forked from PaddlePaddle/PaddleVideo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMRI.py
109 lines (97 loc) · 4.13 KB
/
MRI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os.path as osp
import copy
import random
import numpy as np
from ..registry import DATASETS
from .base import BaseDataset
from ...utils import get_logger
logger = get_logger("paddlevideo")
@DATASETS.register()
class MRIDataset(BaseDataset):
"""Rawframe dataset for action recognition.
The dataset loads raw frames from frame files, and apply specified transform operatation them.
The indecx file is a text file with multiple lines, and each line indicates the directory of frames of a video, toatl frames of the video, and its label, which split with a whitespace.
Example of an index file:
.. code-block:: txt
file_path-1 150 1
file_path-2 160 1
file_path-3 170 2
file_path-4 180 2
Args:
file_path (str): Path to the index file.
pipeline(XXX):
data_prefix (str): directory path of the data. Default: None.
test_mode (bool): Whether to bulid the test dataset. Default: False.
suffix (str): suffix of file. Default: 'img_{:05}.jpg'.
"""
def __init__(self,
file_path,
pipeline,
num_retries=5,
data_prefix=None,
test_mode=False,
suffix='img_{:05}.jpg'):
self.num_retries = num_retries
self.suffix = suffix
super().__init__(file_path, pipeline, data_prefix, test_mode)
def load_file(self):
"""Load index file to get video information."""
info = []
with open(self.file_path, 'r') as fin:
for line in fin:
line_split = line.strip().split()
frame_dir, frames_len, labels = line_split
if self.data_prefix is not None:
frame_dir = osp.join(self.data_prefix, frame_dir)
info.append(
dict(
frame_dir=frame_dir,
#suffix=self.suffix,
frames_len=frames_len,
labels=int(labels)))
return info
def prepare_train(self, idx):
"""Prepare the frames for training/valid gisven index. """
#Try to catch Exception caused by reading missing frames files
for ir in range(self.num_retries):
try:
results = copy.deepcopy(self.info[idx])
results = self.pipeline(results)
except Exception as e:
#logger.info(e)
if ir < self.num_retries - 1:
logger.info(
"Error when loading {}, have {} trys, will try again".
format(results['frame_dir'], ir))
idx = random.randint(0, len(self.info) - 1)
continue
return np.array(results['imgs']), np.array([results['labels']])
def prepare_test(self, idx):
"""Prepare the frames for test given index. """
#Try to catch Exception caused by reading missing frames files
for ir in range(self.num_retries):
try:
results = copy.deepcopy(self.info[idx])
results = self.pipeline(results)
except Exception as e:
#logger.info(e)
if ir < self.num_retries - 1:
logger.info(
"Error when loading {}, have {} trys, will try again".
format(results['frame_dir'], ir))
idx = random.randint(0, len(self.info) - 1)
continue
return np.array(results['imgs']), np.array([results['labels']])