch size for testing (default: 100)')
parser.add_argument('--device', default="cuda" if torch.cuda.is_available() else "cpu", type=str, help='divice')
parser.add_argument('--epochs', type=int, default=10, metavar='N', help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=1e-3, metavar='LR', help='learning rate (default: 1e-3)')
# parser.add_argument('--momentum', type=float, default=0.9, metavar='M', help='SGD momentum (default: 0.9)')
parser.add_argument('--output_path', default="output", type=str, help='output path')
parser.add_argument('--save-model', action='store_true', default=True, help='For Saving the current Model')
return parser.parse_args()
def test(model, data_loader, criterion, device):
model.eval()
test_loss = 0
correct = 0
item_num = 0
y_true_all = []
y_pred_all = []
with torch.no_grad():
for i, (images, labels) in enumerate(data_loader):
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
test_loss += criterion(outputs, labels).item()
_, predicted = torch.max(outputs.data, 1)
correct += (predicted == labels).sum().item()
y_true_all.append(labels.cpu().numpy())
y_pred_all.append(predicted.cpu().numpy())
item_num += labels.size(0)
test_loss /= len(data_loader)
correct /= item_num
print('Test Loss: %.4f' % (test_loss))
print('Test Accuracy: %.4f' % (correct))
y_pred_all = np.concatenate(y_pred_all)
y_true_all = np.concatenate(y_true_all)
print(classification_report(y_true_all, y_pred_all))
return test_loss, correct
def train(model, data_loader, optimizer, criterion, device, args):
model.train()
train_loss = 0
correct = 0
item_num = 0
pbar = tqdm(data_loader)
for data in pbar:
images, labels = data
images = images.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = torch.max(outputs.data, 1)
correct += (predicted == labels).sum().item()
item_num += labels.size(0)
train_loss /= len(data_loader)
correct /= item_num
print('Train Loss: %.4f' % (train_loss))
print('Train Accuracy: %.4f' % (correct))
return train_loss, correct
def main(args):
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
# 定义数据集
train_data = torchvision.datasets.ImageFolder(root='Fruit_data/Train', transform=transform)
test_data = torchvision.datasets.ImageFolder(root='Fruit_data/Test', transform=transform)
train_load = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, shuffle=True)
test_load = torch.utils.data.DataLoader(test_data, batch_size=args.test_batch_size, shuffle=False)
# 定义模型
model = getattr(models, 'get_'+args.model_name)(num_classes=len(train_data.classes)).to(args.device)
print(model)
optimizor = torch.optim.Adam(model.parameters(), lr=args.lr)
criterion = torch.nn.CrossEntropyLoss().to(args.device)
train_losses, train_accs = [], []
test_losses, test_accs = [], []
best_acc = 0
bad_num = 0
# 开始训练
for epoch in range(args.epochs):
train_loss, train_acc = train(model, train_load, optimizor, criterion, args.device, args)
test_loss, test_acc = test(model, test_load, criterion, args.device)
print('Epoch: %d, Train Loss: %.4f, Train Acc: %.4f, Test Loss: %.4f, Test Acc: %.4f' % (epoch, train_loss, train_acc, test_loss, test_acc))
train_losses.append(train_loss)
train_accs.append(train_acc)
test_losses.append(test_loss)
test_accs.append(test_acc)
if args.save_model:
torch.save(model.state_dict(), '%s/%s_model_%d.pth' % (args.output_path,args.model_name, epoch))
if best_acc < train_acc:
bad_num = 0
print('Saving best model...')
torch.save(model.state_dict(), '{}_best_model.pth'.format(args.model_name))
best_acc = train_acc
else:
bad_num += 1
if bad_num > 10:
break
# 绘制训练集和测试集的损失和准确率
loss_plot = {}
loss_plot['train_loss'] = train_losses
loss_plot['test_loss'] = test_losses
acc_plot = {}
acc_plot['train_acc'] = train_accs
acc_plot['test_acc'] = test_accs
performance_display(acc_plot, "ACC", args.output_path)
performance_display(loss_plot, "LOSS", args.output_path)
if __name__ == "__main__":
seed_torch()
args = parse_arguments()
if not os.path.exists(args.output_path):
os.mkdir(args.output_path)
main(args)
# nohup python -u main.py > train.log 2>&1 &