-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWeek 3 - Interactive Dashboard with Ploty Dash - spacex_dash_app.py
100 lines (87 loc) · 5.25 KB
/
Week 3 - Interactive Dashboard with Ploty Dash - spacex_dash_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
# Import required libraries
import pandas as pd
import dash
import dash_html_components as html
import dash_core_components as dcc
from dash.dependencies import Input, Output
import plotly.express as px
# Read the airline data into pandas dataframe
spacex_df = pd.read_csv("spacex_launch_dash.csv")
max_payload = spacex_df['Payload Mass (kg)'].max()
min_payload = spacex_df['Payload Mass (kg)'].min()
launchSiteDF = spacex_df['Launch Site'].unique()
launchSiteOptions = ['ALL']
launchSiteOptions.extend(sorted(launchSiteDF))
# Create a dash application
app = dash.Dash(__name__)
# Create an app layout
app.layout = html.Div(children=[html.H1('SpaceX Launch Records Dashboard',
style={'textAlign': 'center', 'color': '#503D36',
'font-size': 40}),
# TASK 1: Add a dropdown list to enable Launch Site selection
# The default select value is for ALL sites
# dcc.Dropdown(id='site-dropdown',...)
dcc.Dropdown(id='site-dropdown',
options=[
{'label': ('All Sites' if i == 'ALL' else i), 'value': i} for i in launchSiteOptions
#{'label': 'All Sites', 'value': 'ALL'},
#{'label': 'CCAFS LC-40', 'value': 'CCAFS LC-40'},
#{'label': 'CCAFS SLC-40', 'value': 'CCAFS SLC-40'},
#{'label': 'KSC LC-39A', 'value': 'KSC LC-39A'},
#{'label': 'VAFB SLC-4E', 'value': 'VAFB SLC-4E'}
],
value='ALL',
placeholder="Select a Launch Site here",
searchable=True
),
html.Br(),
# TASK 2: Add a pie chart to show the total successful launches count for all sites
# If a specific launch site was selected, show the Success vs. Failed counts for the site
html.Div(dcc.Graph(id='success-pie-chart')),
html.Br(),
html.P("Payload range (Kg):"),
# TASK 3: Add a slider to select payload range
#dcc.RangeSlider(id='payload-slider',...)
dcc.RangeSlider(id='payload-slider',
min = 0,
max = 10000,
step = 1000,
marks = {0: '0', 2500: '2500', 5000: '5000', 7500: '7500', 10000:'10000'},
value = [min_payload, max_payload]
),
# TASK 4: Add a scatter chart to show the correlation between payload and launch success
html.Div(dcc.Graph(id='success-payload-scatter-chart')),
])
# TASK 2:
# Add a callback function for `site-dropdown` as input, `success-pie-chart` as output
@app.callback( Output(component_id='success-pie-chart', component_property='figure'),
Input(component_id='site-dropdown', component_property='value'))
# Add computation to callback function and return graph
def get_graph(entered_site):
filtered_df = spacex_df
if entered_site == 'ALL':
fig = px.pie(data_frame = filtered_df[filtered_df['class'] == 1], names = 'Launch Site', values = 'class', title = 'Total Success Launches for All Sites')
return fig
else:
filtered_df = spacex_df[spacex_df['Launch Site'] == entered_site]
fig = px.pie(data_frame = filtered_df, names = 'class', title = 'Total Launches for %s' % entered_site)
return fig
# TASK 4:
# Add a callback function for `site-dropdown` and `payload-slider` as inputs, `success-payload-scatter-chart` as output
@app.callback( Output(component_id='success-payload-scatter-chart', component_property='figure'),
[Input(component_id='site-dropdown', component_property='value'),
Input(component_id='payload-slider', component_property='value')])
# Add computation to callback function and return graph
def update_graph(site_dropdown, entered_payload):
if site_dropdown == 'ALL':
filtered_df = spacex_df[(spacex_df['Payload Mass (kg)'] >= entered_payload[0]) & (spacex_df['Payload Mass (kg)'] <= entered_payload[1])]
fig = px.scatter(data_frame = filtered_df, x = "Payload Mass (kg)", y = "class", color = "Booster Version Category")
return fig
else:
specific_df = spacex_df.loc[spacex_df['Launch Site'] == site_dropdown]
filtered_df = specific_df[(specific_df['Payload Mass (kg)'] >= entered_payload[0]) & (spacex_df['Payload Mass (kg)'] <= entered_payload[1])]
fig = px.scatter(data_frame = filtered_df, x = "Payload Mass (kg)", y = "class", color = "Booster Version Category")
return fig
# Run the app
if __name__ == '__main__':
app.run_server()