forked from qqwweee/keras-yolo3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
101 lines (80 loc) · 3.31 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
from yolo import YOLO
import cv2
from PIL import Image, ImageFont, ImageDraw
import numpy as np
import helpers.actions as a
from helpers.data import Frame
from helpers.zoning import ZoneController
from helpers.score_controller import ScoreController
from helpers.heatmap import Heatmap
def run_detection(video_path, mode, output_path=None, detection_file=None):
yolo = None
if mode is "productive":
yolo = YOLO()
out = None
cap = cv2.VideoCapture(video_path)
video_fps = cap.get(cv2.CAP_PROP_FPS)
video_size = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)),
int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)))
fourcc = cv2.VideoWriter_fourcc(*'XVID')
if mode is "output":
out = cv2.VideoWriter("daemmerung.avi", fourcc, video_fps, video_size)
action_db = a.ActionDB()
zone_controller = ZoneController()
score_controller = ScoreController(action_db,None)
frame_number = 0
lines = None
lastimg = None
while cap.isOpened():
fr = Frame()
if frame_number == 0:
frame_number += 1
continue
return_value, img = cap.read()
out_image = img.copy()
if frame_number == 1:
zone_controller.add_zone(out_image, type=0)
# zone_controller.add_zone(out_image, type=1)
if not return_value:
print("Could not read Frame")
break
out_image = zone_controller.draw_zones(out_image)
image = Image.fromarray(img)
if mode is "productive":
image = yolo.detect_image(image)
else:
lines = [line.rstrip('\n') for line in open(detection_file)]
objects = lines[frame_number].split(" ")
fr.filter_bbox_human(objects[1:])
fr.filter_bbox_vehicles(objects[1:])
for elem in fr.list_of_persons:
touching = zone_controller.get_touching_zones_for_object(elem) # xmin, ymin, xmax, ymax
cv2.rectangle(out_image, (elem[0], elem[1]), (elem[2], elem[3]), (255, 0, 0), 1)
if len(touching) > 0:
for t in touching:
action_db.add(a.ZoneAction(t, frame_number, elem))
if elem[2] - elem[0] > elem[3] - elem[1]:
action_db.add(a.FallingAction(frame_number, elem))
fr.check_for_neighbours()
for elem in fr.list_of_groups:
cv2.rectangle(out_image, (elem.min_x, elem.min_y), (elem.max_x, elem.max_y), (0, 255, 0), 2)
action_db.add(a.GroupAction(len(elem.members),frame_number,[elem.min_x,elem.min_y,elem.max_x,elem.max_y]))
framescore = score_controller.get_threat_level(frame_number)
out_image = cv2.putText(out_image, "Threat-Level: "+ str(framescore*100) + "%", (10, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
lastImg = out_image.copy()
result = np.asarray(image)
if mode is "output":
out.write(result)
cv2.imshow("result", out_image)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
frame_number += 1
#out.release()
cap.release()
print (action_db)
cv2.imshow("heatmap", Heatmap(action_db, [], lastImg).draw())
cv2.waitKey()
cv2.DestroyAllWindows()
yolo.close_session()
if __name__ == '__main__':
run_detection('data/tag.mp4', "none", detection_file="data/detections_tag.txt")