forked from PaddlePaddle/PaddleVideo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathasrf_dataset.py
104 lines (87 loc) · 3.62 KB
/
asrf_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import os
import numpy as np
from ..registry import DATASETS
from .base import BaseDataset
from ...utils import get_logger
logger = get_logger("paddlevideo")
@DATASETS.register()
class ASRFDataset(BaseDataset):
"""Video dataset for action segmentation.
"""
def __init__(
self,
file_path,
pipeline,
feature_path,
label_path,
boundary_path,
**kwargs,
):
super().__init__(file_path, pipeline, **kwargs)
self.label_path = label_path
self.boundary_path = boundary_path
self.feature_path = feature_path
def load_file(self):
"""Load index file to get video information."""
file_ptr = open(self.file_path, 'r')
info = file_ptr.read().split('\n')[:-1]
file_ptr.close()
return info
def prepare_train(self, idx):
"""TRAIN & VALID: Prepare data for training/valid given the index."""
results = {}
video_name = self.info[idx]
# load video feature
file_name = video_name.split('.')[0] + ".npy"
feat_file_path = os.path.join(self.feature_path, file_name)
#TODO: check path
video_feat = np.load(feat_file_path)
# load label
file_name = video_name.split('.')[0] + ".npy"
label_file_path = os.path.join(self.label_path, file_name)
label = np.load(label_file_path).astype(np.int64)
# load boundary
file_name = video_name.split('.')[0] + ".npy"
boundary_file_path = os.path.join(self.boundary_path, file_name)
boundary = np.expand_dims(np.load(boundary_file_path),axis=0).astype(np.float32)
results['video_feat'] = copy.deepcopy(video_feat)
results['video_label'] = copy.deepcopy(label)
results['video_boundary'] = copy.deepcopy(boundary)
results = self.pipeline(results)
return results['video_feat'], results['video_label'], results['video_boundary']
def prepare_test(self, idx):
"""TEST: Prepare the data for test given the index."""
results = {}
video_name = self.info[idx]
# load video feature
file_name = video_name.split('.')[0] + ".npy"
feat_file_path = os.path.join(self.feature_path, file_name)
#TODO: check path
video_feat = np.load(feat_file_path)
# load label
file_name = video_name.split('.')[0] + ".npy"
label_file_path = os.path.join(self.label_path, file_name)
label = np.load(label_file_path).astype(np.int64)
# load boundary
file_name = video_name.split('.')[0] + ".npy"
boundary_file_path = os.path.join(self.boundary_path, file_name)
boundary = np.expand_dims(np.load(boundary_file_path),axis=0).astype(np.float32)
results['video_feat'] = copy.deepcopy(video_feat)
results['video_label'] = copy.deepcopy(label)
results['video_boundary'] = copy.deepcopy(boundary)
results = self.pipeline(results)
return results['video_feat'], results['video_label'], results['video_boundary']