forked from PaddlePaddle/PaddleVideo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathava_metric.py
92 lines (77 loc) · 3.15 KB
/
ava_metric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import numpy as np
import paddle
from collections import OrderedDict
from paddlevideo.utils import get_logger, load, log_batch, AverageMeter
from .registry import METRIC
from .base import BaseMetric
import time
from datetime import datetime
from .ava_utils import ava_evaluate_results
logger = get_logger("paddlevideo")
""" An example for metrics class.
MultiCropMetric for slowfast.
"""
@METRIC.register
class AVAMetric(BaseMetric):
def __init__(self,
data_size,
batch_size,
file_path,
exclude_file,
label_file,
custom_classes,
log_interval=1):
"""prepare for metrics
"""
super().__init__(data_size, batch_size, log_interval)
self.file_path = file_path
self.exclude_file = exclude_file
self.label_file = label_file
self.custom_classes = custom_classes
self.results = []
record_list = [
("loss", AverageMeter('loss', '7.5f')),
("recall@thr=0.5", AverageMeter("recall@thr=0.5", '.5f')),
("prec@thr=0.5", AverageMeter("prec@thr=0.5", '.5f')),
("recall@top3", AverageMeter("recall@top3", '.5f')),
("prec@top3", AverageMeter("prec@top3", '.5f')),
("recall@top5", AverageMeter("recall@top5", '.5f')),
("prec@top5", AverageMeter("prec@top5", '.5f')),
("[email protected]", AverageMeter("[email protected]", '.5f')),
("batch_time", AverageMeter('batch_cost', '.5f')),
("reader_time", AverageMeter('reader_cost', '.5f')),
]
self.record_list = OrderedDict(record_list)
self.tic = time.time()
def update(self, batch_id, data, outputs):
"""update metrics during each iter
"""
self.results.extend(outputs)
self.record_list['batch_time'].update(time.time() - self.tic)
tic = time.time()
ips = "ips: {:.5f} instance/sec.".format(
self.batch_size / self.record_list["batch_time"].val)
log_batch(self.record_list, batch_id, 0, 0, "test", ips)
def set_dataset_info(self, info, dataset_len):
self.info = info
self.dataset_len = dataset_len
def accumulate(self):
"""accumulate metrics when finished all iters.
"""
test_res = ava_evaluate_results(self.info, self.dataset_len,
self.results, None, self.label_file,
self.file_path, self.exclude_file)
for name, value in test_res.items():
self.record_list[name].update(value, self.batch_size)
return self.record_list