-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
361 lines (294 loc) · 13 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
#!/usr/bin/python2.6
from scipy import ndimage
from numpy import linalg
from PIL import Image, ImageDraw
import numpy as np
import os
import re
import time
SIGMA_E = 0.01 # allowance of acceleration
SIGMA_V = 0.01 # allowance of acceleration
LAMBDA = 2.0
ALPHA = 0.0331 # ~ 3 * SIGMA_V according to section 3.4
#
# Helpers
#
def bounding_box(vertices, (height, width), extend=5):
"""Returns the bounding box of ``vertices`` plus some boundary ``extend``.
Returned bounding box has format (x_min, x_max, y_min, y_max)
"""
x_min = min(x for x, y in vertices) - extend
x_max = max(x for x, y in vertices) + extend
y_min = min(y for x, y in vertices) - extend
y_max = max(y for x, y in vertices) + extend
return max(x_min, 0), min(x_max, width), max(y_min, 0), min(y_max, height)
def frame_string(path):
"""Extracts a frame string like '004' from a path like 'Forest_Gump/004.png'."""
filename = os.path.split(path)[1]
return os.path.splitext(filename)[0]
def index_iterator((x_min, x_max, y_min, y_max)):
"""Yieds indices within a given range. Makes it easy to iterate over subsections of
a matrix."""
for row in xrange(y_min, y_max):
for col in xrange(x_min, x_max):
yield (row, col)
def load_d(prefix):
"""Loads optical flow displacement from csv. Returns a height x width x 2 matrix.
prefix - the common prefix of the x and y optical flow files
"""
vel_x = np.genfromtxt(file('%s_x.csv' % prefix), delimiter=',')
vel_y = np.genfromtxt(file('%s_y.csv' % prefix), delimiter=',')
# make a 3d height x width x 2 matrix to hold the vectors
vel = np.zeros(list(vel_x.shape) + [2])
vel[:, :, 0] = vel_y # note, this y here is correct--and it's important it be this order
vel[:, :, 1] = vel_x
return vel
def parse_rig_vertices(f):
"""Given the file ``f``, parses the vertices of the rig for each frame out of it."""
vertices_list = []
for line in f:
vertices = line.split()
point = [tuple(map(int, str_point.split(','))) for str_point in vertices]
vertices_list.append(point)
return vertices_list
def rig_matte((height, width), vectors, dtype=np.float_):
"""Returns a matte with a polygonal hole punched out.
height, width - dimensions of the output matrix
vectors - a list of (x, y) tuple vectors that specify the vertices of a polygonal rig region
dtype - the type of matrix to return
"""
img = Image.new('L', (width, height), 1)
ImageDraw.Draw(img).polygon(vectors, outline=0, fill=0)
return np.array(img, dtype=dtype)
def save_image(filename, matrix):
"""Saves ``matrix`` to a black and white image named ``filename``."""
im = Image.new('L', list(reversed(matrix.shape)))
data = np.floor(np.ravel(matrix) * 256)
im.putdata(data)
im.save(filename)
def vector_weighted_average(vf, weights):
"""Returns the average vector of vector field ``vf`` weighted by ``weights``."""
weights_sum = weights.sum()
y_average = (vf[:,:,0] * weights).sum() / weights_sum
x_average = (vf[:,:,1] * weights).sum() / weights_sum
return np.array([y_average, x_average])
#
# Interpolation for Candidate Motion Vectors
#
def spatial_interpolation_vector(d, rig_vertices):
"""Returns the vector for all the spatially interpolated candidates. (section 4.2)
Note that this uses the second, more simple, method of assuming everything behind the rig
moves with one motion.
d - a displacement matrix
rig_vertices - the vertices of an area to not include in interpolation
"""
shape = d.shape[:2]
x_min, x_max, y_min, y_max = bounding_box(rig_vertices, shape)
matte = rig_matte(shape, rig_vertices)
return vector_weighted_average(d[y_min:y_max, x_min:x_max],
matte[y_min:y_max, x_min:x_max])
def temporal_interpolation_vectors(d_prev, candidates, bounds):
"""Interpolates motion candidates from previous frames. (section 4.3)
d_prev - d_n-1,n-2 from the paper. Motion from frame n-1 to n-2.
candidates - a matrix of lists--interpolated candidates will be added to the appropriate location
bounds - a bounding box surrounding the rig area
"""
assert d_prev.shape[:2] == candidates.shape
rows, cols = candidates.shape
for index in index_iterator(bounds):
c_row, c_col = np.array(index) - d_prev[index]
if 0 <= c_row < rows and 0 <= c_col < cols:
candidates[c_row, c_col].append(d_prev[index])
#
# Motion energy components
#
def E_l(x_r, x_r_prime, w_n, w_n_1, I_n, I_n_1):
"""E_l - Image data likelihood (equation 9)
x_r
a rig site
x_r_prime
rig site in next frame based off candidate interpolation
w_n
continuous matrix. 1 indicates data available, 0 indicates data missing.
in the rig area w(x_r) = 0, i.e. this is the "not-rig" matrix
w_n_1: w_n-1
continuous matrix. 1 indicates data available, 0 indicates data missing.
in the rig area w(x_r) = 0, i.e. this is the "not-rig" matrix
I_n
frame at n
I_n_1: I_n-1
frame at n-1
"""
temp = (1. / (2. * SIGMA_E ** 2.)) * \
w_n[x_r] * \
w_n_1[x_r_prime] * \
((I_n[x_r] - I_n_1[x_r_prime]) ** 2.)
return temp
def E_0_t(x_r, x_r_prime, w_n_1, candidate, d_prev):
"""E_0_t - Temporal smoothness (equation 9)
x_r:
a rig site
x_r_prime
rig site in next frame based off candidate interpolation
w_n_1: w_n-1
continuous matrix. 1 indicates data available, 0 indicates data missing.
in the rig area w(x_r) = 0, i.e. this is the "not-rig" matrix
candidate: d^h_n,n-1
vector estimating the motion of the hidden area
d_prev: d_n-1,n-2
vector matrix with the motion mapping from frame n-1 to frame n-2
"""
temp = (1. / SIGMA_V ** 2.) * \
w_n_1[x_r_prime] * \
linalg.norm(candidate - d_prev[x_r_prime]) ** 2.
return temp
def neighborhood((y, x), (height, width)):
"""Returns coordinates in the neighborhood of (y, x) omitting coordinates that go outside
the bounds of (height, width)."""
return [(yt, xt) for xt in [x + 1, x, x - 1]
for yt in [y + 1, y, y - 1]
if 0 <= xt < width and 0 <= yt < height
and (xt, yt) != (x, y)]
def lambda_(s, x_r):
"""Weights against points farther away from x_r. As defined in section 3 of the paper."""
return LAMBDA / linalg.norm(np.array(s) - np.array(x_r))
def E_s(x_r, candidate, d_h):
"""E_s - Spatial motion smoothness (equation 9)"""
temp = sum(lambda_(s, x_r) * linalg.norm(candidate - d_h[s]) ** 2.
for s in neighborhood(x_r, d_h.shape[:2]))
return temp
def E_0_o(x_r, occlusion):
"""E_0_o - Spatial occlusion smoothness (equation 9)"""
temp = sum(lambda_(s, x_r) * abs(occlusion[s]) ** 2.
for s in neighborhood(x_r, occlusion.shape[:2]))
return temp
def E_1_o(x_r, occlusion):
"""E_1_o - Spatial occlusion smoothness (equation 9)"""
temp = sum(lambda_(s, x_r) * abs(1. - occlusion[s]) ** 2.
for s in neighborhood(x_r, occlusion.shape[:2]))
return temp
#
# Main
#
def reconstruct_frame(displacement, d_prev, vertices, w_n, w_n_1, I_n, I_n_1):
"""Reconstructs the given frame I_n, returning the new version along with updated weights.
displacement - d_n,n-1, optical flow for the non rig areas of the current frame
d_prev - d_n-1,n-2, optical flow mapping from the previous frame to the frame before that.
Used for interpolation.
vertices - vertices of the polygon outlining the rig region
w_n - the weights for the current frame
w_n_1 - w_n-1, the weights for the previous frame
I_n - image intensity for the current frame
I_n_1 - I_n-1, image intensity for the previous frame
"""
shape = I_n.shape
bounds = bounding_box(vertices, shape)
# calculate spatial interpolation vector (section 4.2)
siv = spatial_interpolation_vector(displacement, vertices)
# initialize the candidates for the motion with the spatial interpolation
candidates = np.empty(shape, dtype=object)
for index, y in np.ndenumerate(candidates):
candidates[index] = [siv]
# find temporal interpolation candidates (section 4.3)
temporal_interpolation_vectors(d_prev, candidates, bounds)
# add adjacent neighbors as candidates if they've been assigned
for x_r in index_iterator(bounds):
if w_n[x_r] == 1:
candidate = displacement[x_r]
for s in neighborhood(x_r, shape):
if w_n[s] < 1:
candidates[s].append(candidate)
# candidate evaluation (section 4.4)
# these are the initial candidates for occlusion and the hidden displacement
occluded = np.logical_not(rig_matte(shape, vertices, dtype=bool))
perturb = np.random.randn(*d_prev.shape) / 6.
d_h = np.where(np.dstack((occluded, occluded)),
np.tile(siv, list(shape) + [1]) + perturb,
displacement)
# the updated occlusion and displacement values will be placed in these
new_occluded = occluded.copy()
new_d_h = d_h.copy()
is_rig = occluded.copy()
for x_r in index_iterator(bounds):
if is_rig[x_r]:
minimum_energy = float('inf')
best_candidate = None # the candidate associated with the minimum energy
best_is_occluded = None
# find the candidate that minimizes the local energy
for candidate in candidates[x_r]:
# the motion compensated site x_r' = x_r + d^h_n,n-1(x_r)
x_r_prime = tuple((np.array(x_r) + candidate).round())
el = E_l(x_r, x_r_prime, w_n, w_n_1, I_n, I_n_1)
e0t = E_0_t(x_r, x_r_prime, w_n_1, candidate, d_prev)
e1t = ALPHA
es = E_s(x_r, candidate, d_h)
e0o = E_0_o(x_r, occluded)
e1o = E_1_o(x_r, occluded)
e0 = el + e0t + es + e0o
e1 = el + e1t + es + e1o
# energy components determine whether the new displacement is occluded or not
if e0 < minimum_energy:
minimum_energy = e0
best_candidate = candidate
best_is_occluded = False
if e1 < minimum_energy:
minimum_energy = e1
best_candidate = candidate
best_is_occluded = True
if best_candidate is not None:
new_d_h[x_r] = best_candidate
new_occluded[x_r] = best_is_occluded
print 'occluded changed:', (occluded != new_occluded).sum()
print 'd_h changed:', (d_h != new_d_h).sum()
occluded = new_occluded
d_h = new_d_h
# construct the new intensities and weights based upon the computed motion vectors
# using linear interpolation
I_h = I_n.copy()
for x_r in index_iterator(bounds):
if is_rig[x_r]:
x_r_prime = tuple((np.array(x_r) + d_h[x_r]).round())
I_h[x_r] = (w_n[x_r] * I_n[x_r] + w_n_1[x_r_prime] * I_n_1[x_r_prime]) / (w_n[x_r] + w_n_1[x_r_prime])
w_h = w_n.copy()
for x_r in index_iterator(bounds):
if is_rig[x_r]:
x_r_prime = tuple((np.array(x_r) + d_h[x_r]).round())
w_h[x_r] = (w_n[x_r] + w_n_1[x_r_prime]) / 2.
return I_h, w_h
if __name__ == '__main__':
# This is the main function driving everything.
# load the images
print 'loading images'
load = lambda fname: ndimage.imread(fname, flatten=True) / 255.
image_dir = 'Forest_Gump'
files = [os.path.join(image_dir, f) for f in os.listdir(image_dir) if f.endswith('.png')]
images = [load(f) for f in files]
shape = images[0].shape
# load the rig vertices
print 'loading vertices'
vertices_list = parse_rig_vertices(file('rig_data.txt'))
weights = [rig_matte(shape, v) for v in vertices_list]
# load the displacements
print 'loading displacements'
displacement_dir = 'displacement'
displacement_names = set(re.findall(r'\d{3}_\d{3}', f)[0]
for f in os.listdir(displacement_dir) if f.endswith('.csv'))
displacements = [load_d(os.path.join(displacement_dir, dn))
for dn in sorted(displacement_names)]
# loop over the images progressively reconstructing them
print 'reconstructing frames'
for i in xrange(len(images)-2):
print '\nreconstructing frame', i
# reconstruct the frame
im, w_h = reconstruct_frame(
displacements[i+1],
displacements[i],
vertices_list[i+2],
weights[i+2],
weights[i+1],
images[i+2],
images[i+1])
# save out an image and update the stored image intensities and weights
save_image('out/%03d.png' % (i + 2), im)
images[i+2] = im
weights[i+2] = w_h