-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathIDEA_SEvo_chpt.py
207 lines (195 loc) · 7.47 KB
/
IDEA_SEvo_chpt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import torch
from utils import *
import scipy.sparse
import random
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
setup_seed(0)
# ====================
data_name = 'SEvo'
num_nodes_gbl = 73 # Number of accumulated nodes
num_snaps = 138 # Number of snapshots
max_thres = 128 # Threshold for maximum edge weight
noise_dim = 20 # Dimensionality of noise input
pos_dim = 32 # Dimensionality of positional embedding
# ====================
lambd = 0.0 # Hyper-parameter of attentive aligning unit
# ====================
edge_seq = np.load('data/%s_edge_seq.npy' % (data_name), allow_pickle=True)
node_set_seq = np.load('data/%s_node_seq.npy' % (data_name), allow_pickle=True)
mod_seq = np.load('data/%s_mod_seq.npy' % (data_name), allow_pickle=True)
align_seq_gbl = np.load('data/%s_align_seq.npy' % (data_name), allow_pickle=True)
# =========
node_map_seq_gbl = []
num_nodes_seq_gbl = []
for t in range(num_snaps):
node_set = node_set_seq[t]
node_map = get_node_map(node_set)
node_map_seq_gbl.append(node_map)
num_nodes_seq_gbl.append(len(node_set))
# ==========
# Get the global node features
feat_gbl = np.load('data/%s_feat.npy' % (data_name), allow_pickle=True)
feat_lcl_seq = []
for t in range(num_snaps):
node_set = node_set_seq[t]
node_idxs = sorted(list(node_set))
feat_lcl = feat_gbl[node_idxs, :]
feat_lcl_seq.append(feat_lcl)
# ====================
win_size = 5 # Window size of historical snapshots
epsilon = 1e-2 # Threshold of the zero-refining
num_test_snaps = 50 # Number of test snapshots
num_val_snaps = 10 # Number of validation snapshots
num_train_snaps = num_snaps-num_test_snaps-num_val_snaps # Number of training snapshots
# ====================
# Load check point
gen_net = torch.load('chpt/IDEA_%s.pkl' % (data_name)).to(device)
# ====================
# Evaluate the model on the test set
gen_net.eval()
# ==========
RMSE_list_L2 = []
MAE_list_L2 = []
MLSD_list_L2 = []
MR_list_L2 = []
# ==========
RMSE_list_L3 = []
MAE_list_L3 = []
MLSD_list_L3 = []
MR_list_L3 = []
for tau in range(num_snaps-num_test_snaps, num_snaps):
# ====================
sup_list = [] # List of GNN support (tensor)
noise_list = [] # List of random noise inputs
align_list = [] # List of aligning matrices
feat_list = [] # List of node feature inputs
num_nodes_list = [] # List of #nodes in each snapshot
pre_node_map_list = []
for t in range(tau-win_size, tau):
# ==========
edges = edge_seq[t]
num_nodes = num_nodes_seq_gbl[t]
node_map = node_map_seq_gbl[t]
adj = get_adj_wei_map(edges, node_map, num_nodes, max_thres)
adj_norm = adj/max_thres # Normalize the edge weights to [0, 1]
# ==========
# Transfer the GNN support to a sparse tensor
sup = get_gnn_sup(adj_norm)
sup_sp = sp.sparse.coo_matrix(sup)
sup_sp = sparse_to_tuple(sup_sp)
idxs = torch.LongTensor(sup_sp[0].astype(float)).to(device)
vals = torch.FloatTensor(sup_sp[1]).to(device)
sup_tnr = torch.sparse.FloatTensor(idxs.t(), vals, sup_sp[2]).float().to(device)
sup_list.append(sup_tnr)
# =========
# Generate the random noise via random projection
mod_tnr = torch.FloatTensor(mod_seq[t]).to(device)
rand_mat = rand_proj(num_nodes, noise_dim)
rand_tnr = torch.FloatTensor(rand_mat).to(device)
noise_tnr = torch.mm(mod_tnr, rand_tnr)
noise_list.append(noise_tnr)
# ==========
align_tnr = torch.FloatTensor(align_seq_gbl[t]).to(device)
align_list.append(align_tnr)
feat_lcl = feat_lcl_seq[t]
feat_tnr = torch.FloatTensor(feat_lcl).to(device)
feat_list.append(feat_tnr)
num_nodes_list.append(num_nodes)
pre_node_map_list.append(node_map)
# ====================
# Get the ground-truth
edges = edge_seq[tau]
# ==========
# For L3
num_nodes_L3 = num_nodes_seq_gbl[tau] # Number of nodes for L3
node_map_L3 = node_map_seq_gbl[tau]
gnd_L3 = get_adj_wei_map(edges, node_map_L3, num_nodes_L3, max_thres) # Ground-truth
feat_lcl = feat_lcl_seq[tau]
feat_tnr = torch.FloatTensor(feat_lcl).to(device)
feat_list.append(feat_tnr)
num_nodes_list.append(num_nodes_L3)
# ==========
# For L2
node_idxs_L2 = get_node_idxs_L2(pre_node_map_list, node_map_L3)
num_nodes_L2 = len(node_idxs_L2) # Number of nodes for L2
gnd_L2 = gnd_L3[node_idxs_L2, :]
gnd_L2 = gnd_L2[:, node_idxs_L2]
# ====================
# Get the prediction result
adj_est_list = gen_net(sup_list, feat_list, noise_list, align_list, num_nodes_list, lambd, pred_flag=True)
adj_est_L3 = adj_est_list[-1]
adj_est_L2 = adj_est_L3[node_idxs_L2, :]
adj_est_L2 = adj_est_L2[:, node_idxs_L2]
if torch.cuda.is_available():
adj_est_L2 = adj_est_L2.cpu().data.numpy()
adj_est_L3 = adj_est_L3.cpu().data.numpy()
else:
adj_est_L2 = adj_est_L2.data.numpy()
adj_est_L3 = adj_est_L3.data.numpy()
# Rescale the edge weights to the original value range
adj_est_L2 *= max_thres
adj_est_L3 *= max_thres
# ==========
# Refine the prediction result
for r in range(num_nodes_L3):
if r<num_nodes_L2:
adj_est_L2[r, r] = 0
adj_est_L3[r, r] = 0
for r in range(num_nodes_L3):
for c in range(num_nodes_L3):
if r<num_nodes_L2 and c<num_nodes_L2:
if adj_est_L2[r, c]<=epsilon:
adj_est_L2[r, c] = 0
if adj_est_L3[r, c]<=epsilon:
adj_est_L3[r, c] = 0
# ====================
# Evaluate the prediction result
RMSE_L2 = get_RMSE(adj_est_L2, gnd_L2, num_nodes_L2)
MAE_L2 = get_MAE(adj_est_L2, gnd_L2, num_nodes_L2)
MLSD_L2 = get_MLSD(adj_est_L2, gnd_L2, num_nodes_L2)
MR_L2 = get_MR(adj_est_L2, gnd_L2, num_nodes_L2)
# ==========
RMSE_list_L2.append(RMSE_L2)
MAE_list_L2.append(MAE_L2)
MLSD_list_L2.append(MLSD_L2)
MR_list_L2.append(MR_L2)
# ==========
RMSE_L3 = get_RMSE(adj_est_L3, gnd_L3, num_nodes_L3)
MAE_L3 = get_MAE(adj_est_L3, gnd_L3, num_nodes_L3)
MLSD_L3 = get_MLSD(adj_est_L3, gnd_L3, num_nodes_L3)
MR_L3 = get_MR(adj_est_L3, gnd_L3, num_nodes_L3)
# ==========
RMSE_list_L3.append(RMSE_L3)
MAE_list_L3.append(MAE_L3)
MLSD_list_L3.append(MLSD_L3)
MR_list_L3.append(MR_L3)
# ====================
RMSE_mean_L2 = np.mean(RMSE_list_L2)
RMSE_std_L2 = np.std(RMSE_list_L2, ddof=1)
MAE_mean_L2 = np.mean(MAE_list_L2)
MAE_std_L2 = np.std(MAE_list_L2, ddof=1)
MLSD_mean_L2 = np.mean(MLSD_list_L2)
MLSD_std_L2 = np.std(MLSD_list_L2, ddof=1)
MR_mean_L2 = np.mean(MR_list_L2)
MR_std_L2 = np.std(MR_list_L2, ddof=1)
print('(L2) Test RMSE %f %f MAE %f %f MLSD %f %f MR %f %f'
% (RMSE_mean_L2, RMSE_std_L2, MAE_mean_L2, MAE_std_L2,
MLSD_mean_L2, MLSD_std_L2, MR_mean_L2, MR_std_L2))
# ==========
RMSE_mean_L3 = np.mean(RMSE_list_L3)
RMSE_std_L3 = np.std(RMSE_list_L3, ddof=1)
MAE_mean_L3 = np.mean(MAE_list_L3)
MAE_std_L3 = np.std(MAE_list_L3, ddof=1)
MLSD_mean_L3 = np.mean(MLSD_list_L3)
MLSD_std_L3 = np.std(MLSD_list_L3, ddof=1)
MR_mean_L3 = np.mean(MR_list_L3)
MR_std_L3 = np.std(MR_list_L3, ddof=1)
print('(L3) Test RMSE %f %f MAE %f %f MLSD %f %f MR %f %f\n'
% (RMSE_mean_L3, RMSE_std_L3, MAE_mean_L3, MAE_std_L3,
MLSD_mean_L3, MLSD_std_L3, MR_mean_L3, MR_std_L3))