-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevolve_quantum_circuit.py
31 lines (24 loc) · 1.21 KB
/
evolve_quantum_circuit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# -*- coding: utf-8 -*-
"""
Created on Wed May 20 12:27:03 2020
@author: XZ-WAVE
"""
import argparse
import numpy as np
from genetic_quantum_programming import *
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Evolutionary Quantum Circuits')
parser.add_argument('--num_generations',type=int,default=100,help='number of generations')
parser.add_argument('--num_chromosomes',type=int,default=50,help='number of chrosomes')
parser.add_argument('--num_qubits',type=int,default=3,help='number of qubits to evolve')
parser.add_argument('--elite_frac',type=float,default=0.1,help='elite fraction')
args = parser.parse_args()
q_in = np.random.choice(a=[0,1],size=2**args.num_qubits)
q_out = np.random.choice(a=[0,1],size=2**args.num_qubits)
fitness=evolve_quantum_gates(q_in=q_in,
q_out=q_out,
num_qubits=args.num_qubits,num_chroms=args.num_chromosomes,
num_generations=args.num_generations,
elite_frac=args.elite_frac,
plot=False) #keep plot set to False
print('best fitness:{}'.format(fitness[-1]))