diff --git a/notebooks/Quadrature.ipynb b/notebooks/Quadrature.ipynb index baa259e..ea59919 100644 --- a/notebooks/Quadrature.ipynb +++ b/notebooks/Quadrature.ipynb @@ -83,10 +83,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2022-03-21T10:44:22.273312Z", - "iopub.status.busy": "2022-03-21T10:44:21.898232Z", - "iopub.status.idle": "2022-03-21T10:44:36.719355Z", - "shell.execute_reply": "2022-03-21T10:44:36.718891Z" + "iopub.execute_input": "2022-04-06T18:58:20.378530Z", + "iopub.status.busy": "2022-04-06T18:58:19.863432Z", + "iopub.status.idle": "2022-04-06T18:58:37.594817Z", + "shell.execute_reply": "2022-04-06T18:58:37.594251Z" } }, "outputs": [ @@ -96,93 +96,93 @@ "\n", "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "\n", + "\n" ] }, "execution_count": 1, @@ -499,13 +499,13 @@ "\n", "Suppose $x_1, …,x_j$ are the roots where $q_n(x)$ changes sign, that is,\n", "$$\n", - "q_n(x) = c_j (x-x_j) + O((x-x_j)^2)\n", + "q_n(x) = c_k (x-x_k)^{2p+1} + O((x-x_k)^{2p+2})\n", "$$\n", - "for $c_j ≠ 0$. Then\n", + "for $c_k ≠ 0$ and $k = 1,…,j$ and $p ∈ ℤ$, as$x → x_k$. Then\n", "$$\n", "q_n(x) (x-x_1) ⋯(x-x_j)\n", "$$\n", - "does not change sign.\n", + "does not change signs: it behaves like $c_k (x-x_k)^{2p+2} + O(x-x_k)^{2p+3}$ as $x → x_k$.\n", "In other words:\n", "$$\n", "⟨q_n,(x-x_1) ⋯(x-x_j) ⟩ = \\int_a^b q_n(x) (x-x_1) ⋯(x-x_j) w(x) {\\rm d} x ≠ 0.\n", @@ -888,7 +888,7 @@ "file_extension": ".jl", "mimetype": "application/julia", "name": "julia", - "version": "1.7.1" + "version": "1.7.0" } }, "nbformat": 4, diff --git a/src/Quadrature.jmd b/src/Quadrature.jmd index 17c16c6..8b26c2a 100644 --- a/src/Quadrature.jmd +++ b/src/Quadrature.jmd @@ -151,13 +151,13 @@ first need to guarantee that the roots are distinct. Suppose $x_1, …,x_j$ are the roots where $q_n(x)$ changes sign, that is, $$ -q_n(x) = c_j (x-x_j) + O((x-x_j)^2) +q_n(x) = c_k (x-x_k)^{2p+1} + O((x-x_k)^{2p+2}) $$ -for $c_j ≠ 0$. Then +for $c_k ≠ 0$ and $k = 1,…,j$ and $p ∈ ℤ$, as$x → x_k$. Then $$ q_n(x) (x-x_1) ⋯(x-x_j) $$ -does not change sign. +does not change signs: it behaves like $c_k (x-x_k)^{2p+2} + O(x-x_k)^{2p+3}$ as $x → x_k$. In other words: $$ ⟨q_n,(x-x_1) ⋯(x-x_j) ⟩ = \int_a^b q_n(x) (x-x_1) ⋯(x-x_j) w(x) {\rm d} x ≠ 0.