-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathattack.py
231 lines (197 loc) · 9.39 KB
/
attack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import argparse
import torch
import torch.nn as nn
import numpy as np
import csv
import os
from typing import Callable, Dict, Optional, Sequence, Set, Tuple
from robustbench.utils import load_model
from robustbench.loaders import CustomImageFolder
from Linf_attack import LinfPGDAttack
import torchvision.transforms as transforms
import torch.utils.data as data
from cifar_models import ResNet18
import torchvision.datasets as datasets
from autoattack import AutoAttack
ROOT_PATH = os.path.expanduser("~/.advertorch")
DATA_PATH = os.path.join(ROOT_PATH, "data")
def get_cifar10_test_loader(batch_size, shuffle=False):
loader = torch.utils.data.DataLoader(
datasets.CIFAR10(DATA_PATH, train=False, download=True,
transform=transforms.ToTensor()),
batch_size=batch_size, shuffle=shuffle)
loader.name = "cifar10_test"
return loader
def get_cifar100_test_loader(batch_size, shuffle=False):
loader = torch.utils.data.DataLoader(
datasets.CIFAR100(DATA_PATH, train=False, download=True,
transform=transforms.ToTensor()),
batch_size=batch_size, shuffle=shuffle)
loader.name = "cifar100_test"
return loader
PREPROCESSINGS = {
'Res256Crop224':
transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor()
])
}
def load_imagenet(
batch_size: Optional[int] = 128,
data_dir: str = './data',
transforms_test: Callable = PREPROCESSINGS['Res256Crop224']
) -> Tuple[torch.Tensor, torch.Tensor]:
if batch_size > 5000:
raise ValueError(
'The evaluation is currently possible on at most 5000 points')
imagenet = CustomImageFolder(data_dir + '/val', transforms_test)
test_loader = data.DataLoader(imagenet,
batch_size=batch_size,
shuffle=False,
num_workers=4)
return test_loader
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
def get_model_name(args):
model_name = str(args.nb_iter)+'_'+str(args.eps)+'_'+str(args.alpha)+'_'+args.update_method+'_'+args.alg+'_'+args.model_name+'_'+args.init_method+'_'+args.dataset
if args.alg == 'AA':
model_name = model_name + '_' + str(args.restarts)
if args.update_method == 'rgd_aa':
model_name = model_name + '_'+str(args.rgd_iter)
return model_name
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
def main():
parser = argparse.ArgumentParser(description='PGD/RGD Attack')
parser.add_argument('--seed', default=0, type=int, help='random seed for PyTorch')
parser.add_argument('--batch_size', default=128, type=int, help='Evaluation batch size')
parser.add_argument('--nb_iter', default=7, type=int, help='Number of Inner Iterations')
parser.add_argument('--eps', default=0.0314, type=float, help='Epsilon Ball size, 0.0314=8/255')
parser.add_argument('--alpha', default=0.00784, type=float, help='Inner update step size, 0.00784=2/255')
# noclip_raw refers to rgd, rgd_aa refers to rgd + Autoattack training
parser.add_argument('--update_method', default='sign_grad', type=str, choices=['sign_grad', 'raw_grad', 'noclip_raw',
'noclip_sign', 'rgd_aa'], help='how we update')
parser.add_argument('--alg', default='PGD', type=str, choices=['PGD', 'AA'], help='Algorithm we used, PGD or autoattack')
parser.add_argument('--model_name', default='Wong2020Fast', help='the model imported')
parser.add_argument('--dataset', default='cifar10', choices=['cifar10', 'cifar100', 'imagenet'])
parser.add_argument('--init_method', default='rand_init', choices=['rand_init', 'zero_init'], help='how we initialize perturbations')
parser.add_argument('--log_path', default='./log.csv', type=str, help='log file path')
parser.add_argument('--save', action='store_true', help='used when saving perturbation')
# parameter used for autoattack algorithm
parser.add_argument('--restarts', default=1, type=int, help='the restarts for autoattack')
parser.add_argument('--verbose', action='store_true', help='used when showing detailed output')
parser.add_argument('--rgd_iter', default=2, type=int, help='rgd iteration in aa')
args = parser.parse_args()
args.rand_init = True if args.init_method == 'rand_init' else False
print(args)
torch.manual_seed(args.seed)
# Load Dataset
ITER_TOTAL = 0
if args.dataset == 'cifar10':
loader = get_cifar10_test_loader(batch_size=args.batch_size, shuffle=True)
elif args.dataset == 'cifar100':
loader = get_cifar100_test_loader(batch_size=args.batch_size, shuffle=True)
elif args.dataset == 'imagenet':
loader = load_imagenet(batch_size=args.batch_size, data_dir='./ILSVRC/Data/CLS-LOC')
# we only consider 5000 validation sample in ImageNet
assert 5000%args.batch_size==0
ITER_TOTAL = 5000//args.batch_size
criterion = nn.CrossEntropyLoss().cuda()
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
# Load Model
if args.model_name == 'pgd_resnet18':
# This model is downloaded from https://github.com/MadryLab/robustness
filename = "models/pgd_resnet18_cifar10_linf_8.pt"
model = ResNet18()
model = nn.parallel.DataParallel(model)
model.load_state_dict(torch.load(filename)['net'])
else:
model = load_model(model_name=args.model_name, dataset=args.dataset, norm='Linf')
model.to(device)
model.eval()
# Define algorithm
if args.alg == 'PGD':
adversary = LinfPGDAttack(
model, loss_fn=nn.CrossEntropyLoss(reduction="mean"), eps=args.eps,
nb_iter=args.nb_iter, eps_iter=args.alpha, rand_init=args.rand_init, clip_min=0.0, clip_max=1.0,
targeted=False, update_method=args.update_method)
elif args.alg == 'AA':
adversary = AutoAttack(
model, norm='Linf', eps=args.eps, attacks_to_run=['apgd-ce'], version='custom',
device=device, n_iter=args.nb_iter, n_restarts=args.restarts, update_method=args.update_method,
rand_init = args.rand_init, alpha=args.alpha, verbose=args.verbose, rgd_iter=args.rgd_iter)
pertubations, labels = [], []
acc_steps, acc_steps_total = None, None
acc_steps_list = []
for iter, data_tuple in enumerate(loader):
cln_data, true_label = data_tuple[0], data_tuple[1]
if args.dataset == 'imagenet' and iter == ITER_TOTAL:
break
cln_data, true_label = cln_data.to(device), true_label.to(device)
if args.alg == 'PGD':
adv_untargeted = adversary.perturb(cln_data, true_label)
elif args.alg == 'AA':
adv_untargeted, acc_steps = adversary.run_standard_evaluation(cln_data, true_label, bs=args.batch_size)
acc_steps_total = torch.cat([acc_steps.cpu(), torch.zeros((args.nb_iter+1, cln_data.shape[0]-acc_steps.shape[1]))], dim=1)
acc_steps_list.append(acc_steps_total)
logits = model(adv_untargeted)
loss = criterion(logits, true_label)
losses.update(loss.item(), cln_data.size(0))
acc1, acc5 = accuracy(logits, true_label, topk=(1, 5))
top1.update(acc1[0].item(), cln_data.size(0))
if args.save:
labels.append(true_label)
pertubations.append(adv_untargeted-cln_data)
if args.alg == 'AA':
acc_all = torch.cat(acc_steps_list, dim=1)
acc_list = torch.mean(acc_all, dim=1).float().tolist()
model_setting = get_model_name(args)
if args.save:
pertu_torch = torch.cat(pertubations, dim=0)
print('Linf distance:'+str(torch.max(torch.abs(pertu_torch))))
label_torch = torch.cat(labels, dim=0)
saved_path = 'save/'+model_setting+ '_'
np.save(saved_path+'pertu_'+str(args.seed)+'.npy', pertu_torch.cpu().numpy())
np.save(saved_path+'labels_'+str(args.seed)+'.npy', label_torch.cpu().numpy())
print("Sample num: "+str(losses.count))
print("Accuracy 1: "+str(top1.avg)+"%")
output_file=args.log_path
with open(output_file,'a+',newline='') as f:
writer=csv.writer(f)
if args.alg == 'AA':
writer.writerow([model_setting, *acc_list])
writer.writerow([model_setting, top1.avg])
if __name__ == '__main__':
main()