-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhourly_eval.py
90 lines (76 loc) · 3.18 KB
/
hourly_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from statsmodels.tsa.seasonal import STL
from scipy.fftpack import fft
from pandas.plotting import autocorrelation_plot
# Assuming `hourly_counts_series` is already a pandas Series with a DatetimeIndex
# Example:
# hourly_counts_series = pd.Series(data=[23, 31, 34, ...], index=pd.to_datetime(['2024-10-17 00:00:00', '2024-10-17 01:00:00', ...]))
# Decompose the time series
stl = STL(hourly_counts_series, seasonal=24).fit() # Daily periodicity assumed (seasonal=24 for hourly data)
# Compute seasonality strength
seasonal_var = np.var(stl.seasonal)
total_var = np.var(hourly_counts_series)
seasonality_strength = seasonal_var / total_var if total_var != 0 else 0
# Ensure the hourly_counts_series is converted to a numeric numpy array
hourly_counts_array = hourly_counts_series.to_numpy()
# Fourier Transform
fft_result = fft(hourly_counts_array - hourly_counts_array.mean())
frequencies = np.fft.fftfreq(len(fft_result))
dominant_frequency = frequencies[np.argmax(np.abs(fft_result))]
# Residual variance ratio
residual_var = np.var(stl.resid)
residual_to_total_ratio = residual_var / total_var if total_var != 0 else 0
# Store results in a dictionary
results = {
'seasonality_strength': seasonality_strength,
'dominant_frequency': dominant_frequency,
'residual_to_total_ratio': residual_to_total_ratio
}
# Print Results
print("Results for Hourly Data:")
print(results)
# Interpret Results
interpretation = []
if seasonality_strength > 0.8:
interpretation.append(
"Strong seasonality detected (seasonality strength > 0.8). This suggests "
"a highly repetitive pattern, potentially indicative of an automated process."
)
else:
interpretation.append(
"Seasonality strength is weak (<= 0.8), suggesting limited repetitive patterns."
)
if abs(dominant_frequency) > 0:
interpretation.append(
f"A dominant periodicity was detected with a frequency of {dominant_frequency:.2f}. "
"This further supports evidence of a recurring cycle."
)
else:
interpretation.append(
"No significant dominant periodicity detected, reducing the likelihood of automation."
)
if residual_to_total_ratio < 0.1:
interpretation.append(
"The residual variance is very small compared to total variance, meaning most of the variation is explained "
"by predictable components. This strengthens the case for a systematic or automated pattern."
)
else:
interpretation.append(
"Residual variance is relatively high, indicating a lack of systematic patterns in the data."
)
print("\nInterpretation:")
for line in interpretation:
print(f"- {line}")
# Plot Decomposition (enlarged)
fig, axes = plt.subplots(3, 1, figsize=(12, 8)) # Enlarged for clarity
stl.seasonal.plot(ax=axes[0], title="Seasonal Component", ylabel="Seasonal", color="blue")
stl.trend.plot(ax=axes[1], title="Trend Component", ylabel="Trend", color="green")
stl.resid.plot(ax=axes[2], title="Residual Component", ylabel="Residual", color="red")
plt.tight_layout()
plt.show()
# Autocorrelation Plot
print("Autocorrelation Plot for Hourly Data:")
autocorrelation_plot(hourly_counts_series)
plt.show()