|
| 1 | +package org.jetbrains.kotlinx.dataframe.examples.kotlinSpark |
| 2 | + |
| 3 | +import org.apache.spark.api.java.JavaSparkContext |
| 4 | +import org.apache.spark.sql.Dataset |
| 5 | +import org.apache.spark.sql.Row |
| 6 | +import org.apache.spark.sql.RowFactory |
| 7 | +import org.apache.spark.sql.SparkSession |
| 8 | +import org.apache.spark.sql.types.ArrayType |
| 9 | +import org.apache.spark.sql.types.DataType |
| 10 | +import org.apache.spark.sql.types.DataTypes |
| 11 | +import org.apache.spark.sql.types.Decimal |
| 12 | +import org.apache.spark.sql.types.DecimalType |
| 13 | +import org.apache.spark.sql.types.MapType |
| 14 | +import org.apache.spark.sql.types.StructType |
| 15 | +import org.apache.spark.unsafe.types.CalendarInterval |
| 16 | +import org.jetbrains.kotlinx.dataframe.AnyFrame |
| 17 | +import org.jetbrains.kotlinx.dataframe.DataColumn |
| 18 | +import org.jetbrains.kotlinx.dataframe.DataFrame |
| 19 | +import org.jetbrains.kotlinx.dataframe.DataRow |
| 20 | +import org.jetbrains.kotlinx.dataframe.api.rows |
| 21 | +import org.jetbrains.kotlinx.dataframe.api.schema |
| 22 | +import org.jetbrains.kotlinx.dataframe.api.toDataFrame |
| 23 | +import org.jetbrains.kotlinx.dataframe.columns.ColumnGroup |
| 24 | +import org.jetbrains.kotlinx.dataframe.columns.TypeSuggestion |
| 25 | +import org.jetbrains.kotlinx.dataframe.schema.ColumnSchema |
| 26 | +import org.jetbrains.kotlinx.dataframe.schema.DataFrameSchema |
| 27 | +import org.jetbrains.kotlinx.spark.api.toRDD |
| 28 | +import java.math.BigDecimal |
| 29 | +import java.math.BigInteger |
| 30 | +import java.sql.Date |
| 31 | +import java.sql.Timestamp |
| 32 | +import java.time.Instant |
| 33 | +import java.time.LocalDate |
| 34 | +import kotlin.reflect.KType |
| 35 | +import kotlin.reflect.KTypeProjection |
| 36 | +import kotlin.reflect.full.createType |
| 37 | +import kotlin.reflect.full.isSubtypeOf |
| 38 | +import kotlin.reflect.full.withNullability |
| 39 | +import kotlin.reflect.typeOf |
| 40 | + |
| 41 | +// region Spark to DataFrame |
| 42 | + |
| 43 | +/** |
| 44 | + * Converts an untyped Spark [Dataset] (Dataframe) to a Kotlin [DataFrame]. |
| 45 | + * [StructTypes][StructType] are converted to [ColumnGroups][ColumnGroup]. |
| 46 | + * |
| 47 | + * DataFrame supports type inference to do the conversion automatically. |
| 48 | + * This is usually fine for smaller data sets, but when working with larger datasets a type map might be a good idea. |
| 49 | + * See [convertToDataFrame] for more information. |
| 50 | + */ |
| 51 | +fun Dataset<Row>.convertToDataFrameByInference( |
| 52 | + schema: StructType = schema(), |
| 53 | + prefix: List<String> = emptyList(), |
| 54 | +): AnyFrame { |
| 55 | + val columns = schema.fields().map { field -> |
| 56 | + val name = field.name() |
| 57 | + when (val dataType = field.dataType()) { |
| 58 | + is StructType -> |
| 59 | + DataColumn.createColumnGroup( |
| 60 | + name = name, |
| 61 | + df = convertToDataFrameByInference(dataType, prefix + name), |
| 62 | + ) |
| 63 | + |
| 64 | + else -> |
| 65 | + DataColumn.createByInference( |
| 66 | + name = name, |
| 67 | + values = select((prefix + name).joinToString(".")) |
| 68 | + .collectAsList() |
| 69 | + .map { it[0] }, |
| 70 | + suggestedType = TypeSuggestion.Infer, |
| 71 | + nullable = field.nullable(), |
| 72 | + ) |
| 73 | + } |
| 74 | + } |
| 75 | + return columns.toDataFrame() |
| 76 | +} |
| 77 | + |
| 78 | +/** |
| 79 | + * Converts an untyped Spark [Dataset] (Dataframe) to a Kotlin [DataFrame]. |
| 80 | + * [StructTypes][StructType] are converted to [ColumnGroups][ColumnGroup]. |
| 81 | + * |
| 82 | + * This version uses a [type-map][DataType.convertToDataFrame] to convert the schemas with a fallback to inference. |
| 83 | + * For smaller data sets, inference is usually fine too. |
| 84 | + * See [convertToDataFrameByInference] for more information. |
| 85 | + */ |
| 86 | +fun Dataset<Row>.convertToDataFrame(schema: StructType = schema(), prefix: List<String> = emptyList()): AnyFrame { |
| 87 | + val columns = schema.fields().map { field -> |
| 88 | + val name = field.name() |
| 89 | + when (val dataType = field.dataType()) { |
| 90 | + is StructType -> |
| 91 | + DataColumn.createColumnGroup( |
| 92 | + name = name, |
| 93 | + df = convertToDataFrame(dataType, prefix + name), |
| 94 | + ) |
| 95 | + |
| 96 | + else -> |
| 97 | + DataColumn.createByInference( |
| 98 | + name = name, |
| 99 | + values = select((prefix + name).joinToString(".")) |
| 100 | + .collectAsList() |
| 101 | + .map { it[0] }, |
| 102 | + suggestedType = |
| 103 | + dataType.convertToDataFrame() |
| 104 | + ?.let(TypeSuggestion::Use) |
| 105 | + ?: TypeSuggestion.Infer, // fallback to inference if needed |
| 106 | + nullable = field.nullable(), |
| 107 | + ) |
| 108 | + } |
| 109 | + } |
| 110 | + return columns.toDataFrame() |
| 111 | +} |
| 112 | + |
| 113 | +/** |
| 114 | + * Returns the corresponding Kotlin type for a given Spark DataType. |
| 115 | + * |
| 116 | + * This list may be incomplete, but it can at least give you a good start. |
| 117 | + * |
| 118 | + * @return The KType that corresponds to the Spark DataType, or null if no matching KType is found. |
| 119 | + */ |
| 120 | +fun DataType.convertToDataFrame(): KType? = |
| 121 | + when { |
| 122 | + this == DataTypes.ByteType -> typeOf<Byte>() |
| 123 | + |
| 124 | + this == DataTypes.ShortType -> typeOf<Short>() |
| 125 | + |
| 126 | + this == DataTypes.IntegerType -> typeOf<Int>() |
| 127 | + |
| 128 | + this == DataTypes.LongType -> typeOf<Long>() |
| 129 | + |
| 130 | + this == DataTypes.BooleanType -> typeOf<Boolean>() |
| 131 | + |
| 132 | + this == DataTypes.FloatType -> typeOf<Float>() |
| 133 | + |
| 134 | + this == DataTypes.DoubleType -> typeOf<Double>() |
| 135 | + |
| 136 | + this == DataTypes.StringType -> typeOf<String>() |
| 137 | + |
| 138 | + this == DataTypes.DateType -> typeOf<Date>() |
| 139 | + |
| 140 | + this == DataTypes.TimestampType -> typeOf<Timestamp>() |
| 141 | + |
| 142 | + this is DecimalType -> typeOf<Decimal>() |
| 143 | + |
| 144 | + this == DataTypes.CalendarIntervalType -> typeOf<CalendarInterval>() |
| 145 | + |
| 146 | + this == DataTypes.NullType -> nullableNothingType |
| 147 | + |
| 148 | + this == DataTypes.BinaryType -> typeOf<ByteArray>() |
| 149 | + |
| 150 | + this is ArrayType -> { |
| 151 | + when (elementType()) { |
| 152 | + DataTypes.ShortType -> typeOf<ShortArray>() |
| 153 | + DataTypes.IntegerType -> typeOf<IntArray>() |
| 154 | + DataTypes.LongType -> typeOf<LongArray>() |
| 155 | + DataTypes.FloatType -> typeOf<FloatArray>() |
| 156 | + DataTypes.DoubleType -> typeOf<DoubleArray>() |
| 157 | + DataTypes.BooleanType -> typeOf<BooleanArray>() |
| 158 | + else -> null |
| 159 | + } |
| 160 | + } |
| 161 | + |
| 162 | + this is MapType -> { |
| 163 | + val key = keyType().convertToDataFrame() ?: return null |
| 164 | + val value = valueType().convertToDataFrame() ?: return null |
| 165 | + Map::class.createType( |
| 166 | + listOf( |
| 167 | + KTypeProjection.invariant(key), |
| 168 | + KTypeProjection.invariant(value.withNullability(valueContainsNull())), |
| 169 | + ), |
| 170 | + ) |
| 171 | + } |
| 172 | + |
| 173 | + else -> null |
| 174 | + } |
| 175 | + |
| 176 | +// endregion |
| 177 | + |
| 178 | +// region DataFrame to Spark |
| 179 | + |
| 180 | +/** |
| 181 | + * Converts the DataFrame to a Spark Dataset of Rows using the provided SparkSession and JavaSparkContext. |
| 182 | + * |
| 183 | + * Spark needs both the data and the schema to be converted to create a correct [Dataset]. |
| 184 | + * |
| 185 | + * @param spark The SparkSession object to use for creating the DataFrame. |
| 186 | + * @param sc The JavaSparkContext object to use for converting the DataFrame to RDD. |
| 187 | + * @return A Dataset of Rows representing the converted DataFrame. |
| 188 | + */ |
| 189 | +fun DataFrame<*>.convertToSpark(spark: SparkSession, sc: JavaSparkContext): Dataset<Row> { |
| 190 | + val rows = sc.toRDD(rows().map { it.convertToSpark() }) |
| 191 | + return spark.createDataFrame(rows, schema().convertToSpark()) |
| 192 | +} |
| 193 | + |
| 194 | +/** |
| 195 | + * Converts a DataRow to a Spark Row object. |
| 196 | + * |
| 197 | + * @return The converted Spark Row. |
| 198 | + */ |
| 199 | +fun DataRow<*>.convertToSpark(): Row = |
| 200 | + RowFactory.create( |
| 201 | + *values().map { |
| 202 | + when (it) { |
| 203 | + is DataRow<*> -> it.convertToSpark() |
| 204 | + else -> it |
| 205 | + } |
| 206 | + }.toTypedArray(), |
| 207 | + ) |
| 208 | + |
| 209 | +/** |
| 210 | + * Converts a DataFrameSchema to a Spark StructType. |
| 211 | + * |
| 212 | + * @return The converted Spark StructType. |
| 213 | + */ |
| 214 | +fun DataFrameSchema.convertToSpark(): StructType = |
| 215 | + DataTypes.createStructType( |
| 216 | + columns.map { (name, schema) -> |
| 217 | + DataTypes.createStructField(name, schema.convertToSpark(), schema.nullable) |
| 218 | + }, |
| 219 | + ) |
| 220 | + |
| 221 | +/** |
| 222 | + * Converts a ColumnSchema object to Spark DataType. |
| 223 | + * |
| 224 | + * @return The Spark DataType corresponding to the given ColumnSchema object. |
| 225 | + * @throws IllegalArgumentException if the column type or kind is unknown. |
| 226 | + */ |
| 227 | +fun ColumnSchema.convertToSpark(): DataType = |
| 228 | + when (this) { |
| 229 | + is ColumnSchema.Value -> type.convertToSpark() ?: error("unknown data type: $type") |
| 230 | + is ColumnSchema.Group -> schema.convertToSpark() |
| 231 | + is ColumnSchema.Frame -> error("nested dataframes are not supported") |
| 232 | + else -> error("unknown column kind: $this") |
| 233 | + } |
| 234 | + |
| 235 | +/** |
| 236 | + * Returns the corresponding Spark DataType for a given Kotlin type. |
| 237 | + * |
| 238 | + * This list may be incomplete, but it can at least give you a good start. |
| 239 | + * |
| 240 | + * @return The Spark DataType that corresponds to the Kotlin type, or null if no matching DataType is found. |
| 241 | + */ |
| 242 | +fun KType.convertToSpark(): DataType? = |
| 243 | + when { |
| 244 | + isSubtypeOf(typeOf<Byte?>()) -> DataTypes.ByteType |
| 245 | + |
| 246 | + isSubtypeOf(typeOf<Short?>()) -> DataTypes.ShortType |
| 247 | + |
| 248 | + isSubtypeOf(typeOf<Int?>()) -> DataTypes.IntegerType |
| 249 | + |
| 250 | + isSubtypeOf(typeOf<Long?>()) -> DataTypes.LongType |
| 251 | + |
| 252 | + isSubtypeOf(typeOf<Boolean?>()) -> DataTypes.BooleanType |
| 253 | + |
| 254 | + isSubtypeOf(typeOf<Float?>()) -> DataTypes.FloatType |
| 255 | + |
| 256 | + isSubtypeOf(typeOf<Double?>()) -> DataTypes.DoubleType |
| 257 | + |
| 258 | + isSubtypeOf(typeOf<String?>()) -> DataTypes.StringType |
| 259 | + |
| 260 | + isSubtypeOf(typeOf<LocalDate?>()) -> DataTypes.DateType |
| 261 | + |
| 262 | + isSubtypeOf(typeOf<Date?>()) -> DataTypes.DateType |
| 263 | + |
| 264 | + isSubtypeOf(typeOf<Timestamp?>()) -> DataTypes.TimestampType |
| 265 | + |
| 266 | + isSubtypeOf(typeOf<Instant?>()) -> DataTypes.TimestampType |
| 267 | + |
| 268 | + isSubtypeOf(typeOf<Decimal?>()) -> DecimalType.SYSTEM_DEFAULT() |
| 269 | + |
| 270 | + isSubtypeOf(typeOf<BigDecimal?>()) -> DecimalType.SYSTEM_DEFAULT() |
| 271 | + |
| 272 | + isSubtypeOf(typeOf<BigInteger?>()) -> DecimalType.SYSTEM_DEFAULT() |
| 273 | + |
| 274 | + isSubtypeOf(typeOf<CalendarInterval?>()) -> DataTypes.CalendarIntervalType |
| 275 | + |
| 276 | + isSubtypeOf(nullableNothingType) -> DataTypes.NullType |
| 277 | + |
| 278 | + isSubtypeOf(typeOf<ByteArray?>()) -> DataTypes.BinaryType |
| 279 | + |
| 280 | + isSubtypeOf(typeOf<ShortArray?>()) -> DataTypes.createArrayType(DataTypes.ShortType, false) |
| 281 | + |
| 282 | + isSubtypeOf(typeOf<IntArray?>()) -> DataTypes.createArrayType(DataTypes.IntegerType, false) |
| 283 | + |
| 284 | + isSubtypeOf(typeOf<LongArray?>()) -> DataTypes.createArrayType(DataTypes.LongType, false) |
| 285 | + |
| 286 | + isSubtypeOf(typeOf<FloatArray?>()) -> DataTypes.createArrayType(DataTypes.FloatType, false) |
| 287 | + |
| 288 | + isSubtypeOf(typeOf<DoubleArray?>()) -> DataTypes.createArrayType(DataTypes.DoubleType, false) |
| 289 | + |
| 290 | + isSubtypeOf(typeOf<BooleanArray?>()) -> DataTypes.createArrayType(DataTypes.BooleanType, false) |
| 291 | + |
| 292 | + isSubtypeOf(typeOf<Array<*>>()) -> |
| 293 | + error("non-primitive arrays are not supported for now, you can add it yourself") |
| 294 | + |
| 295 | + isSubtypeOf(typeOf<List<*>>()) -> error("lists are not supported for now, you can add it yourself") |
| 296 | + |
| 297 | + isSubtypeOf(typeOf<Set<*>>()) -> error("sets are not supported for now, you can add it yourself") |
| 298 | + |
| 299 | + classifier == Map::class -> { |
| 300 | + val (key, value) = arguments |
| 301 | + DataTypes.createMapType( |
| 302 | + key.type?.convertToSpark(), |
| 303 | + value.type?.convertToSpark(), |
| 304 | + value.type?.isMarkedNullable ?: true, |
| 305 | + ) |
| 306 | + } |
| 307 | + |
| 308 | + else -> null |
| 309 | + } |
| 310 | + |
| 311 | +private val nullableNothingType: KType = typeOf<List<Nothing?>>().arguments.first().type!! |
| 312 | + |
| 313 | +// endregion |
0 commit comments