-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransformer.py
589 lines (395 loc) · 19.1 KB
/
transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
import time
import os
import pickle
import numpy as np
import tensorflow as tf
import tensorflow_text
import keras_nlp
# ------------------Model Config------------------
class TransformerConfig:
_MAX_TOKENS = 128
def __init__(self, encoderDecoder = False, max_tokens=128, pos_encoding_length=2048, vocab_size = 5000,
d_model=128, dff=512, num_heads_enc=8, num_heads_dec=8, num_layers_dec=4, num_layers_enc=4, skip_connection_enc=None, skip_connection_dec=None,
img_width = 256, img_height = 256, hasInpImage = False, hasOutImage = False,
dropout_rate=0.2, batch_size=32, buffer_size=2000, name="transformer", projectPath=""):
#model || model size O(vocab_size * d_model)
self.encoderDecoder = encoderDecoder #if True --> use encoder and decoder model, if False --> only decoder
self.max_tokens=max_tokens; TransformerConfig._MAX_TOKENS = max_tokens
self.vocab_size=vocab_size
self.pos_encoding_length=pos_encoding_length # pos_encoding_length >= max_tokens
self.d_model=d_model # == pos_encoding_depth
self.dff=dff
self.num_heads_enc=num_heads_enc
self.num_heads_dec=num_heads_dec
self.num_layers_dec=num_layers_dec
self.num_layers_enc=num_layers_enc
self.skip_connection_enc=skip_connection_enc
self.skip_connection_dec=skip_connection_dec
#img hyper param
self.hasInpImage = hasInpImage
self.hasOutImage = hasOutImage
self.hasImage = self.hasInpImage or self.hasOutImage
self.img_width = img_width;
self.img_height = img_height;
#video hper param
self.hasInpVideo = False
self.hasOutVideo = False
self.hasVideo = self.hasInpVideo or self.hasOutVideo
self.vid_width = img_width;
self.vid_height = img_height;
# self.vid_nbr_frame or vid len(s)
self.isMultimodal = self.hasImage or self.hasVideo
self.dropout_rate=dropout_rate
#env
self.batch_size=batch_size
self.buffer_size=buffer_size
self.name = name
self.projectPath = projectPath
self.checkpoint_path = os.path.join(projectPath, name)
def save_config(self, ):
_fpath = os.path.join( self.checkpoint_path, "training_config.pkl" )
with open(_fpath, 'wb') as pfile:
pickle.dump(self, pfile, protocol=pickle.HIGHEST_PROTOCOL)
return None
# ------------------Tokenizer------------------
class CustomTokenizer(keras_nlp.models.MistralPreprocessor): # https://github.com/keras-team/keras-nlp/blob/master/keras_nlp/models
def __init__( self, return_mask: bool = False, **kwargs,):
super().__init__(**kwargs)
self.return_mask = return_mask # no need Mask as Embedding(mask_zero=True) generate mask, make sure padding token id == 0
self.vocab_size = self.tokenizer.vocabulary_size()
def call(self, x, y=None, sample_weight=None, sequence_length=None, add_start_token=True, add_end_token=True ):
self.add_start_token = add_start_token;
self.add_end_token = add_end_token;
x = super().call(x, y=y, sample_weight=sample_weight, sequence_length=sequence_length)
return x if self.return_mask else x["token_ids"]
def detokenize(self, x, **kwargs,):
return self.tokenizer.detokenize(x, **kwargs)
# ----------------------- Positional Embedding ---------------------------
def positional_encoding(length, depth):
depth = depth/2
positions = np.arange(length)[:, np.newaxis] # (seq, 1)
depths = np.arange(depth)[np.newaxis, :]/depth # (1, depth)
angle_rates = 1 / (10000**depths) # (1, depth)
angle_rads = positions * angle_rates # (pos, depth)
pos_encoding = np.concatenate(
[np.sin(angle_rads), np.cos(angle_rads)],
axis=-1)
return tf.cast(pos_encoding, dtype=tf.float32)
class PositionalEmbedding(tf.keras.layers.Layer):
def __init__(self, vocab_size, d_model, pos_encoding_length, name = "pos_embediing"):
super().__init__()
self.d_model = d_model
self.embedding = tf.keras.layers.Embedding(input_dim=vocab_size, output_dim=d_model, mask_zero=True, name=name + "_embeding_layer" )
self.pos_encoding = positional_encoding(length=pos_encoding_length, depth=d_model)
def compute_mask(self, *args, **kwargs):
return self.embedding.compute_mask(*args, **kwargs)
def call(self, x):
length = tf.shape(x)[1]
x = self.embedding(x)
# This factor sets the relative scale of the embedding and positonal_encoding.
x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32))
x = x + self.pos_encoding[tf.newaxis, :length, :]
return x
# --------------------Attention Layers------------------------
class BaseAttention(tf.keras.layers.Layer):
def __init__(self, **kwargs):
_layer_name = kwargs.get('name',"attention")
super().__init__(name = _layer_name )
self.mha = tf.keras.layers.MultiHeadAttention(**kwargs)
self.layernorm = tf.keras.layers.LayerNormalization( name = _layer_name + "_layer_norm" )
self.add = tf.keras.layers.Add( name = _layer_name + "_adding" )
self.last_attn_scores = None
def call(self, query, key, value, use_causal_mask=False, mask=None):
attn_output, attn_scores = self.mha(
query=query,
key=key,
value=value,
use_causal_mask = use_causal_mask,
return_attention_scores=True)
self.last_attn_scores = attn_scores
x = self.add([query, attn_output])
x = self.layernorm(x)
return x;
class CrossAttention(BaseAttention):
def call(self, x, context, **kwargs ):
x = super().call( query = x, key = context, value = context, **kwargs )
return x
class GlobalSelfAttention(BaseAttention):
def call(self, x, **kwargs):
x = super().call( query = x, key = x, value = x, **kwargs )
return x
class CausalSelfAttention(BaseAttention):
def call(self, x, **kwargs):
x = super().call( query = x, key = x, value = x, use_causal_mask = True, **kwargs )
return x
#------------------------ParametricAddLayer---------------------------
#call(x, y) = x + activation(scale) * y <==> x + k * y
#if activation = tanh ==> k € [-1, 1]
class ParametricAddLayer(tf.keras.layers.Layer):
def __init__(self, init_val = 0.5, activation="tanh", name ="parametricAdd", **kwargs):
super().__init__(**kwargs)
self.scale = tf.Variable(init_val, trainable=True, dtype=tf.float32, name = "_scaler")
self.add = tf.keras.layers.Add( name = name + "_add" )
self.activation = tf.keras.layers.Activation( activation, name = "_activation", **kwargs)
def call(self, x, y, ):
return self.add( [ x, y * self.activation(self.scale) ] )
# -------------------------------FeedForward-------------------------
class FeedForward(tf.keras.layers.Layer):
def __init__(self, d_model, dff, dropout_rate=0.1, name="feedforward"):
super().__init__()
self.seq = tf.keras.Sequential([
tf.keras.layers.Dense(dff, activation='relu', name = name + "_dense0"),
tf.keras.layers.Dense(d_model, name = name + "_dense1"),
tf.keras.layers.Dropout(dropout_rate, name = name + "_dropout")
])
self.add = tf.keras.layers.Add( name = name + "_add" )
self.layer_norm = tf.keras.layers.LayerNormalization(name = name + "_layer_norm")
def call(self, x, ):
x = self.add([x, self.seq(x)])
x = self.layer_norm(x)
return x
#------------------ ENCODER ------------------------------------#
class EncoderLayer(tf.keras.layers.Layer):
def __init__(self,*, d_model, num_heads, dff, dropout_rate=0.1, name="encoder"):
super().__init__()
self.self_attention = GlobalSelfAttention(
num_heads=num_heads,
key_dim=d_model,
dropout=dropout_rate,
name= name + "_global_selfAttention")
self.ffn = FeedForward(d_model = d_model, dff = dff, name = name + "_feedforward")
def call(self, x, ):
x = self.self_attention(x=x)
x = self.ffn(x=x)
return x
class Encoder(tf.keras.layers.Layer):
def __init__(self, *, num_layers, d_model, num_heads,
dff, vocab_size, pos_encoding_length, dropout_rate=0.1, skip_connection = None, name="encoder"):
super(Encoder, self).__init__(name=name)
self.d_model = d_model
self.num_layers = num_layers
self.pos_embedding = PositionalEmbedding(
vocab_size=vocab_size, d_model=d_model, pos_encoding_length=pos_encoding_length, name= name + "_posEmbedding")
self.enc_layers = [
EncoderLayer(d_model=d_model,
num_heads=num_heads,
dff=dff,
dropout_rate=dropout_rate,
name = name + "_encoderLayer" + str(i))
for i in range(num_layers)]
self.dropout = tf.keras.layers.Dropout(dropout_rate, name = name + "_dropout")
#add skip connection
self.skip_connection = skip_connection
num_skip_connection = max(num_layers - skip_connection, 0 ) if skip_connection != None else -1
self.hasSkip_connection: bool = num_skip_connection > 0
self.skip_connection_layer = [ ParametricAddLayer(name = name + "_paramSkip" + str(i) ) for i in range(num_skip_connection) ]
def call(self, x, ):
# `x` is token-IDs shape: (batch, seq_len)
x = self.pos_embedding(x=x) # Shape `(batch_size, seq_len, d_model)`.
# Add dropout.
x = self.dropout(x)
temp_layer = [];
for i in range(self.num_layers):
#add skip connection
if self.hasSkip_connection and i >= self.skip_connection:
x = self.skip_connection_layer[i - self.skip_connection](x=x, y=temp_layer[ - self.skip_connection ])
x = self.enc_layers[i](x=x)
if self.hasSkip_connection:
temp_layer.append(x)
return x # Shape `(batch_size, seq_len, d_model)`.
#------------------ DECODER ------------------------------------#
class DecoderLayer(tf.keras.layers.Layer):
def __init__(self,
*,
d_model,
num_heads,
dff,
dropout_rate=0.1,
name = "decoder"):
super().__init__(name=name)
self.causal_self_attention = CausalSelfAttention(
num_heads=num_heads,
key_dim=d_model,
dropout=dropout_rate,
name = name + "_causal_selfAttention")
self.cross_attention = CrossAttention(
num_heads=num_heads,
key_dim=d_model,
dropout=dropout_rate,
name = name + "_causal_crossAttention")
self.ffn = FeedForward(d_model = d_model, dff = dff, name = name + "_feedforward")
def call(self, x, context = None, ):
x = self.causal_self_attention(x=x)
if context != None:
x = self.cross_attention(x=x, context=context)
# Cache the last attention scores for plotting later
self.last_attn_scores = self.cross_attention.last_attn_scores
x = self.ffn(x=x) # Shape `(batch_size, seq_len, d_model)`.
return x
class Decoder(tf.keras.layers.Layer):
def __init__(self, *, num_layers, d_model, num_heads, dff, vocab_size, pos_encoding_length,
dropout_rate=0.1, skip_connection = None, name="decoder", **kwargs):
super().__init__(**kwargs)
self.d_model = d_model
self.num_layers = num_layers
self.pos_embedding = PositionalEmbedding(vocab_size=vocab_size, d_model=d_model,
pos_encoding_length=pos_encoding_length, name= name + "_posEmbedding")
self.dropout = tf.keras.layers.Dropout(dropout_rate, name = name + "_dropout")
self.dec_layers = [
DecoderLayer(d_model=d_model, num_heads=num_heads,
dff=dff, dropout_rate=dropout_rate, name = name + "_decoderLayer" + str(i))
for i in range(num_layers)]
#add skip connection
self.skip_connection = skip_connection
num_skip_connection = max(num_layers - skip_connection, 0 ) if skip_connection != None else -1
self.hasSkip_connection: bool = num_skip_connection > 0
self.skip_connection_layer = [ ParametricAddLayer(name = name + "_paramSkip" + str(i) ) for i in range(num_skip_connection) ]
self.last_attn_scores = None
def call(self, x, context = None, fx_intercept = None,):
# `x` is token-IDs shape (batch, target_seq_len)
x = self.pos_embedding(x) # (batch_size, target_seq_len, d_model)
x = self.dropout(x)
temp_layer = []
if fx_intercept == None:
def _fx(x): return x, context
fx_intercept = _fx
for i in range(self.num_layers):
#add skip connection
if self.hasSkip_connection and i >= self.skip_connection:
x = self.skip_connection_layer[i - self.skip_connection](x=x, y=temp_layer[ - self.skip_connection ])
x, context = fx_intercept(x)
x = self.dec_layers[i](x=x, context = context)
if self.hasSkip_connection:
temp_layer.append(x)
self.last_attn_scores = self.dec_layers[-1].last_attn_scores
# The shape of x is (batch_size, target_seq_len, d_model).
return x
# ----------------------------- Transformer ----------------------------------------------------
class Transformer(tf.keras.Model):
def __init__(self, *, d_model, dff,
num_layers_enc, num_layers_dec, num_heads_enc, num_heads_dec, skip_connection_enc, skip_connection_dec,
input_vocab_size, target_vocab_size, pos_encoding_length, dropout_rate=0.1, **kwargs):
super().__init__(**kwargs)
self.encoder = Encoder(num_layers=num_layers_enc, d_model=d_model,
num_heads=num_heads_enc, dff=dff, skip_connection=skip_connection_enc,
vocab_size=input_vocab_size,
pos_encoding_length=pos_encoding_length,
dropout_rate=dropout_rate,
name="encoder")
self.decoder = Decoder(num_layers=num_layers_dec, d_model=d_model,
num_heads=num_heads_dec, dff=dff, skip_connection=skip_connection_dec,
vocab_size=target_vocab_size,
pos_encoding_length=pos_encoding_length,
dropout_rate=dropout_rate,
name="decoder")
self.final_layer = tf.keras.layers.Dense(target_vocab_size, name="final_layer")
def call(self, inputs, fx_intercept=None):
context, x = inputs["input_text_encoder"], inputs["input_text_decoder"]
context = self.encoder(context) # (batch_size, context_len, d_model)
x = self.decoder(x=x, context=context, fx_intercept = fx_intercept) # (batch_size, target_len, d_model)
# Final linear layer output.
logits = self.final_layer(x) # (batch_size, target_len, target_vocab_size)
try:
# Drop the keras mask, so it doesn't scale the losses/metrics.
del logits._keras_mask
except AttributeError:
pass
# Return the final output and the attention weights.
return logits
class TransformerDecoder(tf.keras.Model):
def __init__(self, *, d_model, dff,
num_layers_dec, num_heads_dec, skip_connection_dec,
target_vocab_size, pos_encoding_length, dropout_rate=0.1, **kwargs):
super().__init__(**kwargs)
self.decoder = Decoder(num_layers=num_layers_dec, d_model=d_model,
num_heads=num_heads_dec, dff=dff, skip_connection=skip_connection_dec,
vocab_size=target_vocab_size,
pos_encoding_length=pos_encoding_length,
dropout_rate=dropout_rate,
name="decoder")
self.final_layer = tf.keras.layers.Dense(target_vocab_size)
def call(self, inputs, fx_intercept = None):
context, x = inputs.get("input_text_encoder", None), inputs["input_text_decoder"]
x = self.decoder(x = x, context = context, fx_intercept = fx_intercept) # (batch_size, target_len, d_model)
# Final linear layer output.
logits = self.final_layer(x) # (batch_size, target_len, target_vocab_size)
try:
# Drop the keras mask, so it doesn't scale the losses/metrics.
del logits._keras_mask
except AttributeError:
pass
# Return the final output and the attention weights.
return logits
# -------------------------------Optimizer && Loss-------------------------
# Use the Adam optimizer with a custom learning rate scheduler according to the formula in the original Transformer paper.
# lrate=d_model**−0.5∗min(step_num−0.5,step_num⋅warmup_steps−1.5)
class CustomSchedule(tf.keras.optimizers.schedules.LearningRateSchedule):
def __init__(self, d_model, warmup_steps=4000, min_lr = 1e-4):
super().__init__()
self.d_model = d_model
self.d_model = tf.cast(self.d_model, tf.float32)
self.warmup_steps = warmup_steps
self.min_lr = min_lr
def __call__(self, step):
step = tf.cast(step, dtype=tf.float32)
arg1 = tf.math.rsqrt(step)
arg2 = step * (self.warmup_steps ** -1.5)
lr = tf.math.rsqrt(self.d_model) * tf.math.minimum(arg1, arg2)
return tf.math.maximum(lr, self.min_lr)
# Set up the loss and metrics
# Since the target sequences are padded, it is important to apply a padding mask when calculating the loss. Use the cross-entropy loss function (tf.keras.losses.SparseCategoricalCrossentropy):
def masked_loss(label, pred):
mask = label != 0
loss_object = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True, reduction='none')
loss = loss_object(label, pred)
mask = tf.cast(mask, dtype=loss.dtype)
loss *= mask
loss = tf.reduce_sum(loss)/tf.reduce_sum(mask)
return loss
def masked_accuracy(label, pred):
pred = tf.argmax(pred, axis=2)
label = tf.cast(label, pred.dtype)
match = label == pred
mask = label != 0
match = match & mask
match = tf.cast(match, dtype=tf.float32)
mask = tf.cast(mask, dtype=tf.float32)
return tf.reduce_sum(match)/tf.reduce_sum(mask)
def get_compiled_model(_train_conf: TransformerConfig, min_lr = 1e-4):
transformer = None
if _train_conf.encoderDecoder:
transformer = Transformer(
d_model=_train_conf.d_model,
dff=_train_conf.dff,
num_layers_enc=_train_conf.num_layers_enc,
num_layers_dec=_train_conf.num_layers_dec,
num_heads_enc = _train_conf.num_heads_enc,
num_heads_dec = _train_conf.num_heads_dec,
skip_connection_enc=_train_conf.skip_connection_enc,
skip_connection_dec=_train_conf.skip_connection_dec,
input_vocab_size=_train_conf.vocab_size,
target_vocab_size=_train_conf.vocab_size,
pos_encoding_length=_train_conf.pos_encoding_length,
dropout_rate=_train_conf.dropout_rate,
name=_train_conf.name)
else:
transformer = TransformerDecoder(
d_model=_train_conf.d_model,
dff=_train_conf.dff,
num_layers_dec=_train_conf.num_layers_dec,
num_heads_dec = _train_conf.num_heads_dec,
skip_connection_dec=_train_conf.skip_connection_dec,
target_vocab_size=_train_conf.vocab_size,
pos_encoding_length=_train_conf.pos_encoding_length,
dropout_rate=_train_conf.dropout_rate,
name=_train_conf.name)
#Instantiate the optimizer (in this example it's tf.keras.optimizers.Adam):
learning_rate = CustomSchedule(_train_conf.d_model, min_lr = min_lr)
optimizer = tf.keras.optimizers.Adam(learning_rate, beta_1=0.9, beta_2=0.98, epsilon=1e-9)
perplexity = keras_nlp.metrics.Perplexity(from_logits=True, mask_token_id=0)
transformer.compile(
loss=masked_loss,
optimizer=optimizer,
metrics=[masked_accuracy, perplexity])
return transformer, optimizer