-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain.py
271 lines (208 loc) · 8.66 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import os
import sys
import time
import numpy as np
import random
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import src
from dataset.urmp.urmp_sample import UrmpSample
from models.model_factory import ModelFactory
from utils.utilities import (compute_time, save_score, mkdir)
from utils.multiEpochsDataLoader import MultiEpochsDataLoader as DataLoader
from conf.sample import *
from conf.feature import *
def seed_torch(seed=1234):
os.environ['PYTHONHASHSEED'] = str(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def mae(input, target):
return torch.mean(torch.abs(input - target))
def align(a, b, dim):
return a.transpose(0, dim)[:b.shape[dim]].transpose(0, dim)
def onehot(x, dim, classes_num):
x = x.unsqueeze(dim)
shape = list(x.shape)
shape[dim] = classes_num
y = torch.zeros(shape).to(x.device).scatter_(dim, x, 1)
return y
def move_data2cuda(urmp_batch):
mix, another_mix, batch = urmp_batch
separated, query, another_query, pitch_target, another_pitch_target = batch
batch = [separated, query, another_query, pitch_target, another_pitch_target]
for i, b in enumerate(batch):
batch[i] = b.cuda()
mix = mix.cuda()
another_mix = another_mix.cuda()
return mix, another_mix, batch
def train_step(network, urmp_batch, mode, adv_id=0):
mix, another_mix, batch = urmp_batch
separated, query, another_query, pitch_target, another_pitch_target = batch
a = 1./ 8.
if mode == 'query':
#contrastive loss
latent_vectors = []
hQuery = []
for i in range(query.shape[1]):
query_spec = network(query[:, i], 'wav2spec')
another_query_spec = network(another_query[:, i], 'wav2spec')
h = network(query_spec, 'query')
hc = network(another_query_spec, 'query')
latent_vectors.append([h, hc])
sim = 0.
sep_num = query.shape[1]
batch_size = query.shape[0]
for i in range(sep_num):
next_i = (i + 1) % sep_num
sim += torch.mean((latent_vectors[i][0] - latent_vectors[i][1])**2, dim=-1) + \
torch.relu(a - torch.mean((latent_vectors[i][0] - latent_vectors[next_i][1])**2, dim=-1))
sim_loss = sim.mean() / sep_num
return sim_loss, f'{sim_loss.item()}'
elif mode == 'AMT':
# transcription loss for AMT-only baseline
pitch_transcription = []
mix_spec = network(mix, 'wav2spec')
for i in range(separated.shape[1]):
query_spec = network(query[:, i], 'wav2spec')
hQuery = network(query_spec, "query")
args = (mix_spec, hQuery)
prob = network(args, 'transcribe')
pitch_transcription.append(prob)
transcription = torch.stack(pitch_transcription, 2)
pitch_loss = nn.CrossEntropyLoss()(transcription, align(pitch_target, transcription, -1))
return pitch_loss, f'{pitch_loss.item()}'
elif mode == 'MSS':
# separation loss for MSS-only baseline
spec_losses = []
mix_spec = network(mix, 'wav2spec')
for i in range(separated.shape[1]):
query_spec = network(query[:, i], 'wav2spec')
hQuery = network(query_spec, "query")
source_spec = network(separated[:, i], 'wav2spec')
args = (mix_spec, hQuery)
est_spec = network(args, 'separate')
spec_loss = torch.abs(est_spec - align(source_spec, est_spec, -2))
spec_losses.append(spec_loss)
spec_loss = torch.stack(spec_losses, 1)
spec_loss = spec_loss.mean()
return spec_loss, f'{spec_loss.item()}'
elif mode == 'MSS-AMT':
# separation and transcription loss for muli-task baseline and multi-task score-informed (MSI) model
spec_losses = []
pitch_transcription = []
mix_spec = network(mix, 'wav2spec')
for i in range(separated.shape[1]):
source_spec = network(separated[:, i], 'wav2spec')
query_spec = network(query[:, i], 'wav2spec')
hQuery = network(query_spec, "query")
args = (mix_spec, hQuery)
est_spec, prob = network(args, 'multiTask')
pitch_transcription.append(prob)
spec_loss = torch.abs(est_spec - align(source_spec, est_spec, -2))
spec_losses.append(spec_loss)
transcription = torch.stack(pitch_transcription, 2)
pitch_loss = nn.CrossEntropyLoss()(transcription, align(pitch_target, transcription, -1))
spec_loss = torch.stack(spec_losses, 1)
spec_loss = spec_loss.mean()
return spec_loss + pitch_loss, f'{spec_loss.item()} {pitch_loss.item()}'
elif mode == 'MSI-DIS':
# transcription loss and pitch-translation invariance loss for MSI-DIS model
spec_losses = []
another_mix_spec = network(another_mix, 'wav2spec')
mix_spec = network(mix, 'wav2spec')
target = onehot(pitch_target, 1, NOTES_NUM)
another_target = onehot(another_pitch_target, 1, NOTES_NUM)
pitch_transcription = []
another_pitch_transcription = []
for i in range(separated.shape[1]):
source_spec = network(separated[:, i], 'wav2spec')
query_spec = network(query[:, i], 'wav2spec')
hQuery = network(query_spec, "query")
args = (mix_spec, another_mix_spec, hQuery)
est_spec, target_prob = network(args, 'transfer')
pitch_transcription.append(target_prob)
spec_loss = torch.abs(est_spec - align(source_spec, est_spec, -2))
spec_losses.append(spec_loss)
spec_loss = torch.stack(spec_losses, 1)
spec_loss = spec_loss.mean()
transcription = torch.stack(pitch_transcription, 2)
pitch_loss = nn.CrossEntropyLoss()(transcription, align(pitch_target, transcription, -1))
return spec_loss + pitch_loss, f'{spec_loss.item()} {pitch_loss.item()}'
def train(model_name, load_epoch, epoch, model_folder):
nnet = ModelFactory(model_name)
nnet = nnet.cuda()
learning_rate=LEARNING_RATE
mkdir(model_folder)
if load_epoch >=0:
model_path = f'{model_folder}/params_epoch-{load_epoch}.pkl'
nnet.load_state_dict(torch.load(model_path), strict=True)
resume_epoch = load_epoch + 1
urmp_data = UrmpSample()
urmp_loader = DataLoader(urmp_data,
batch_size=TRAINING_BATCH_SIZE, shuffle=False, num_workers=1, pin_memory=True, persistent_workers=False,
collate_fn=urmp_data.get_collate_fn())
def get_parameters(nnet, model_name):
parameters = {}
parameters['query'] = list(nnet.network.parameters())
if model_name in ['MSI']:
parameters['MSS-AMT'] = list(nnet.network.parameters())
if model_name in ['UNET']:
parameters['MSS'] = list(nnet.network.parameters())
if model_name in ['MSI-DIS', 'AMT', 'MSS', 'MSS-AMT']:
parameters[model_name] = list(nnet.network.parameters())
return parameters
def get_optimizer(r_epoch, parameters):
optimizers = []
for param in parameters:
optimizer = torch.optim.Adam(parameters[param], lr=learning_rate / (2**(r_epoch // DECAY)), \
betas=(0.9, 0.999), eps=1e-08, weight_decay=0., amsgrad=True)
optimizers.append({'mode' : param, 'opt': optimizer, 'name' : param})
return optimizers
parameters = get_parameters(nnet, model_name)
optimizer = get_optimizer(resume_epoch, parameters)
step_per_epoch = urmp_data.get_len() // TRAINING_BATCH_SIZE
pre_time = time.time()
pre_time = compute_time(f'begin train...', pre_time)
nnet.train()
pre_time = compute_time(f'train done', pre_time)
for i in range(resume_epoch, epoch):
if i % DECAY == 0:
pre_time = compute_time(f'begin update op...', pre_time)
optimizer = get_optimizer(resume_epoch, parameters)
print('learning rate', learning_rate / (2**(i // DECAY)))
for i_batch, urmp_batch in enumerate(urmp_loader):
urmp_batch = move_data2cuda(urmp_batch)
for j in range(len(optimizer)):
op = optimizer[j]['opt']
name = optimizer[j]['name']
op.zero_grad()
loss, loss_text = train_step(nnet, urmp_batch, optimizer[j]['mode'])
loss.backward()
op.step()
print(f"update {optimizer[j]['mode']} network epoch {i} loss: {i_batch}/{step_per_epoch}", loss_text)
del loss
torch.save(nnet.state_dict(), f"{model_folder}/params_epoch-{i}.pkl")
if __name__ == "__main__":
seed_torch(1234)
parser = argparse.ArgumentParser(description='')
parser.add_argument('--model_name', type=str, required=True, help='Model name in [`AMT` for trainscription-only baseline, \
`MSS` for separation-only baseline, \
`MSS-AMT` for multi-task baseline, \
`MSI` for the proposed multi-task score-informed model, \
`MSI-DIS` for the proposed multi-task score-informed with further disentanglement model].')
parser.add_argument('--resume_epoch', type=int, default=-1, help='Epoch to resume training.')
parser.add_argument('--model_folder', type=str, required=True, help='Directory to store model weights.')
parser.add_argument('--epoch', type=int, default=200, help='Number of total training epochs.')
args = parser.parse_args()
assert args.model_name in ["AMT", "MSS", "MSS-AMT", "MSI", "MSI-DIS"]
train(model_name=args.model_name,
load_epoch=args.resume_epoch,
epoch=args.epoch,
model_folder=args.model_folder)