-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
152 lines (119 loc) · 5.41 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import os
import torch
from torch import nn
import torch.nn.functional as F
from torch.utils.data import DataLoader, random_split
from datasets import MultiModalDataset
from models.mts_backbone import MTSBackbone
from models.text_backbone import TextBackbone
from models.fusion import TCNT
from transformers import AdamW
from data_preprocessing import load_data
import numpy as np
from sklearn.metrics import mean_absolute_error, mean_squared_error, mean_absolute_percentage_error, r2_score
def train(models, device, train_loader, optimizers, epoch):
mts_model, text_model, fusion_model = models
optimizer_1, optimizer_2 = optimizers
mts_model.train()
text_model.train()
fusion_model.train()
train_loss_best = 1e10
for batch_idx, (mts, text, label) in enumerate(train_loader):
mts, label = mts.to(device), label.to(device)
input_ids,attention_mask,token_type_ids = text
input_ids,attention_mask,token_type_ids = input_ids.to(device),attention_mask.to(device),token_type_ids.to(device)
optimizer_1.zero_grad()
optimizer_2.zero_grad()
mts_output = mts_model(mts)
text_output = text_model({'input_ids':input_ids,'attention_mask':attention_mask,'token_type_ids':token_type_ids})
output = fusion_model(mts_output, text_output)
loss = F.mse_loss(output, label)
loss.backward()
optimizer_1.step()
optimizer_2.step()
if batch_idx % 100 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(mts), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
if loss.item() < train_loss_best:
train_loss_best = loss.item()
torch.save(mts_model.state_dict(), 'output/mts_model.pth')
torch.save(text_model.state_dict(), 'output/text_model.pth')
torch.save(fusion_model.state_dict(), 'output/fusion_model.pth')
def test(models, device, test_loader):
mts_model, text_model, fusion_model = models
mts_model.eval()
text_model.eval()
fusion_model.eval()
test_loss = 0
y_true = []
y_pred = []
with torch.no_grad():
for batch_idx, (mts, text, label) in enumerate(test_loader):
# print(batch_idx)
mts, label = mts.to(device), label.to(device)
input_ids,attention_mask,token_type_ids = text
input_ids,attention_mask,token_type_ids = input_ids.to(device),attention_mask.to(device),token_type_ids.to(device)
mts_output = mts_model(mts)
text_output = text_model({'input_ids':input_ids,'attention_mask':attention_mask,'token_type_ids':token_type_ids})
output = fusion_model(mts_output, text_output)
test_loss += F.mse_loss(output, label, reduction='sum').item() # sum up batch loss
y_true.append(label.cpu().numpy())
y_pred.append(output.cpu().numpy())
y_true = np.concatenate(y_true)
y_pred = np.concatenate(y_pred)
print('\nTest set: Average loss: {:.4f}, MAE: {:.4f}, RMSE: {:.4f}, R2: {:.4f}, MAPE: {:.4f}'.format(
test_loss / len(test_loader),
mean_absolute_error(y_true, y_pred),
np.sqrt(mean_squared_error(y_true, y_pred)),
r2_score(y_true, y_pred),
mean_absolute_percentage_error(y_true, y_pred)
))
def main():
if not os.path.exists('output'):
os.makedirs('output')
# Data settings
in_channels = 6
channels = 64
depth = 3
reduced_size = 160
out_channels = 320
kernel_size = 3
# Model settings
fusion_heads = 4
out_size = 1
# Training settings
batch_size = 8
epochs = 10
window_size = 5
train_test_split = 0.8
mts_data, text_data, _, _ = load_data('data/股价', 'data/文本数据', ['000001'], WINDOW_SIZE=window_size+1)
train_size = int(train_test_split * len(text_data))
train_mts_data, test_mts_data = mts_data[:train_size], mts_data[train_size:]
train_text_data, test_text_data = text_data[:train_size], text_data[train_size:]
# Dataset
train_dataset = MultiModalDataset(train_mts_data, train_text_data, window_size)
test_dataset = MultiModalDataset(test_mts_data, test_text_data, window_size)
# Data Loader (Input Pipeline)
train_loader = DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
test_loader = DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False)
# Device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Model
mts_model = MTSBackbone(in_channels, channels, depth, reduced_size, out_channels, kernel_size).to(device)
text_model = TextBackbone(output_dim=out_channels, window_size=window_size).to(device)
fusion_model = TCNT(out_channels, fusion_heads, out_size).to(device)
# Optimizer
optimizer_1 = torch.optim.Adam(list(mts_model.parameters()) + list(fusion_model.parameters()), lr=0.001)
optimizer_2 = AdamW(text_model.parameters(),lr=2e-5, eps=1e-8)
models = [mts_model, text_model, fusion_model]
optimizers = [optimizer_1, optimizer_2]
for epoch in range(1, epochs + 1):
train(models, device, train_loader, optimizers, epoch)
test(models, device, test_loader)
if __name__ == '__main__':
main()