-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgate_functional.py
174 lines (157 loc) · 4.83 KB
/
gate_functional.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# -*- coding: utf-8 -*-
"""
Created on Mon May 25 12:40:15 2020
@author: XZ-WAVE
"""
import numpy as np
import scipy as sp
def pauli_x(q):
'''
Pauli-X gate (Quantum version of the classical "NOT" gate)
q: list or np.array -> single qubit
'''
gate = np.array([0,1,1,0])
gate = gate.reshape(2,2)
new_state = np.matmul(gate,q)
return new_state
def pauli_y(q):
'''
Pauli-Y gate
q: list or np.array -> single qubit
'''
gate = np.array([0,complex(0,-1),complex(0,1),0])
gate = gate.reshape(2,2)
new_state = np.matmul(gate,q)
return new_state
def pauli_z(q):
'''
Pauli-Z gate
q: list or np.array -> single qubit
'''
gate = np.array([1,0,0,-1])
gate = gate.reshape(2,2)
new_state = np.matmul(gate,q)
return new_state
def root_not(q):
'''
Square root of the "NOT" gate
q: list or np.array -> single qubit
'''
gate = (0.5)*np.array([(1+complex(0,1)),
1-complex(0,1),
1-complex(0,1),
1+complex(0,1)])
gate = gate.reshape(2,2)
new_state = np.matmul(gate,q)
return new_state
def phase_gate(q,angle):
'''
phase gate
angle: float between 0 and 2*pi, representing the phase of the qubit (in radians)
q: list or np.array -> single qubit
'''
gate = np.array([1,0,0,np.exp(complex(0,angle))])
gate = gate.reshape(2,2)
new_state = np.matmul(gate,q)
return new_state
def Hadamard(q,num_qubits):
'''
Hadamard matrix
q: list or np.array -> constructs a hadamard matrix based on the number of qubits, and acts on the qubit system
eventually want this function to create the matrix based on q alone
num_qubits: int
'''
factor = (1/np.sqrt(2))**num_qubits
gate = factor*sp.linalg.hadamard(n=2**num_qubits)
try:
new_state = np.matmul(gate,q)
return new_state
except:
print('error, the qubit size and matrix dim do not match')
def CNOT(q):
'''
CNOT gate
q: list or np.array -> two qubits
'''
gate = np.array([1,0,0,0,
0,1,0,0,
0,0,0,1,
0,0,1,0])
gate = gate.reshape(4,4)
new_state = np.matmul(gate,q)
return new_state
def SWAP(q):
'''
SWAP gate
q: list or np.array -> two qubits
'''
gate = np.array([1,0,0,0,
0,0,1,0,
0,1,0,0,
0,0,0,1])
gate = gate.reshape(4,4)
new_state = np.matmul(gate,q)
return new_state
def root_SWAP(q):
'''
Square root of the SWAP gate
q: list or np.array -> two qubits
'''
gate = np.array([1,0,0,0,
0,complex(0.5,0.5),complex(0.5,-0.5),0,
0,complex(0.5,-0.5),complex(0.5,0.5),0,
0,0,0,1])
gate = gate.reshape(4,4)
new_state = np.matmul(gate,q)
return new_state
def control_z(q):
'''
control-Z gate
q: list or np.array -> two qubits
'''
gate = np.array([1,0,0,0,
0,0,1,0,
0,1,0,0,
0,0,0,-1])
gate = gate.reshape(4,4)
new_state = np.matmul(gate,q)
return new_state
def ising_xx(q,angle=np.pi):
'''
Ising-XX gate
q: list or np.array -> two qubits
angle: float between 0 and 2*pi
'''
gate = np.array([np.cos(angle),0,0,complex(0,-1)*np.sin(angle),
0,np.cos(angle),complex(0,-1)*np.sin(angle),0,
0,complex(0,-1)*np.sin(angle),np.cos(angle),0,
complex(0,-1)*np.sin(angle),0,0,np.cos(angle)])
gate = gate.reshape(4,4)
new_state = np.matmul(gate,q)
return new_state
def ising_yy(q,angle=np.pi):
'''
Ising-YY gate
q: list or np.array -> two qubits
angle: float between 0 and 2*pi
'''
gate = np.array([np.cos(angle),0,0,complex(0,1)*np.sin(angle),
0,np.cos(angle),complex(0,-1)*np.sin(angle),0,
0,complex(0,-1)*np.sin(angle),np.cos(angle),0,
complex(0,1)*np.sin(angle),0,0,np.cos(angle)])
gate = gate.reshape(4,4)
new_state = np.matmul(gate,q)
return new_state
def ising_zz(q,angle=np.pi):
'''
Ising-ZZ gate
q: list or np.array -> two qubits
angle: float between 0 and 2*pi
'''
gate = np.array([np.exp(complex(0,angle/2)),0,0,0,
0,np.exp(complex(0,-angle/2)),0,0,
0,0,np.exp(complex(0,-angle/2)),0,
0,0,0,np.exp(complex(0,angle/2))])
gate = gate.reshape(4,4)
new_state = np.matmul(gate,q)
return new_state