forked from PaddlePaddle/PaddleVideo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathava_dataset.py
249 lines (222 loc) · 9.64 KB
/
ava_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os.path as osp
import copy
import random
import numpy as np
import sys
import os
import pickle
from datetime import datetime
from ...metrics.ava_utils import ava_evaluate_results
from ..registry import DATASETS
from .base import BaseDataset
from collections import defaultdict
@DATASETS.register()
class AVADataset(BaseDataset):
"""AVA dataset for spatial temporal detection.
the dataset loads raw frames, bounding boxes, proposals and applies
transformations to return the frame tensors and other information.
"""
_FPS = 30
def __init__(self,
pipeline,
file_path=None,
exclude_file=None,
label_file=None,
suffix='{:05}.jpg',
proposal_file=None,
person_det_score_thr=0.9,
num_classes=81,
data_prefix=None,
test_mode=False,
num_max_proposals=1000,
timestamp_start=900,
timestamp_end=1800):
self.custom_classes = None
self.exclude_file = exclude_file
self.label_file = label_file
self.proposal_file = proposal_file
assert 0 <= person_det_score_thr <= 1, (
'The value of '
'person_det_score_thr should in [0, 1]. ')
self.person_det_score_thr = person_det_score_thr
self.num_classes = num_classes
self.suffix = suffix
self.num_max_proposals = num_max_proposals
self.timestamp_start = timestamp_start
self.timestamp_end = timestamp_end
super().__init__(
file_path,
pipeline,
data_prefix,
test_mode,
)
if self.proposal_file is not None:
self.proposals = self._load(self.proposal_file)
else:
self.proposals = None
if not test_mode:
valid_indexes = self.filter_exclude_file()
self.info = self.info = [self.info[i] for i in valid_indexes]
def _load(self, path):
f = open(path, 'rb')
res = pickle.load(f)
f.close()
return res
def parse_img_record(self, img_records):
bboxes, labels, entity_ids = [], [], []
while len(img_records) > 0:
img_record = img_records[0]
num_img_records = len(img_records)
selected_records = list(
filter(
lambda x: np.array_equal(x['entity_box'], img_record[
'entity_box']), img_records))
num_selected_records = len(selected_records)
img_records = list(
filter(
lambda x: not np.array_equal(x['entity_box'], img_record[
'entity_box']), img_records))
assert len(img_records) + num_selected_records == num_img_records
bboxes.append(img_record['entity_box'])
valid_labels = np.array([
selected_record['label'] for selected_record in selected_records
])
label = np.zeros(self.num_classes, dtype=np.float32)
label[valid_labels] = 1.
labels.append(label)
entity_ids.append(img_record['entity_id'])
bboxes = np.stack(bboxes)
labels = np.stack(labels)
entity_ids = np.stack(entity_ids)
return bboxes, labels, entity_ids
def filter_exclude_file(self):
valid_indexes = []
if self.exclude_file is None:
valid_indexes = list(range(len(self.info)))
else:
exclude_video_infos = [
x.strip().split(',') for x in open(self.exclude_file)
]
for i, video_info in enumerate(self.info):
valid_indexes.append(i)
for video_id, timestamp in exclude_video_infos:
if (video_info['video_id'] == video_id
and video_info['timestamp'] == int(timestamp)):
valid_indexes.pop()
break
return valid_indexes
def load_file(self):
"""Load index file to get video information."""
info = []
records_dict_by_img = defaultdict(list)
with open(self.file_path, 'r') as fin:
for line in fin:
line_split = line.strip().split(',')
video_id = line_split[0]
timestamp = int(line_split[1])
img_key = f'{video_id},{timestamp:04d}'
entity_box = np.array(list(map(float, line_split[2:6])))
label = int(line_split[6])
entity_id = int(line_split[7])
shot_info = (0, (self.timestamp_end - self.timestamp_start) *
self._FPS)
video_info = dict(video_id=video_id,
timestamp=timestamp,
entity_box=entity_box,
label=label,
entity_id=entity_id,
shot_info=shot_info)
records_dict_by_img[img_key].append(video_info)
for img_key in records_dict_by_img:
video_id, timestamp = img_key.split(',')
bboxes, labels, entity_ids = self.parse_img_record(
records_dict_by_img[img_key])
ann = dict(gt_bboxes=bboxes,
gt_labels=labels,
entity_ids=entity_ids)
frame_dir = video_id
if self.data_prefix is not None:
frame_dir = osp.join(self.data_prefix, frame_dir)
video_info = dict(frame_dir=frame_dir,
video_id=video_id,
timestamp=int(timestamp),
img_key=img_key,
shot_info=shot_info,
fps=self._FPS,
ann=ann)
info.append(video_info)
return info
def prepare_train(self, idx):
results = copy.deepcopy(self.info[idx])
img_key = results['img_key']
results['suffix'] = self.suffix
results['timestamp_start'] = self.timestamp_start
results['timestamp_end'] = self.timestamp_end
if self.proposals is not None:
if img_key not in self.proposals:
results['proposals'] = np.array([[0, 0, 1, 1]])
results['scores'] = np.array([1])
else:
proposals = self.proposals[img_key]
assert proposals.shape[-1] in [4, 5]
if proposals.shape[-1] == 5:
thr = min(self.person_det_score_thr, max(proposals[:, 4]))
positive_inds = (proposals[:, 4] >= thr)
proposals = proposals[positive_inds]
proposals = proposals[:self.num_max_proposals]
results['proposals'] = proposals[:, :4]
results['scores'] = proposals[:, 4]
else:
proposals = proposals[:self.num_max_proposals]
results['proposals'] = proposals
ann = results.pop('ann')
results['gt_bboxes'] = ann['gt_bboxes']
results['gt_labels'] = ann['gt_labels']
results['entity_ids'] = ann['entity_ids']
#ret = self.pipeline(results, "")
ret = self.pipeline(results)
#padding for dataloader
len_proposals = ret['proposals'].shape[0]
len_gt_bboxes = ret['gt_bboxes'].shape[0]
len_gt_labels = ret['gt_labels'].shape[0]
len_scores = ret['scores'].shape[0]
len_entity_ids = ret['entity_ids'].shape[0]
padding_len = 128
ret['proposals'] = self.my_padding_2d(ret['proposals'], padding_len)
ret['gt_bboxes'] = self.my_padding_2d(ret['gt_bboxes'], padding_len)
ret['gt_labels'] = self.my_padding_2d(ret['gt_labels'], padding_len)
ret['scores'] = self.my_padding_1d(ret['scores'], padding_len)
ret['entity_ids'] = self.my_padding_1d(ret['entity_ids'], padding_len)
return ret['imgs'][0], ret['imgs'][1], ret['proposals'], ret[
'gt_bboxes'], ret['gt_labels'], ret['scores'], ret[
'entity_ids'], np.array(
ret['img_shape'], dtype=int
), idx, len_proposals, len_gt_bboxes, len_gt_labels, len_scores, len_entity_ids
def my_padding_2d(self, feat, max_len):
feat_add = np.zeros((max_len - feat.shape[0], feat.shape[1]),
dtype=np.float32)
feat_pad = np.concatenate((feat, feat_add), axis=0)
return feat_pad
def my_padding_1d(self, feat, max_len):
feat_add = np.zeros((max_len - feat.shape[0]), dtype=np.float32)
feat_pad = np.concatenate((feat, feat_add), axis=0)
return feat_pad
def prepare_test(self, idx):
return self.prepare_train(idx)
def evaluate(self, results):
return ava_evaluate_results(self.info, len(self), results,
self.custom_classes, self.label_file,
self.file_path, self.exclude_file)