forked from PaddlePaddle/PaddleVideo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfeature.py
80 lines (71 loc) · 2.96 KB
/
feature.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import os.path as osp
from ..registry import DATASETS
from .base import BaseDataset
@DATASETS.register()
class FeatureDataset(BaseDataset):
"""Feature dataset for action recognition
Example:(TODO)
Args:(TODO)
"""
def __init__(
self,
file_path,
pipeline,
data_prefix=None,
test_mode=False,
suffix=None,
):
self.suffix = suffix
super().__init__(file_path, pipeline, data_prefix, test_mode)
def load_file(self):
"""Load index file to get video information."""
info = []
with open(self.file_path, 'r') as fin:
for line in fin:
filename = line.strip().split()[0]
if self.data_prefix is not None:
filename = osp.join(self.data_prefix, filename)
if self.suffix is not None:
filename = filename + self.suffix
info.append(dict(filename=filename))
return info
def prepare_train(self, idx):
"""TRAIN & VALID. Prepare the data for training/valid given the index."""
results = copy.deepcopy(self.info[idx])
results = self.pipeline(results)
if 'iou_norm' in results:
return results['rgb_data'], results['rgb_len'], results[
'rgb_mask'], results['audio_data'], results[
'audio_len'], results['audio_mask'], results[
'labels'], results['iou_norm']
else:
return results['rgb_data'], results['rgb_len'], results[
'rgb_mask'], results['audio_data'], results[
'audio_len'], results['audio_mask'], results['labels']
def prepare_test(self, idx):
"""TEST. Prepare the data for testing given the index."""
results = copy.deepcopy(self.info[idx])
results = self.pipeline(results)
if 'iou_norm' in results:
return results['rgb_data'], results['rgb_len'], results[
'rgb_mask'], results['audio_data'], results[
'audio_len'], results['audio_mask'], results[
'labels'], results['iou_norm']
else:
return results['rgb_data'], results['rgb_len'], results[
'rgb_mask'], results['audio_data'], results[
'audio_len'], results['audio_mask'], results['labels']