-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathonnx_inference.py
151 lines (128 loc) · 4.44 KB
/
onnx_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import argparse
import os
import cv2
import numpy as np
from loguru import logger
import time
import onnxruntime
from utils import image_preprocess, mkdir, multiclass_nms, demo_postprocess, vis
CLASSES = (
'baseball','basketball','croquet_ball','golf_ball','ping-pong_ball','puck','rugby_ball','soccer_ball','tennis_ball','volleyball',
)
def make_parser():
parser = argparse.ArgumentParser("onnxruntime inference sample")
parser.add_argument(
"--model",
type=str,
default="model.onnx",
help="Input your onnx model.",
)
parser.add_argument(
"--mode",
type=str,
default="image",
help="mode type, eg. image, video and webcam.",
)
parser.add_argument(
"--input_path",
type=str,
default='test.jpg',
help="Path to your input image.",
)
parser.add_argument(
"--camid",
type=int,
default=0,
help="webcam demo camera id",
)
parser.add_argument(
"--output_path",
type=str,
default='outputs',
help="Path to your output directory.",
)
parser.add_argument(
"-s",
"--score_thr",
type=float,
default=0.3,
help="Score threshould to filter the result.",
)
parser.add_argument(
"--input_shape",
type=str,
default="640,640",
help="Specify an input shape for inference.",
)
parser.add_argument(
"--with_p6",
action="store_true",
help="Whether your model uses p6 in FPN/PAN.",
)
return parser
def inference(args, origin_img):
t0 = time.time()
input_shape = tuple(map(int, args.input_shape.split(',')))
img, ratio = image_preprocess(origin_img, input_shape)
session = onnxruntime.InferenceSession(args.model)
ort_inputs = {session.get_inputs()[0].name: img[None, :, :, :]}
output = session.run(None, ort_inputs)
print(output[0].shape)
predictions = demo_postprocess(output[0], input_shape, p6=args.with_p6)[0]
boxes = predictions[:, :4]
scores = predictions[:, 4:5] * predictions[:, 5:]
boxes_xyxy = np.ones_like(boxes)
boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2]/2.
boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3]/2.
boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2]/2.
boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3]/2.
boxes_xyxy /= ratio
dets = multiclass_nms(boxes_xyxy, scores, nms_thr=0.45, score_thr=0.1)
if dets is not None:
final_boxes, final_scores, final_cls_inds = dets[:, :4], dets[:, 4], dets[:, 5]
origin_img = vis(origin_img, final_boxes, final_scores, final_cls_inds,
conf=args.score_thr, class_names=CLASSES)
logger.info("Infer time: {:.4f}s".format(time.time() - t0))
return origin_img
def image_process(args):
origin_img = cv2.imread(args.input_path)
origin_img = inference(args, origin_img)
mkdir(args.output_path)
output_path = os.path.join(args.output_path, args.input_path.split("/")[-1])
logger.info("Saving detection result in {}".format(output_path))
cv2.imwrite(output_path, origin_img)
def imageflow_demo(args):
cap = cv2.VideoCapture(args.input_path if args.mode == "video" else args.camid)
width = cap.get(cv2.CAP_PROP_FRAME_WIDTH) # float
height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT) # float
fps = cap.get(cv2.CAP_PROP_FPS)
mkdir(args.output_path)
current_time = time.localtime()
save_folder = os.path.join(
args.output_path, time.strftime("%Y_%m_%d_%H_%M_%S", current_time)
)
os.makedirs(save_folder, exist_ok=True)
if args.mode == "video":
save_path = os.path.join(save_folder, args.input_path.split("/")[-1])
else:
save_path = os.path.join(save_folder, "camera.mp4")
logger.info(f"video save_path is {save_path}")
vid_writer = cv2.VideoWriter(
save_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (int(width), int(height))
)
while True:
ret_val, frame = cap.read()
if ret_val:
result_frame = inference(args, frame)
vid_writer.write(result_frame)
ch = cv2.waitKey(1)
if ch == 27 or ch == ord("q") or ch == ord("Q"):
break
else:
break
if __name__ == '__main__':
args = make_parser().parse_args()
if args.mode == "image":
image_process(args)
elif args.mode == "video" or args.mode == "webcam":
imageflow_demo(args)