|
| 1 | +# Refinery Optimization Exercise |
| 2 | + |
| 3 | + |
| 4 | +## Problem description |
| 5 | + |
| 6 | +The figure above shows a simplified schema of a refinery with three units (a, b, and c). Each unit consumes crude oil from the same storage (S). |
| 7 | +The different units and storage have the following characteristics |
| 8 | + |
| 9 | +### Storage: |
| 10 | +- Capacity (Cs): 500 barrels |
| 11 | +- Initial volume (Vs): 300 barrels |
| 12 | + |
| 13 | +### Units: |
| 14 | +- Unit A capacity (Ca): 200 barrels |
| 15 | +- Unit B capacity (Cb): 300 barrels |
| 16 | +- Unit C capacity (Cc): 100 barrels |
| 17 | + |
| 18 | +The volumes of crude oil consumed by units are: |
| 19 | +- $V_a$: Volume consumed by Unit A |
| 20 | +- $V_b$: Volume consumed by Unit B |
| 21 | +- $V_c$: Volume consumed by Unit C |
| 22 | + |
| 23 | +Your goal is to model the allocation of crude oil from storage to the processing units to ensure constraints are satisfied and optimize certain objectives. |
| 24 | + |
| 25 | +First, let's define problem decision variables. |
| 26 | + |
| 27 | +--- |
| 28 | + |
| 29 | + |
| 30 | +```python |
| 31 | +# install pulp if needed |
| 32 | +# %pip install pulp |
| 33 | +``` |
| 34 | + |
| 35 | + |
| 36 | +```python |
| 37 | +# Define decision variables |
| 38 | +# We can use an optimization library like PuLP |
| 39 | +from pulp import LpProblem, LpVariable, LpMinimize, LpStatusOptimal, LpStatus, LpConstraint, LpAffineExpression |
| 40 | + |
| 41 | +# Create a problem instance |
| 42 | +problem = LpProblem("Refinery_Optimization", LpMinimize) |
| 43 | + |
| 44 | +# Define decision variables |
| 45 | +V_a = LpVariable("V_a", 0, 200) # Volume for Unit A |
| 46 | +V_b = LpVariable("V_b", 0, 300) # Volume for Unit B |
| 47 | +V_c = LpVariable("V_c", 0, 100) # Volume for Unit C |
| 48 | +``` |
| 49 | + |
| 50 | +## Exercise Questions |
| 51 | + |
| 52 | +### Step 1: Write constraints modeling the crude oil flow from Storage (S) to the different units |
| 53 | + |
| 54 | + |
| 55 | +```python |
| 56 | +# Constraints can be added to the problem using natural syntax: problem += x + y <= 1, "{cstr_name}" |
| 57 | + |
| 58 | +problem += ..., "Total_Consumption_Limit" |
| 59 | +``` |
| 60 | + |
| 61 | +Refinery units (a,b and c) operate with a certain cost. For each barrel of crude oil processed, each unit incurs a cost ($c_a$, $b_c$ and $c_c$). Let's consider following operating costs: |
| 62 | +- $c_a$ = 3 |
| 63 | +- $c_b$ = 4 |
| 64 | +- $c_c$=1 |
| 65 | + |
| 66 | + |
| 67 | +```python |
| 68 | +c_a, c_b, c_c = (3, 4, 1) |
| 69 | +``` |
| 70 | + |
| 71 | +### Step 2: Define an objective function minimizing total operation cost of all units? |
| 72 | + |
| 73 | + |
| 74 | +```python |
| 75 | +# Define the objective function (fill the missing part) |
| 76 | +problem += ..., "Total_Cost" |
| 77 | +``` |
| 78 | + |
| 79 | +Let's now solve the problem. Can you guess what would be the optimal solution? |
| 80 | + |
| 81 | +Use the solve function to solve the LP and confirm wether the solution is coherent. |
| 82 | + |
| 83 | + |
| 84 | +```python |
| 85 | +def solve(problem: LpProblem) -> LpStatus: |
| 86 | + problem.solve() |
| 87 | + status = LpStatus[problem.status] |
| 88 | + if problem.status != LpStatusOptimal: |
| 89 | + print("Problem is infeasible") |
| 90 | + return LpStatus[problem.status] |
| 91 | + print(f"Problem solver. Optimal value = {problem.objective.value()}") |
| 92 | + for var in problem.variables(): |
| 93 | + print(f"{var.name} = {var.varValue}") |
| 94 | + return LpStatus[problem.status] |
| 95 | + |
| 96 | +solve(problem) |
| 97 | +``` |
| 98 | + |
| 99 | +In the real world, refieneries operate on a 1-week schedule. Each unit has a daily processing capacity: |
| 100 | +- Unit A: 20 barrels/day |
| 101 | +- Unit B: 30 barrels/day |
| 102 | +- Unit C: 20 barrels/day |
| 103 | + |
| 104 | +The refinery needs to process all volume in storage unit within a week. |
| 105 | + |
| 106 | +Before going any futhure, let's define a function that builds and solves a model given a set of constraints and an objective function. |
| 107 | + |
| 108 | + |
| 109 | +```python |
| 110 | +def solve_problem(problem_name: str, constraints: list[LpConstraint], objective_function: LpAffineExpression) -> LpStatus: |
| 111 | + problem = LpProblem(problem_name, LpMinimize) |
| 112 | + |
| 113 | + for cstr in constraints: |
| 114 | + problem += cstr |
| 115 | + problem += objective_function |
| 116 | + problem.solve() |
| 117 | + status = LpStatus[problem.status] |
| 118 | + if problem.status != LpStatusOptimal: |
| 119 | + print("Problem is infeasible") |
| 120 | + else: |
| 121 | + print(f"Problem solver. Optimal value = {problem.objective.value()}") |
| 122 | + return LpStatus[problem.status] |
| 123 | + |
| 124 | +def display_results(V_a: list[LpVariable], V_b: list[LpVariable], V_c: list[LpVariable], V_s: list[LpVariable]): |
| 125 | + for t in range(T): |
| 126 | + print(f"Day {t + 1}:") |
| 127 | + print(" V_a:", V_a[t].varValue) |
| 128 | + print(" V_b:", V_b[t].varValue) |
| 129 | + print(" V_c:", V_c[t].varValue) |
| 130 | + print(" V_s:", V_s[t].varValue) |
| 131 | +``` |
| 132 | + |
| 133 | + |
| 134 | +### Step 3: |
| 135 | +instructions: |
| 136 | +- extend the model to include daily time steps |
| 137 | +- ensure appropriate storage volume daily-evolution |
| 138 | +- ensure daily processing capacities are not exceeded |
| 139 | +- ensure that volume storage $V_s$ starts at initial value and is entirely consummed at the end of time horizon T |
| 140 | +- formulate objective function representing total operational cost over the tme horizon |
| 141 | + |
| 142 | +Costs of operating units are considered constant on the whole time horizon. |
| 143 | + |
| 144 | + |
| 145 | +```python |
| 146 | +# Extend model for time dimension |
| 147 | +T = 7 # Days horizon |
| 148 | +# Redefine variables |
| 149 | +V_a_t = [... for t in range(T)] |
| 150 | +V_b_t = [... for t in range(T)] |
| 151 | +V_c_t = [... for t in range(T)] |
| 152 | +V_s_t = [... for t in range(T)] |
| 153 | + |
| 154 | +# initialize constraints list |
| 155 | +constraints = [] |
| 156 | +# add storage evolution constraints |
| 157 | +for t in range(T): |
| 158 | + if t < T-1: |
| 159 | + constraints.append(V_s[t+1] == V_s[t] + ...) |
| 160 | + |
| 161 | +# storage volume initial value |
| 162 | +constraints.append(...) |
| 163 | +# storage volume end value |
| 164 | +constraints.append(...) |
| 165 | + |
| 166 | +# define objective function |
| 167 | +total_operational_cost = sum(... for t in range(T)) |
| 168 | +``` |
| 169 | + |
| 170 | +### **Step 4: Run Optimization and Explore Solutions** |
| 171 | +#### Instructions: |
| 172 | +- Solve the extended problem. |
| 173 | +- Display the optimal solution over the time horizon. |
| 174 | + |
| 175 | + |
| 176 | +```python |
| 177 | +solve_problem("refinery_optimization", constraints=constraints, objective_function=total_operational_cost) |
| 178 | +display_results(V_a, V_b, V_c, V_s) |
| 179 | +``` |
| 180 | + |
| 181 | +### **Step 5: Add priority Constraints** |
| 182 | +#### Instructions: |
| 183 | +- Add constraints ensuring that unit c is only used after unit a runs at full capabity. |
| 184 | +- Use binary variables defined below 'MAX_CAPA_a' |
| 185 | + |
| 186 | + |
| 187 | +```python |
| 188 | +MAX_CAPA_a = [LpVariable(f"MAX_CAPA_a_{t}", 0, 1, cat='Binary') for t in range(T)] |
| 189 | + |
| 190 | +# add priority evolution |
| 191 | +for t in range(T): |
| 192 | + constraints.append(...) |
| 193 | + constraints.append(...) |
| 194 | +``` |
| 195 | + |
| 196 | +- Solve and display the results. |
| 197 | + |
| 198 | + |
| 199 | +```python |
| 200 | +solve_problem("refinery_optimization", constraints=constraints, objective_function=total_operational_cost) |
| 201 | +display_results(V_a, V_b, V_c, V_s) |
| 202 | +``` |
| 203 | + |
| 204 | +### **Step 6: Add Outage Constraints** |
| 205 | +#### Instructions: |
| 206 | +- Introduce necessary outages for maintenance. |
| 207 | + - Each unit must proceed in an outage at least one time per 7 days |
| 208 | + - outage lasts 1 day |
| 209 | + |
| 210 | +We defined turn-on status binary variables 'Y_a, Y_b, Yc' to be used to enforce outages. |
| 211 | + |
| 212 | + |
| 213 | +```python |
| 214 | +# Define binary variables for turn-on status |
| 215 | +Y_a = [LpVariable(f"Y_a_{t}", 0, 1, cat="Binary") for t in range(T)] |
| 216 | +Y_b = [LpVariable(f"Y_b_{t}", 0, 1, cat="Binary") for t in range(T)] |
| 217 | +Y_c = [LpVariable(f"Y_c_{t}", 0, 1, cat="Binary") for t in range(T)] |
| 218 | + |
| 219 | +# Link turn-on status to volumes processed |
| 220 | +for t in range(T): |
| 221 | + constraints.append(...) |
| 222 | + constraints.append(...) |
| 223 | + constraints.append(...) |
| 224 | + |
| 225 | +# ensure 1-day outage per week |
| 226 | +constraints.append(...) |
| 227 | +constraints.append(...) |
| 228 | +constraints.append(...) |
| 229 | +``` |
| 230 | + |
| 231 | +- solve and display results |
| 232 | + |
| 233 | + |
| 234 | +```python |
| 235 | +solve_problem("refinery_optimization", constraints=constraints, objective_function=total_operational_cost) |
| 236 | +display_results(V_a, V_b, V_c, V_s) |
| 237 | +``` |
| 238 | + |
| 239 | +### Step 7: furthure extend the model with refined products |
| 240 | +In the reality, processing units a,b and c will produce refined products: $product_1, product_2$. Each barrel of a refined product can be sold at a correspondin price: $p_1$ and $p_2$. Furthuremore, each unit converts crude oil to refined products with a specific ratios $r_{unit, product}$. Per example, unit a, after processing $x$ barrels of crude oil will generate $r_{a,1}x$, $r_{a,2}x$ barrels of refined products. We assume that crude ol and refined products have the same density, thus $r_{a,1} + r_{a,2} = 1$. |
| 241 | + |
| 242 | +Convertion ratios are define for each unit: |
| 243 | +- unit a: [$r_{a,1}, r_{a,2}$] = [0.7, 0.3] |
| 244 | +- unit a: [$r_{b,1}, r_{b,2}$] = [0.6, 0.4] |
| 245 | +- unit a: [$r_{c,1}, r_{c,2}$] = [0.8, 0.2] |
| 246 | + |
| 247 | +a barrel of $product_1$ generates a revenue of $p_1=4$ and $p_2=7$. |
| 248 | + |
| 249 | +instructions: |
| 250 | +- Extend the model to include refined products |
| 251 | +- Include refined products revenue in the objective function |
| 252 | + |
| 253 | + |
| 254 | +```python |
| 255 | +# Define binary variables for starting each unit |
| 256 | +r = {"a": [0.7, 0.3], |
| 257 | + "b": [0.6, 0.4], |
| 258 | + "c": [0.8, 0.2]} |
| 259 | +p_1, p_2 = 4, 7 |
| 260 | + |
| 261 | +# Define refined products variables |
| 262 | +V_product_1 = [... for t in range(T)] |
| 263 | +V_product_2 = [... for t in range(T)] |
| 264 | + |
| 265 | +# Add refined products production cstr (from crude oil) |
| 266 | +for t in range(T): |
| 267 | + # product_1 |
| 268 | + constraints.append(...) |
| 269 | + # product_2 |
| 270 | + constraints.append(...) |
| 271 | + |
| 272 | +# Add refined products revenue to the objective function |
| 273 | +total_operational_cost = sum(... for t in range(T)) |
| 274 | +refined_products_revenue = sum(... for t in range(T)) |
| 275 | +objective_function = total_operational_cost + refined_products_revenue |
| 276 | +``` |
| 277 | + |
| 278 | +- solve problem and display results |
| 279 | + |
| 280 | + |
| 281 | +```python |
| 282 | +solve_problem("refinery_optimization", constraints=constraints, objective_function=total_operational_cost) |
| 283 | +display_results(V_a, V_b, V_c, V_s) |
| 284 | +``` |
| 285 | + |
| 286 | + |
| 287 | +```python |
| 288 | + |
| 289 | +``` |
0 commit comments