-
Notifications
You must be signed in to change notification settings - Fork 20
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
KITTI Dataset Full Frame Output Mismatch #18
Comments
是指从可视化结果上,无法达到这个网页的效果吗?https://kth-rpl.github.io/dufomap/ 【第二个部分是Full 07 Sequence】
这个所有帧数作为输入,大概我没记错应该有4000frames 其中我一年前做的时候 统计过 dynamic/static gt的比例,前者1%不到,所以这就是我还是遵循之前的工作(他们也在报告里提及了这点)的frame 范围进行的评估; |
使用的帧数为00序列的所有帧(4541),使用https://github.com/KTH-RPL/DynamicMap_Benchmark 中的extract_gtcloud生成真值,使用export_eval_pcd导出用于评估的点云文件(整个文件有点大,我这边都有点可视化不了了),最后的评估结果如下图所示。 我还试过使用141 frame(论文中提到的部分)、200 frame、500 frame 、 2000 frame的情况,大概是逐级递减的效果,其中500 frame仍然能保留较好的效果。我猜测可能是遇到了回环部分,导致了一些问题。 |
不需要可视化评估文件,只需要可视化 clean后的输出文件,如果太大的话 可以把voxel_output设为true,输出voxel后的clean map
我确实没运行过00,我运行的是05 07 full seq 我知道的是02回环有点问题,主要在z轴高度差距到了1-2m左右... (如果没记错的话) 但是整体的可视化clean map还是感觉够用的。 |
请问一下,这个开源的算法版本是online版本的吗,还是说是offline版本的 |
online, offline区别在于你怎么用,算法本身online offline均可,给的demo演示是offline的 |
您好!在尝试复现您在 GitHub 上提供的
dufomap
算法时,我遇到了一些问题,希望能够得到您的帮助和指导。具体来说,当我使用完整的 KITTI 数据集中的所有帧数作为输入时,算法的输出未能达到预期效果。尽管我在 GT 生成方法、被评价算法输出点云生成方法以及评估方法方面均参考了您在
DynamicMap_Benchmark
中提供的实现,但最终的结果并不理想,尤其是 DA 值极低。然而,令人困惑的是,当我只使用部分帧进行测试时,算法的输出较为符合论文中的结果。希望能通过您的帮助了解可能存在的问题,并获取一些调试或改进的建议。
感谢您的时间与帮助,期待您的回复。

I hope this message finds you well. I am currently working on reproducing the
dufomap
algorithm that you have provided on GitHub, and I have encountered some issues that I would greatly appreciate your assistance with.Specifically, when I use the full set of frames from the KITTI dataset as input, the algorithm's output does not meet the expected results. Despite using the same methods for generating the ground truth (GT), the point cloud generation method from the evaluated algorithm, and the evaluation methodology as described in the
DynamicMap_Benchmark
, the final results are not satisfactory, with particularly low DA values. However, when I test the algorithm with only a subset of the frames, the results are more in line with those presented in the paper.I would greatly appreciate any insights you might have regarding potential issues or suggestions for debugging or improving the implementation.
Thank you for your time and assistance. I look forward to hearing from you.
The text was updated successfully, but these errors were encountered: