forked from PaddlePaddle/PaddleVideo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdavis_dataset.py
189 lines (169 loc) · 6.4 KB
/
davis_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import os.path as osp
import copy
import random
import numpy as np
import shutil
from PIL import Image
import cv2
from paddle.io import Dataset
from ..registry import DATASETS
from .base import BaseDataset
from ...utils import get_logger
logger = get_logger("paddlevideo")
class VOS_Test(Dataset):
"""process frames in each video
"""
def __init__(self,
image_root,
label_root,
seq_name,
images,
labels,
pipeline=None,
rgb=False,
resolution=None):
self.image_root = image_root
self.label_root = label_root
self.seq_name = seq_name
self.images = images # image file list
self.labels = labels
self.obj_num = 1
self.num_frame = len(self.images)
self.pipeline = pipeline
self.rgb = rgb
self.resolution = resolution
self.obj_nums = []
temp_obj_num = 0
for img_name in self.images:
self.obj_nums.append(temp_obj_num)
current_label_name = img_name.split('.')[0] + '.png'
if current_label_name in self.labels:
current_label = self.read_label(current_label_name)
if temp_obj_num < np.unique(
current_label)[-1]: #get object number from label_id
temp_obj_num = np.unique(current_label)[-1]
def __len__(self):
return len(self.images)
def read_image(self, idx):
img_name = self.images[idx]
img_path = os.path.join(self.image_root, self.seq_name, img_name)
img = cv2.imread(img_path)
img = np.array(img, dtype=np.float32)
if self.rgb:
img = img[:, :, [2, 1, 0]]
return img
def read_label(self, label_name):
label_path = os.path.join(self.label_root, self.seq_name, label_name)
label = Image.open(label_path)
label = np.array(label, dtype=np.uint8)
return label
def __getitem__(self, idx):
img_name = self.images[idx]
current_img = self.read_image(idx)
current_img = np.array(current_img)
height, width, channels = current_img.shape
if self.resolution is not None:
width = int(np.ceil(float(width) * self.resolution / float(height)))
height = int(self.resolution)
current_label_name = img_name.split('.')[0] + '.png'
obj_num = self.obj_nums[idx]
if current_label_name in self.labels:
current_label = self.read_label(current_label_name)
current_label = np.array(current_label)
sample = {
'current_img': current_img,
'current_label': current_label
}
else:
sample = {
'current_img': current_img
} #only the first frame contains label
sample['meta'] = {
'seq_name': self.seq_name,
'frame_num': self.num_frame,
'obj_num': obj_num,
'current_name': img_name,
'height': height,
'width': width,
'flip': False
}
if self.pipeline is not None:
sample = self.pipeline(sample)
for s in sample:
s['current_img'] = np.array(s['current_img'])
if 'current_label' in s.keys():
s['current_label'] = s['current_label']
return sample
@DATASETS.register()
class DavisDataset(BaseDataset):
"""Davis 2017 dataset.
"""
def __init__(
self,
file_path,
result_root,
pipeline,
data_prefix=None,
test_mode=False,
year=2017,
rgb=False,
resolution='480p',
):
self.rgb = rgb
self.result_root = result_root
self.resolution = resolution
self.year = year
self.spt = 'val' if test_mode else 'train'
super().__init__(file_path, pipeline, data_prefix, test_mode)
def load_file(self):
self.image_root = os.path.join(self.file_path, 'JPEGImages',
self.resolution)
self.label_root = os.path.join(self.file_path, 'Annotations',
self.resolution)
seq_names = []
with open(
os.path.join(self.file_path, 'ImageSets', str(self.year),
self.spt + '.txt')) as f:
seqs_tmp = f.readlines()
seqs_tmp = list(map(lambda elem: elem.strip(), seqs_tmp))
seq_names.extend(seqs_tmp)
self.info = list(np.unique(seq_names))
return self.info
def prepare_test(self, idx):
seq_name = self.info[idx] #video name
images = list(
np.sort(os.listdir(os.path.join(self.image_root, seq_name))))
labels = [images[0].replace('jpg', 'png')] #we have first frame target
# copy first frame target
if not os.path.isfile(
os.path.join(self.result_root, seq_name, labels[0])):
if not os.path.exists(os.path.join(self.result_root, seq_name)):
os.makedirs(os.path.join(self.result_root, seq_name))
source_label_path = os.path.join(self.label_root, seq_name,
labels[0])
result_label_path = os.path.join(self.result_root, seq_name,
labels[0])
shutil.copy(source_label_path, result_label_path)
seq_dataset = VOS_Test(self.image_root,
self.label_root,
seq_name,
images,
labels,
self.pipeline,
rgb=self.rgb,
resolution=480)
return seq_dataset