-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathclean-behavioral-data.py
254 lines (239 loc) · 11.9 KB
/
clean-behavioral-data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
# -*- coding: utf-8 -*-
"""
===============================================================================
Script ''
===============================================================================
This script cleans and analyzes behavioral data for the vocoder/switch-gap
and gender/reverb experiments.
"""
# @author: Dan McCloy ([email protected])
# Created on Wed Jan 13 16:40:10 2016
# License: BSD (3-clause)
from __future__ import print_function, division
import numpy as np
import pandas as pd
from glob import glob
from os import getcwd
from os import path as op
from scipy.io import loadmat
pd.set_option('display.width', 160)
# params
rev_subjects = ['1', '2', '3', '4', '5', '6', '7', '10',
'11', '13', '14', '15', '16', '18', '20', '91']
voc_subjects = ['01', '02', '04', '55', '6', '7', '8', '10',
'11', '12', '13', '14', '96', '97', '98', '99']
min_rts = [0.1, 0.3] # minimum reaction time, relative to stimulus onset,
max_rts = [1.0, 1.0] # specified separately for each experiment.
# file I/O
data_dir = 'data-behavioral'
data_subdirs = ['reverb-raw', 'vocoder-raw']
param_subdirs = ['data-reverb', 'data-vocoder']
work_dir = getcwd()
def assign_presses_to_slots(df_row, min_rt, max_rt):
# applied to rows of a DataFrame, which should have elements
# onsets, targ_letters, mask_letters, press_times
onsets = df_row['onsets']
presses = df_row['press_times']
targs = df_row['targ_letters'] == 'O'
foils = df_row['mask_letters'] == 'O'
press_indices = np.full_like(presses, -999, dtype=int)
for ix, press in enumerate(presses):
# first pass: assign to targ if possible
for ix2, (onset, targ) in enumerate(zip(onsets, targs)):
if targ and (onset + min_rt <= press <= onset + max_rt):
press_indices[ix] = ix2
break
# second pass: assign to foil if possible...
if press_indices[ix] < 0: # ...but only if not already assigned
for ix2, (onset, foil) in enumerate(zip(onsets, foils)):
if foil and (onset + min_rt <= press <= onset + max_rt):
press_indices[ix] = ix2
break
# third pass: assign to any timing slot with RT in resp. window
if press_indices[ix] < 0:
for ix2, onset in enumerate(onsets):
if (onset + min_rt <= press <= onset + max_rt):
press_indices[ix] = ix2
break
# fourth pass: assign to earliest targ with non-zero RT
if press_indices[ix] < 0:
for ix2, (onset, targ) in enumerate(zip(onsets, targs)):
if targ and (onset + min_rt <= press):
press_indices[ix] = ix2
break
# fifth pass: assign to earliest foil with non-zero RT
if press_indices[ix] < 0:
for ix2, (onset, foil) in enumerate(zip(onsets, foils)):
if foil and (onset + min_rt <= press):
press_indices[ix] = ix2
break
# last pass: assign to any timing slot with non-zero RT
if press_indices[ix] < 0:
for ix2, onset in enumerate(onsets):
if (onset + min_rt <= press):
press_indices[ix] = ix2
break
return press_indices.tolist()
def assign_press_time_to_slot(df_row):
slot = df_row['slot']
press_ixs = np.array(df_row['press_indices'])
press_times = np.array(df_row['press_times'])
if slot in press_ixs:
pt = press_times[np.where(press_ixs == slot)]
return pt[0] # only return first press (ignore double presses)
else:
return np.nan
longforms = list()
for ix, subdir in enumerate(data_subdirs):
times = list()
resps = list()
reaxs = list()
indir = op.join(work_dir, data_dir, subdir)
subjects = [rev_subjects, voc_subjects][ix]
for subj in subjects:
matfile = glob(op.join(indir, 'subj{}_*.mat'.format(subj)))
assert len(matfile) == 1
mat = loadmat(matfile[0])
""" mat.keys():
['timeStopped', 'singleData', 'trialNum', 'timeVecs', 'nTrains',
'__header__', '__globals__', 'timeVecsHeader', 'respData', 'respList',
'__version__', 'blockNum', 'respDataHeader']
# respList is the button press times
# respData is the trial params & precalculated hit/miss/falsealarm
"""
for key in ['timeVecs', 'respData', 'respList']:
assert mat[key][0][0].shape == (1, 0) # empty header
assert np.all([x[0].shape[0] == 10
for x in mat[key][1:4]]) # training blocks
assert np.all([x[0].shape[0] == 32
for x in mat[key][4:]]) # test blocks
this_times = np.squeeze([x[0] for x in mat['timeVecs'][4:]])
""" this_times.shape
(10, 32, 4) # block, trial, (tStart, tSound, tRespCheckDone, tDone)
"""
this_resps = np.squeeze([x[0] for x in mat['respData'][4:]])
""" this_resps.shape
(10, 32, 8) # block, trial, (training, runInd, band, cue(1=U,2=D),
attn(1=stay,2=switch), hits, misses,
falseAlarms) # from respDataHeader
"""
this_resps[:, :, 1] -= 1 # convert runInd to 0-indexed
this_reaxs = list()
for block in mat['respList'][4:]:
trials = list()
# the [0]s on next 2 lines index into 1-element object arrays
for trial in block[0]:
reax = np.squeeze(trial[0]).tolist()
reax = [reax] if not isinstance(reax, list) else reax
trials.append(reax)
this_reaxs.append(trials)
# save out
times.append(this_times)
resps.append(this_resps)
reaxs.append(this_reaxs)
times = np.array(times)
resps = np.array(resps)
rows = list()
for subj, t, r, x in zip(subjects, times, resps, reaxs):
for block, (tt, rr, xx) in enumerate(zip(t, r, x)):
for trial, (ttt, rrr, xxx) in enumerate(zip(tt, rr, xx)):
row = [subj, block, trial] + ttt.tolist() + rrr.tolist() \
+ [xxx]
rows.append(row)
header = ['subj', 'block', 'trial', 't_start', 't_audio', 't_resp_check',
't_done', 'is_training', 'run_index', 'band', 'cue_1u_2d',
'maint1_switch2', 'hits', 'misses', 'false_alarms',
'press_times']
longform = pd.DataFrame(rows, columns=header)
longform['corr_rej'] = 4 - longform['hits'] - longform['false_alarms']
longform['attn'] = np.array(['maint.', 'switch']
)[(longform['maint1_switch2'] == 2
).values.astype(int).tolist()]
if ix:
longform['voc_chan'] = longform['band']
longform['gap_len'] = np.array(['long', 'short']
)[(longform['cue_1u_2d'] == 1
).values.astype(int).tolist()]
else:
longform['reverb'] = np.array(['anech.', 'reverb']
)[(longform['band'] == 10
).values.astype(int).tolist()]
longform['gender'] = np.array(['MF', 'MM']
)[(longform['cue_1u_2d'] == 1
).values.astype(int).tolist()]
# load letter presentations
mat = loadmat(op.join(work_dir, param_subdirs[ix], 'orderMain.mat'))
letters = [str(lett) for lett in mat['alphaList'][0]]
letter_ixs = mat['fillSeq'].T - 1 # 160 trials, 2 talkers, 4 letters
letter_mat = np.array(letters)[letter_ixs]
targ_letts = letter_mat[:, 0]
mask_letts = letter_mat[:, 1]
target_letter = ['O', 'O'][ix] # same for both experments
targ_lett = targ_letts[longform['run_index']]
mask_lett = mask_letts[longform['run_index']]
n_targs = (targ_lett == target_letter).sum(axis=-1)
assert np.array_equal(n_targs, longform['hits'] + longform['misses'])
longform['targ_letters'] = [x for x in targ_lett]
longform['mask_letters'] = [x for x in mask_lett]
# save files
output_columns = (['subj', 'block', 'trial', 'run_index'] +
[['reverb', 'gender'], ['voc_chan', 'gap_len']][ix] +
['attn', 'hits', 'misses', 'false_alarms', 'corr_rej',
'press_times', 'targ_letters', 'mask_letters'])
fname = ['rev-behdata-longform.tsv', 'voc-behdata-longform.tsv'][ix]
longform[output_columns].to_csv(op.join(work_dir, data_dir, fname),
sep='\t', index=False)
# make extra-long-form (1 row per timeslot)
gaps = [0.6, np.array([0.2, 0.6])][ix]
gap = (np.tile(gaps[(longform['gap_len'] == 'long').astype(int)][:, None],
(1, 2)) if ix else np.tile(gaps, (longform.shape[0], 2)))
slots = np.tile(np.arange(0, 4), (longform.shape[0], 1))
onsets = np.tile(np.linspace(0, 2, 4, endpoint=False),
(longform.shape[0], 1))
onsets[:, 2:] += gap
longform['onsets'] = [x for x in onsets]
# assign presses to timing slots
longform['press_indices'] = longform.apply(assign_presses_to_slots, axis=1,
min_rt=min_rts[ix],
max_rt=max_rts[ix])
unattr_presses = sum(longform['press_indices'].apply(lambda x: -999 in x))
# assert all([y >= 0 for x in longform['press_indices'] for y in x])
print('{} unattributed press{}'.format(str(unattr_presses),
['', 'es'][unattr_presses != 1]))
# prepare for merge
slots_df = pd.DataFrame(dict(attn_lett=targ_lett.ravel(),
mask_lett=mask_lett.ravel(),
onset=onsets.ravel(), slot=slots.ravel(),
subj=np.repeat(longform['subj'].values, 4),
block=np.repeat(longform['block'].values, 4),
trial=np.repeat(longform['trial'].values, 4)))
slots_df['targ'] = slots_df['attn_lett'] == target_letter
slots_df['foil'] = slots_df['mask_lett'] == target_letter
xlongform = pd.merge(slots_df, longform, on=['subj', 'block', 'trial'],
how='left')
# distribute press times to appropriate slots
xlongform['press_time'] = xlongform.apply(assign_press_time_to_slot, 1)
xlongform['press'] = ~np.isnan(xlongform['press_time'])
orig_presses = longform['press_times'].apply(len).sum()
attributed_presses = xlongform['press'].sum()
print('{} of {} presses retained'.format(attributed_presses, orig_presses))
# reaction time
xlongform['reax_time'] = xlongform['press_time'] - xlongform['onset']
rt = xlongform['reax_time'][~np.isnan(xlongform['reax_time'])]
# distribute hit/miss/fa counts to appropriate slots
xlongform['hit'] = (xlongform['press'] & xlongform['targ'] &
(xlongform['reax_time'] <= max_rts[ix]))
xlongform['miss'] = xlongform['targ'] & ~xlongform['hit']
xlongform['fals'] = xlongform['press'] & ~xlongform['targ']
xlongform['crej'] = ~xlongform['press'] & ~xlongform['targ']
xlongform['frsp'] = (xlongform['press'] & xlongform['foil'] &
(xlongform['reax_time'] <= max_rts[ix]))
# save extra-long form
output_columns = (['subj', 'block', 'trial', 'run_index'] +
[['reverb', 'gender'], ['voc_chan', 'gap_len']][ix] +
['attn', 'hit', 'miss', 'fals', 'crej', 'frsp',
'slot', 'attn_lett', 'mask_lett', 'targ', 'foil',
'press', 'onset', 'press_time', 'reax_time'])
fname = ['rev-behdata-xlongform.tsv', 'voc-behdata-xlongform.tsv'][ix]
xlongform[output_columns].to_csv(op.join(work_dir, data_dir, fname),
sep='\t', index=False)