forked from PaddlePaddle/PaddleVideo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathagcn_fsd.yaml
72 lines (62 loc) · 2.31 KB
/
agcn_fsd.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
MODEL: #MODEL field
framework: "RecognizerGCN" #Mandatory, indicate the type of network, associate to the 'paddlevideo/modeling/framework/' .
backbone: #Mandatory, indicate the type of backbone, associate to the 'paddlevideo/modeling/backbones/' .
name: "AGCN" #Mandatory, The name of backbone.
head:
name: "STGCNHead" #Mandatory, indicate the type of head, associate to the 'paddlevideo/modeling/heads'
num_classes: 30 #Optional, the number of classes to be classified.
ls_eps: 0.1
DATASET: #DATASET field
batch_size: 64 #Mandatory, bacth size
num_workers: 4 #Mandatory, the number of subprocess on each GPU.
test_batch_size: 1
test_num_workers: 0
train:
format: "SkeletonDataset" #Mandatory, indicate the type of dataset, associate to the 'paddlevidel/loader/dateset'
file_path: "train_data.npy" #Mandatory, train data index file path
label_path: "train_label.npy"
test:
format: "SkeletonDataset" #Mandatory, indicate the type of dataset, associate to the 'paddlevidel/loader/dateset'
file_path: "test_A_data.npy" #Mandatory, valid data index file path
test_mode: True
PIPELINE: #PIPELINE field
train: #Mandotary, indicate the pipeline to deal with the training data, associate to the 'paddlevideo/loader/pipelines/'
sample:
name: "AutoPadding"
window_size: 350
transform: #Mandotary, image transfrom operator
- SkeletonNorm:
test: #Mandatory, indicate the pipeline to deal with the validing data. associate to the 'paddlevideo/loader/pipelines/'
sample:
name: "AutoPadding"
window_size: 350
transform: #Mandotary, image transfrom operator
- SkeletonNorm:
OPTIMIZER: #OPTIMIZER field
name: 'Momentum'
momentum: 0.9
learning_rate:
iter_step: True
name: 'CustomWarmupCosineDecay'
max_epoch: 100
warmup_epochs: 10
warmup_start_lr: 0.005
cosine_base_lr: 0.05
weight_decay:
name: 'L2'
value: 1e-4
MIX:
name: "Mixup"
alpha: 0.2
METRIC:
name: 'SkeletonMetric'
out_file: 'submission.csv'
INFERENCE:
name: 'STGCN_Inference_helper'
num_channels: 2
window_size: 350
vertex_nums: 25
person_nums: 1
model_name: "AGCN"
log_interval: 10 #Optional, the interal of logger, default:10
epochs: 100 #Mandatory, total epoch