-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
221 lines (182 loc) · 6.72 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import numpy as np
import torch
from torch.utils.data import Dataset
from torch.nn.utils.rnn import pad_sequence
from typing import Optional, Callable, List
import os.path as osp
import numpy as np
import torch
from scipy.sparse import csr_matrix
from sklearn import preprocessing
from torch_geometric.data import InMemoryDataset
from torch_geometric.data import Data
import random
class PHVDataset(Dataset):
def __init__(self, data):
self.data = data
def __len__(self):
return len(self.data)
def __getitem__(self, index):
item_str = self.data[index]
item_list = item_str.split('\t')
seq1 = [int(i) for i in item_list[0].split(',')]
len1 = len(seq1)
seq2 = [int(i) for i in item_list[1].split(',')]
len2 = len(seq2)
vec1 = [float(i) for i in item_list[2].split(',')]
vec2 = [float(i) for i in item_list[3].split(',')]
relation = int(item_list[4])
sample = {
'seq1': torch.from_numpy(np.array(seq1)),
'seq2': torch.from_numpy(np.array(seq2)),
'vec1': torch.from_numpy(np.array(vec1)),
'vec2': torch.from_numpy(np.array(vec2)),
'len1': torch.tensor(len1),
'len2': torch.tensor(len2),
'relation': torch.tensor(relation)
}
return sample
def collate_func(batch_dict):
seq1_batch = []
seq2_batch = []
vec1_batch = []
vec2_batch = []
len1_batch = []
len2_batch = []
relation_batch = []
for i in range(len(batch_dict)):
item = batch_dict[i]
seq1_batch.append(item['seq1'])
seq2_batch.append(item['seq2'])
vec1_batch.append(item['vec1'])
vec2_batch.append(item['vec2'])
len1_batch.append(item['len1'])
len2_batch.append(item['len2'])
relation_batch.append(item['relation'])
seq1_batch = pad_sequence(seq1_batch, batch_first=True)
seq2_batch = pad_sequence(seq2_batch, batch_first=True)
res = {}
res['seq1'] = seq1_batch
res['seq2'] = seq2_batch
res['vec1'] = vec1_batch
res['vec2'] = vec2_batch
res['len1'] = len1_batch
res['len2'] = len2_batch
res['relation'] = relation_batch
return res
def read_graph(folder):
node_file = osp.join(folder, 'all_seq.txt')
edge_file = osp.join(folder, 'all_edge.txt')
train_edge_file = osp.join(folder, 'train_edge.txt')
test_edge_file = osp.join(folder, 'test_edge.txt')
node_list = []
feature_len = []
with open(node_file, 'r') as f:
for line in f:
line = line.strip()
features = line.split(' ')
features = [int(i) for i in features]
feature_len.append(len(features))
node_list.append(torch.from_numpy(np.array(features)))
node_feature = pad_sequence(node_list, batch_first=True)
seq_len = torch.from_numpy(np.array(feature_len))
edge_list = []
with open(edge_file, 'r') as f:
for line in f:
line = line.strip()
node_ids = line.split(' ')
node_ids = [int(i) for i in node_ids]
edge_list.append(node_ids)
edge_index = torch.tensor(edge_list, dtype=torch.long).t().contiguous()
train_edge_list = []
with open(train_edge_file, 'r') as f:
for line in f:
line = line.strip()
node_ids = line.split(' ')
node_ids = [int(i) for i in node_ids]
train_edge_list.append(node_ids)
train_edge_index = torch.tensor(train_edge_list, dtype=torch.long).t().contiguous()
test_edge_list = []
with open(test_edge_file, 'r') as f:
for line in f:
line = line.strip()
node_ids = line.split(' ')
node_ids = [int(i) for i in node_ids]
test_edge_list.append(node_ids)
test_edge_index = torch.tensor(test_edge_list, dtype=torch.long).t().contiguous()
data = Data(x=node_feature, edge_index=edge_index, train_edge_index=train_edge_index, test_edge_index=test_edge_index, seq_len=seq_len)
return data
def get_graph(folder):
node_file = osp.join(folder, 'all_seq.txt')
edge_file = osp.join(folder, 'all_edge.txt')
train_edge_file = osp.join(folder, 'train_edge.txt')
test_edge_file = osp.join(folder, 'test_edge.txt')
node_list = []
feature_len = []
with open(node_file, 'r') as f:
for line in f:
line = line.strip()
features = line.split(' ')
features = [int(i) for i in features]
feature_len.append(len(features))
node_list.append(torch.from_numpy(np.array(features)))
node_feature = pad_sequence(node_list, batch_first=True)
seq_len = torch.from_numpy(np.array(feature_len))
edge_list = []
with open(edge_file, 'r') as f:
for line in f:
line = line.strip()
node_ids = line.split(' ')
node_ids = [int(i) for i in node_ids]
edge_list.append(node_ids)
edge_index = torch.tensor(edge_list, dtype=torch.long).t().contiguous()
train_edge_list = []
with open(train_edge_file, 'r') as f:
for line in f:
line = line.strip()
node_ids = line.split(' ')
node_ids = [int(i) for i in node_ids]
train_edge_list.append(node_ids)
train_edge_index = torch.tensor(train_edge_list, dtype=torch.long).t().contiguous()
test_edge_list = []
with open(test_edge_file, 'r') as f:
for line in f:
line = line.strip()
node_ids = line.split(' ')
node_ids = [int(i) for i in node_ids]
test_edge_list.append(node_ids)
test_edge_index = torch.tensor(test_edge_list, dtype=torch.long).t().contiguous()
all_data = Data(x=node_feature, edge_index=edge_index, seq_len=seq_len)
return all_data
class GraphDataset(InMemoryDataset):
url = ""
def __init__(
self,
root: str,
name: str,
transform: Optional[Callable] = None,
pre_transform: Optional[Callable] = None,
):
self.name = name
super().__init__(root, transform, pre_transform)
self.data, self.slices = torch.load(self.processed_paths[0])
@property
def raw_dir(self) -> str:
return osp.join(self.root, self.name, "raw")
@property
def processed_dir(self) -> str:
return osp.join(self.root, self.name, "processed")
@property
def raw_file_names(self) -> List[str]:
names = ["dgraphfin.npz"]
return names
@property
def processed_file_names(self) -> str:
return "data.pt"
def download(self):
pass
def process(self):
data = read_graph(self.raw_dir)
torch.save(self.collate([data]), self.processed_paths[0])
def __repr__(self) -> str:
return f"{self.name}()"