-
-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtest_baseline.py
242 lines (200 loc) · 10.8 KB
/
test_baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
######################################
# Kaihua Tang
######################################
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import utils.general_utils as utils
from data.dataloader import get_loader
INVALID_ATTRIBUTE_DATASET = ('MSCOCO-LT', 'MSCOCO-BL')
class acc_by_splits():
def __init__(self, logger, stype):
self.logger = logger
self.stype = stype
def print_score(self, predictions, labels, num_class, split, csv_results=None, premask=False):
split_set = sorted(list(set(split.tolist())))
self.logger.info('------------- Detailed Splits by {} -----------'.format(self.stype))
output_log = 'Recall/AC ==> '
for s in split_set:
s_mask = (split==s)
if premask:
s_acc = utils.calculate_recall(predictions[s_mask].view(-1), labels[s_mask].view(-1))
else:
s_acc = utils.calculate_recall(predictions.view(-1), labels.view(-1), split_mask=s_mask)
output_log = output_log + '{}_{} Acc : {:7.4f} / {:5d}, '.format(self.stype, str(s), s_acc, s_mask.sum().item())
if csv_results is not None:
csv_results['recall'].append('{:.4f}'.format(s_acc))
self.logger.info(output_log)
output_log = 'Precision ==> '
for s in split_set:
s_mask = (split==s)
if premask:
s_prc = utils.calculate_precision(predictions[s_mask].view(-1), labels[s_mask].view(-1), num_class)
else:
s_prc = utils.calculate_precision(predictions.view(-1), labels.view(-1), num_class, split_mask=s_mask)
output_log = output_log + '{}_{} Prc : {:7.4f} / {:5d}, '.format(self.stype, str(s), s_prc, s_mask.sum().item())
if csv_results is not None:
csv_results['precision'].append('{:.4f}'.format(s_prc))
self.logger.info(output_log)
class test_baseline():
def __init__(self, config, logger, model, classifier, val=False, specify_testset=None, add_ckpt=None):
self.config = config
self.logger = logger
self.model = model
self.classifier = classifier
self.add_ckpt = add_ckpt
self.save_all = self.config['saving_opt']['save_all']
# get dataloader
if val:
self.phase = 'val'
self.loader = get_loader(config, 'val', config['dataset']['testset'], logger)
elif specify_testset is not None:
self.phase = 'test'
self.loader = get_loader(config, 'test', specify_testset, logger)
else:
self.phase = 'test'
self.loader = get_loader(config, 'test', config['dataset']['testset'], logger)
def run_test(self):
currect_split = self.config['dataset']['testset']
self.logger.info('------------- Start Testing at Split: {} -----------'.format(currect_split))
if currect_split in ('test_bl', 'test_bbl'):
frq_accs = acc_by_splits(self.logger, 'frequency')
if currect_split in ('test_bbl'):
if self.config['dataset']['name'] not in INVALID_ATTRIBUTE_DATASET:
att_accs = acc_by_splits(self.logger, 'attribute')
# set model to evaluation
self.model.eval()
self.classifier.eval()
# run batch
with torch.no_grad():
all_preds = []
all_labs = []
all_frqs = []
all_atts = []
save_features = []
save_preds = []
save_labs = []
save_frqs = []
save_atts = []
save_inds = []
for _, (inputs, labels, freq_labels, attributes, indexes) in enumerate(self.loader):
# additional inputs
inputs, labels, freq_labels, attributes = inputs.cuda(), labels.cuda(), freq_labels.cuda(), attributes.cuda()
add_inputs = {}
features = self.model(inputs)
predictions = self.classifier(features, add_inputs)
if isinstance(predictions, tuple):
predictions = predictions[0]
all_preds.append(predictions)
all_labs.append(labels)
all_frqs.append(freq_labels)
all_atts.append(attributes)
# save output
if self.save_all:
save_features.append(features.detach().clone().cpu())
save_preds.append(predictions.detach().clone().cpu())
save_labs.append(labels.detach().clone().cpu())
save_frqs.append(freq_labels.detach().clone().cpu())
save_atts.append(attributes.detach().clone().cpu())
save_inds.append(indexes.detach().clone().cpu())
# save output
if self.save_all:
self.logger.info('============ Start Saving Test Outputs ===============')
save_outputs = {'save_features': torch.cat(save_features, dim=0),
'save_preds' : torch.cat(save_preds, dim=0),
'save_labs' : torch.cat(save_labs, dim=0),
'save_frqs' : torch.cat(save_frqs, dim=0),
'save_atts' : torch.cat(save_atts, dim=0),
'save_inds' : torch.cat(save_inds, dim=0), }
model_path = os.path.join(self.config['output_dir'], 'save_outputs_{}.pth'.format(self.config['dataset']['testset']))
torch.save(save_outputs, model_path)
self.logger.info('============ Test Outputs Saved to {} ==============='.format(model_path))
all_preds = torch.cat(all_preds, dim=0)
num_class = all_preds.shape[-1]
all_preds = all_preds.max(-1)[1].view(-1)
all_labs = torch.cat(all_labs, dim=0).view(-1)
all_frqs = torch.cat(all_frqs, dim=0).view(-1)
all_atts = torch.cat(all_atts, dim=0).view(-1)
csv_results = {'recall': [currect_split, 'recall'],
'precision': [currect_split, 'precision'],
'f1': [currect_split, 'f1']}
# frequency splits by intra-class attributes
if currect_split in ('test_bl', 'test_bbl'):
frq_accs.print_score(all_preds, all_labs, num_class, split=all_frqs, csv_results=csv_results)
if currect_split in ('test_bbl'):
if self.config['dataset']['name'] not in INVALID_ATTRIBUTE_DATASET:
att_accs.print_score(all_preds, all_labs, num_class, split=all_atts, csv_results=csv_results, premask=True)
# overall performance
total_num = all_preds.shape[0]
# calculate recall
recall_score = utils.calculate_recall(all_preds, all_labs)
self.logger.info('Test Complete ==> Overall Recall/AC : {:9.4f}, Number Samples : {:9d}'.format(recall_score, total_num))
csv_results['recall'].append('{:.4f}'.format(recall_score))
# calculate precision
precision_score = utils.calculate_precision(all_preds, all_labs, num_class)
self.logger.info('Test Complete ==> Overall Precision : {:9.4f}, Number Samples : {:9d}'.format(precision_score, total_num))
csv_results['precision'].append('{:.4f}'.format(precision_score))
# F1 score
F1_score = utils.calculate_f1(recall_score, precision_score)
self.logger.info('Test Complete ==> Overall F1 Score : {:9.4f}, Number Samples : {:9d}'.format(F1_score, total_num))
csv_results['f1'].append('{:.4f}'.format(F1_score))
# save csv results
self.logger.write_results(csv_results['recall'])
self.logger.write_results(csv_results['precision'])
self.logger.write_results(csv_results['f1'])
# set back to training mode again
self.model.train()
self.classifier.train()
return recall_score
def run_val(self, epoch):
self.logger.info('------------- Start Validation at Epoch {} -----------'.format(epoch))
frq_accs = acc_by_splits(self.logger, 'frequency')
if self.config['dataset']['name'] not in INVALID_ATTRIBUTE_DATASET:
att_accs = acc_by_splits(self.logger, 'attribute')
# set model to evaluation
self.model.eval()
self.classifier.eval()
# run batch
with torch.no_grad():
all_preds = []
all_labs = []
all_frqs = []
all_atts = []
for _, (inputs, labels, freq_labels, attributes, indexes) in enumerate(self.loader):
# additional inputs
inputs, labels, freq_labels, attributes = inputs.cuda(), labels.cuda(), freq_labels.cuda(), attributes.cuda()
add_inputs = {}
features = self.model(inputs)
predictions = self.classifier(features, add_inputs)
if isinstance(predictions, tuple):
predictions = predictions[0]
all_preds.append(predictions)
all_labs.append(labels)
all_frqs.append(freq_labels)
all_atts.append(attributes)
all_preds = torch.cat(all_preds, dim=0)
num_class = all_preds.shape[-1]
all_preds = all_preds.max(-1)[1].view(-1)
all_labs = torch.cat(all_labs, dim=0).view(-1)
all_frqs = torch.cat(all_frqs, dim=0).view(-1)
all_atts = torch.cat(all_atts, dim=0).view(-1)
# overall performance
total_num = all_preds.shape[0]
# calculate recall
recall_score = utils.calculate_recall(all_preds, all_labs)
self.logger.info('Test Complete ==> Overall Recall/AC : {:9.4f}, Number Samples : {:9d}'.format(recall_score, total_num))
# calculate precision
precision_score = utils.calculate_precision(all_preds, all_labs, num_class)
self.logger.info('Test Complete ==> Overall Precision : {:9.4f}, Number Samples : {:9d}'.format(precision_score, total_num))
# F1 score
F1_score = utils.calculate_f1(recall_score, precision_score)
self.logger.info('Test Complete ==> Overall F1 Score : {:9.4f}, Number Samples : {:9d}'.format(F1_score, total_num))
# frequency splits by intra-class attributes
frq_accs.print_score(all_preds, all_labs, num_class, split=all_frqs)
if self.config['dataset']['name'] not in INVALID_ATTRIBUTE_DATASET:
att_accs.print_score(all_preds, all_labs, num_class, split=all_atts, premask=True)
# set back to training mode again
self.model.train()
self.classifier.train()
return recall_score