-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathl2reg_on_twentynews.py
640 lines (543 loc) · 28.7 KB
/
l2reg_on_twentynews.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
from itertools import repeat
from torch.utils.data import DataLoader, TensorDataset
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from sklearn.datasets import fetch_20newsgroups_vectorized
from stocBiO import *
import torch.nn.functional as F
import torch.optim as optim
import torch.nn as nn
import argparse
import torch
import hypergrad as hg
import numpy as np
import time
import math
import os
class CustomTensorIterator:
def __init__(self, tensor_list, batch_size, **loader_kwargs):
self.loader = DataLoader(TensorDataset(*tensor_list), batch_size=batch_size, **loader_kwargs)
self.iterator = iter(self.loader)
def __next__(self, *args):
try:
idx = next(self.iterator)
except StopIteration:
self.iterator = iter(self.loader)
idx = next(self.iterator)
return idx
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--epochs', default=100, type=int, help='epoch numbers')
parser.add_argument('--T', default=10, type=int, help='inner update iterations')
parser.add_argument('--batch_size', type=int, default=100)
parser.add_argument('--spider_size', type=int, default=64)
parser.add_argument('--val_size', type=int, default=100)
parser.add_argument('--eta', type=float, default=0.5, help='used in Hessian')
parser.add_argument('--hessian_q', type=int, default=10, help='number of steps to approximate hessian')
# Only when alg == minibatch, we apply stochastic, otherwise, alg training with full batch
parser.add_argument('--alg', type=str, default='reverse', choices=['stocBiO', 'reverse', 'AID-FP', 'AID-CG', 'HOAG', 'TTSA', 'BSA', 'MRBO',
'VRBO', 'MSTSA', 'STABLE', 'SUSTAIN', 'MRBOD'])
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--training_size', type=int, default=5657)
parser.add_argument('--inner_lr', type=float, default=100.0)
parser.add_argument('--inner_mu', type=float, default=0.0)
parser.add_argument('--outer_lr', type=float, default=100.0)
parser.add_argument('--outer_mu', type=float, default=0.0)
parser.add_argument('--spider_epoch', type=int, default=3)
parser.add_argument('--save_folder', type=str, default='', help='path to save result')
parser.add_argument('--model_name', type=str, default='', help='Experiment name')
args = parser.parse_args()
# outer_lr, outer_mu = 100.0, 0.0 # nice with 100.0, 0.0 (torch.SGD) tested with T, K = 5, 10 and CG
# inner_lr, inner_mu = 100., 0.9 # nice with 100., 0.9 (HeavyBall) tested with T, K = 5, 10 and CG
# parser.add_argument('--seed', type=int, default=0)
if (args.alg == 'stocBiO') or (args.alg == 'MRBO') or (args.alg == 'VRBO') or (args.alg == 'MRBOD'):
args.batch_size = args.batch_size
elif args.alg == 'STABLE':
args.batch_size = args.batch_size
elif args.alg == 'BSA':
args.batch_size=1
elif args.alg == 'TTSA':
args.batch_size = 1
args.T = 1
elif args.alg == 'MSTSA':
args.batch_size = 1
args.val_size = 1
else:
args.batch_size = args.training_size
args.val_size = args.training_size
if not args.save_folder:
args.save_folder = './save_results'
args.model_name = '{}_bs_{}_vbs_{}_olrmu_{}_{}_ilrmu_{}_{}_eta_{}_T_{}_hessianq_{}'.format(args.alg,
args.batch_size, args.val_size, args.outer_lr, args.outer_mu, args.inner_lr,
args.inner_mu, args.eta, args.T, args.hessian_q)
args.save_folder = os.path.join(args.save_folder, args.model_name)
if not os.path.isdir(args.save_folder):
os.makedirs(args.save_folder)
# parser.add_argument('--save_folder', type=str, default='', help='path to save result')
# parser.add_argument('--model_name', type=str, default='', help='Experiment name')
return args
def train_model(args):
# Constant
tol = 1e-12
warm_start = True
bias = False # without bias outer_lr can be bigger (much faster convergence)
train_log_interval = 100
val_log_interval = 1
# Basic Setting
# seed = 0
# torch.manual_seed(seed)
# np.random.seed(seed)
cuda = True and torch.cuda.is_available()
default_tensor_str = 'torch.cuda.FloatTensor' if cuda else 'torch.FloatTensor'
kwargs = {'num_workers': 1, 'pin_memory': True} if cuda else {}
torch.set_default_tensor_type(default_tensor_str)
#torch.multiprocessing.set_start_method('forkserver')
# Functions
def frnp(x): return torch.from_numpy(x).cuda().float() if cuda else torch.from_numpy(x).float()
def tonp(x, cuda=cuda): return x.detach().cpu().numpy() if cuda else x.detach().numpy()
def train_loss(params, hparams, data):
x_mb, y_mb = data
# print(x_mb.size()) = torch.Size([5657, 130107])
out = out_f(x_mb, params)
return F.cross_entropy(out, y_mb) + reg_f(params, *hparams)
def val_loss(opt_params, hparams):
x_mb, y_mb = next(val_iterator)
# print(x_mb.size()) = torch.Size([5657, 130107])
out = out_f(x_mb, opt_params[:len(parameters)])
val_loss = F.cross_entropy(out, y_mb)
pred = out.argmax(dim=1, keepdim=True) # get the index of the max log-probability
acc = pred.eq(y_mb.view_as(pred)).sum().item() / len(y_mb)
val_losses.append(tonp(val_loss))
val_accs.append(acc)
return val_loss
def reg_f(params, l2_reg_params, l1_reg_params=None):
r = 0.5 * ((params[0] ** 2) * torch.exp(l2_reg_params.unsqueeze(1) * ones_dxc)).mean()
if l1_reg_params is not None:
r += (params[0].abs() * torch.exp(l1_reg_params.unsqueeze(1) * ones_dxc)).mean()
return r
def out_f(x, params):
out = x @ params[0]
out += params[1] if len(params) == 2 else 0
return out
def eval(params, x, y):
out = out_f(x, params)
loss = F.cross_entropy(out, y)
pred = out.argmax(dim=1, keepdim=True) # get the index of the max log-probability
acc = pred.eq(y.view_as(pred)).sum().item() / len(y)
return loss, acc
def vrbo(args, val_data_list, train_data_list, parameters, hparams, hparams_old, grad_x, grad_y, step):
val_data, val_label = val_data_list
train_data, train_label = train_data_list
if (step+1)*(args.T+1) < len(train_data):
data_list = train_data[step*(args.T+1):]
labels_list = train_label[step*(args.T+1):]
else:
index = (len(train_data) - (step+1)*(args.T+1)) % len(train_data)
if index + args.T + 1 >= len(train_data):
index = 0
data_list = train_data[index:]
labels_list = train_label[index:]
if (step+1)*3 < len(val_data):
val_data_list2, val_label_list2 = val_data[step*3:], val_label[step*3:]
else:
index = (step+1)*3 % len(val_data)
if index + 3 + 1 >= len(val_data):
index = 0
val_data_list2, val_label_list2 = train_data[index:], train_label[index:]
output = out_f(data_list[0], parameters)
update_y = gradient_gy(args, labels_list[0], parameters, data_list[0], hparams, output, reg_fs)
update_y_old = gradient_gy(args, labels_list[0], parameters, data_list[0], hparams_old, output, reg_fs)
update_x = stocbio(parameters, hparams, [val_data_list2[0:], val_label_list2[0:]], args, out_f, reg_fs)
update_x_old = stocbio(parameters, hparams_old, [val_data_list2[0:], val_label_list2[0:]], args, out_f, reg_fs)
v_t = grad_x + update_x - update_x_old
u_t = grad_y + update_y - update_y_old
# u_t = grad_y
# v_t = grad_x
parameters_new = []
parameters_new.append(parameters[0] - args.inner_lr*u_t)
for t in range(args.T):
# data_list, labels_list = val_data_list[t+1]
output = out_f(data_list[(t+1)%len(data_list)], parameters_new)
update_y = gradient_gy(args, labels_list[(t+1)%len(data_list)], parameters_new, data_list[(t+1)%len(data_list)], hparams, output, reg_fs)
output = out_f(data_list[(t+1)%len(data_list)], parameters)
update_y_old = gradient_gy(args, labels_list[(t+1)%len(data_list)], parameters, data_list[(t+1)%len(data_list)], hparams, output, reg_fs)
update_x = stocbio(parameters_new, hparams, [val_data_list2[0:], val_label_list2[0:]], args, out_f, reg_fs)
update_x_old = stocbio(parameters, hparams, [val_data_list2[0:], val_label_list2[0:]], args, out_f, reg_fs)
# print(torch.norm(update_x - update_x_old))
v_t = v_t + update_x - update_x_old
u_t = u_t + update_y - update_y_old
# u_t = u_t
# u_t = update_y
parameters = parameters_new
parameters_new[0] = parameters[0] - args.inner_lr*u_t
return parameters_new, v_t, u_t
# load twentynews and preprocess
val_size_ratio = 0.5
X, y = fetch_20newsgroups_vectorized(subset='train', return_X_y=True,
#remove=('headers', 'footers', 'quotes')
)
x_test, y_test = fetch_20newsgroups_vectorized(subset='test', return_X_y=True,
#remove=('headers', 'footers', 'quotes')
)
x_train, x_val, y_train, y_val = train_test_split(X, y, stratify=y, test_size=val_size_ratio)
train_samples, n_features = x_train.shape
test_samples, n_features = x_test.shape
val_samples, n_features = x_val.shape
n_classes = np.unique(y_train).shape[0]
# train_samples=5657, val_samples=5657, test_samples=7532, n_features=130107, n_classes=20
print('Dataset 20newsgroup, train_samples=%i, val_samples=%i, test_samples=%i, n_features=%i, n_classes=%i'
% (train_samples, val_samples, test_samples, n_features, n_classes))
ys = [frnp(y_train).long(), frnp(y_val).long(), frnp(y_test).long()]
xs = [x_train, x_val, x_test]
if cuda:
xs = [from_sparse(x).cuda() for x in xs]
else:
xs = [from_sparse(x) for x in xs]
# x_train.size() = torch.Size([5657, 130107])
# y_train.size() = torch.Size([5657])
x_train, x_val, x_test = xs
y_train, y_val, y_test = ys
# torch.DataLoader has problems with sparse tensor on GPU
iterators, train_list, val_list = [], [], []
xmb_train, xmb_val, ymb_train, ymb_val = [], [], [], []
train_vr_list, val_vr_list = [], []
xmb_vr_train, xmb_vr_val, ymb_vr_train, ymb_vr_val = [], [], [], []
# For minibatch method, we build the list to store the splited tensor
if (args.alg == 'stocBiO') or (args.alg == 'MRBO') or (args.alg == 'MSTSA') or (args.alg == 'STABLE') or (args.alg == 'MRBOD'):
for bs, x, y in [(len(y_train), x_train, y_train), (len(y_val), x_val, y_val)]:
iterators.append(CustomTensorIterator([x, y], batch_size=args.batch_size, shuffle=True, **kwargs))
train_iterator, val_iterator = iterators
for _ in range(train_samples // args.batch_size+1):
data_temp = next(train_iterator)
x_mb, y_mb = data_temp
xmb_train.append(x_mb)
ymb_train.append(y_mb)
# train_list.append(next(train_iterator))
for _ in range(val_samples // args.val_size+1):
data_temp = next(val_iterator)
x_mb, y_mb = data_temp
xmb_val.append(x_mb)
ymb_val.append(y_mb)
# val_list.append(next(val_iterator))
train_list, val_list = [xmb_train, ymb_train], [xmb_val, ymb_val]
train_list_len, val_list_len = len(ymb_train), len(ymb_val)
# set up another train_iterator & val_iterator to make sure train_list and val_list are full
iterators = []
for bs, x, y in [(len(y_train), x_train, y_train), (len(y_val), x_val, y_val)]:
iterators.append(repeat([x, y]))
train_iterator, val_iterator = iterators
elif args.alg == 'VRBO':
for bs, x, y in [(len(y_train), x_train, y_train), (len(y_val), x_val, y_val)]:
iterators.append(CustomTensorIterator([x, y], batch_size=args.batch_size, shuffle=True, **kwargs))
train_iterator, val_iterator = iterators
for _ in range(train_samples // args.batch_size+1):
data_temp = next(train_iterator)
x_mb, y_mb = data_temp
xmb_train.append(x_mb)
ymb_train.append(y_mb)
# train_list.append(next(train_iterator))
for _ in range(val_samples // args.val_size+1):
data_temp = next(val_iterator)
x_mb, y_mb = data_temp
xmb_val.append(x_mb)
ymb_val.append(y_mb)
# val_list.append(next(val_iterator))
train_list, val_list = [xmb_train, ymb_train], [xmb_val, ymb_val]
train_list_len, val_list_len = len(ymb_train), len(ymb_val)
# set up another train_iterator & val_iterator to make sure train_list and val_list are full
iterators = []
for bs, x, y in [(len(y_train), x_train, y_train), (len(y_val), x_val, y_val)]:
iterators.append(CustomTensorIterator([x, y], batch_size=args.spider_size, shuffle=True, **kwargs))
train_vr_iterator, val_vr_iterator = iterators
for _ in range(train_samples // args.spider_size+1):
data_temp = next(train_vr_iterator)
x_mb, y_mb = data_temp
xmb_vr_train.append(x_mb)
ymb_vr_train.append(y_mb)
# train_list.append(next(train_iterator))
for _ in range(val_samples // args.spider_size+1):
data_temp = next(val_vr_iterator)
x_mb, y_mb = data_temp
xmb_vr_val.append(x_mb)
ymb_vr_val.append(y_mb)
# val_list.append(next(val_iterator))
train_vr_list, val_vr_list = [xmb_vr_train, ymb_vr_train], [xmb_vr_val, ymb_vr_val]
train_vr_list_len, val_vr_list_len = len(ymb_vr_train), len(ymb_vr_val)
# set up another train_iterator & val_iterator to make sure train_list and val_list are full
iterators = []
for bs, x, y in [(len(y_train), x_train, y_train), (len(y_val), x_val, y_val)]:
iterators.append(repeat([x, y]))
train_iterator, val_iterator = iterators
else:
for bs, x, y in [(len(y_train), x_train, y_train), (len(y_val), x_val, y_val)]:
iterators.append(repeat([x, y]))
train_iterator, val_iterator = iterators
# Initialize parameters
l2_reg_params = torch.zeros(n_features).requires_grad_(True) # one hp per feature
l1_reg_params = (0.*torch.ones(1)).requires_grad_(True) # one l1 hp only (best when really low)
#l2_reg_params = (-20.*torch.ones(1)).requires_grad_(True) # one l2 hp only (best when really low)
#l1_reg_params = (-1.*torch.ones(n_features)).requires_grad_(True)
hparams = [l2_reg_params]
# hparams = torch.load('hyparmas.pt')
# hparams: the outer variables (or hyperparameters)
ones_dxc = torch.ones(n_features, n_classes)
outer_opt = torch.optim.SGD(lr=args.outer_lr, momentum=args.outer_mu, params=hparams)
# outer_opt = torch.optim.Adam(lr=0.01, params=hparams)
params_history = []
val_losses, val_accs = [], []
test_losses, test_accs = [], []
w = torch.zeros(n_features, n_classes).requires_grad_(True)
parameters = [w]
# parameters = torch.load('parameters.pt')
# params_history: the inner iterates (from first to last)
if bias:
b = torch.zeros(n_classes).requires_grad_(True)
parameters.append(b)
if args.inner_mu > 0:
#inner_opt = hg.Momentum(train_loss, inner_lr, inner_mu, data_or_iter=train_iterator)
inner_opt = hg.HeavyBall(train_loss, args.inner_lr, args.inner_mu, data_or_iter=train_iterator)
else:
inner_opt = hg.GradientDescent(train_loss, args.inner_lr, data_or_iter=train_iterator)
inner_opt_cg = hg.GradientDescent(train_loss, 1., data_or_iter=train_iterator)
total_time = 0
loss_acc_time_results = np.zeros((args.epochs+1, 3))
test_loss, test_acc = eval(parameters, x_test, y_test)
loss_acc_time_results[0, 0] = test_loss
loss_acc_time_results[0, 1] = test_acc
loss_acc_time_results[0, 2] = 0.0
for o_step in range(args.epochs):
start_time = time.time()
if args.alg == 'stocBiO':
# train_index_list = torch.randperm(train_list_len)
# val_index = torch.randperm(val_list_len)
inner_losses = []
for t in range(args.T):
# loss_train = train_loss(parameters, hparams, train_list[train_index_list[t%train_list_len]])
loss_train = train_loss(parameters, hparams, [xmb_train[t%train_list_len], ymb_train[t%train_list_len]])
inner_grad = torch.autograd.grad(loss_train, parameters)
parameters[0] = parameters[0] - args.inner_lr*inner_grad[0]
inner_losses.append(loss_train)
if t % train_log_interval == 0 or t == args.T-1:
print('t={} loss: {}'.format(t, inner_losses[-1]))
outer_update = stocbio(parameters, hparams, val_list, args, out_f, reg_fs)
hparams[0] = hparams[0] - args.outer_lr*outer_update
final_params = parameters
for p, new_p in zip(parameters, final_params[:len(parameters)]):
if warm_start:
p.data = new_p
else:
p.data = torch.zeros_like(p)
val_loss(final_params, hparams)
elif args.alg == 'MRBO' or 'MRBOD':
eta_k, alpha_k, beta_k, m = 1.0, 0.99, 1, 0.1
if args.alg == 'MRBO':
args.T = 1
if o_step == 0:
grad_x = stocbio(parameters, hparams, [xmb_val[o_step*2:], ymb_val[o_step*2:]], args, out_f, reg_fs)
output = out_f(xmb_train[o_step%train_list_len], parameters)
grad_y = gradient_gy(args, ymb_train[o_step%train_list_len], parameters, xmb_train[o_step%train_list_len], hparams, output, reg_fs)
parameters_old,grad_y_old = parameters, grad_y
parameters[0] = parameters[0] - args.inner_lr*eta_k*grad_y
else:
for t in range(args.T):
data_t = xmb_train[(o_step+t)%train_list_len]
output = out_f(data_t, parameters)
output_old = out_f(data_t, parameters_old)
update_y = gradient_gy(args, ymb_train[(o_step+t)%train_list_len], parameters, data_t, hparams, output, reg_fs)
update_y_old = gradient_gy(args, ymb_train[(o_step+t)%train_list_len], parameters_old, data_t, hparams_old, output_old, reg_fs)
grad_y = update_y+(1-beta_k)*(grad_y_old-update_y_old)
parameters_old,grad_y_old = parameters, grad_y
parameters[0] = parameters[0] - args.inner_lr*eta_k*grad_y
index = (o_step*2)%val_list_len
if (val_list_len-index <= 2):
index = 0
update_x = stocbio(parameters, hparams, [xmb_val[index:], ymb_val[index:]], args, out_f, reg_fs)
update_x_old = stocbio(parameters_old, hparams_old, [xmb_val[index:], ymb_val[index:]], args, out_f, reg_fs)
grad_x = update_x+(1-alpha_k)*(grad_x_old-update_x_old)
parameters_old, hparams_old, grad_x_old, grad_y_old = parameters, hparams, grad_x, grad_y
parameters[0], hparams[0] = parameters[0] - args.inner_lr*eta_k*grad_y, hparams[0] - args.outer_lr*eta_k*grad_x
outer_update = grad_x
grad_norm_inner = torch.norm(grad_y)
print("Inner update: {:.4f}".format(grad_norm_inner))
print("Outer update: {:.4f}".format(torch.norm(grad_x)))
weight = hparams
# eta_k = eta_k*(((o_step+m)/(o_step+m+1))**(1/3))
# # print(eta_k)
# alpha_k, beta_k=alpha_k*(eta_k**2), beta_k*(eta_k**2)
final_params = parameters
for p, new_p in zip(parameters, final_params[:len(parameters)]):
if warm_start:
p.data = new_p
else:
p.data = torch.zeros_like(p)
val_loss(final_params, hparams)
elif args.alg == 'MSTSA':
# hparams = lambda_x[lambda_index_outer: lambda_index_outer+args.batch_size]
if o_step == 0:
hparams_old = hparams
outer_update_old = 0
params_next = parameters
c_eta = 0.5
args.outer_lr = 0.1/(math.sqrt(o_step+1))
beta_t = args.inner_lr/(math.sqrt(o_step+1))
output = out_f(xmb_train[o_step%train_list_len], parameters)
inner_update = gradient_gy(args, ymb_train[o_step%train_list_len], parameters, xmb_train[o_step%train_list_len], hparams, output, reg_fs)
params_next[0] = parameters[0] - beta_t*inner_update
val_data = [xmb_val[(o_step%train_list_len):], ymb_val[(o_step%train_list_len):]]
outer_update = mstsa(outer_update_old, c_eta, val_data, args, parameters,
params_next, hparams, hparams_old, out_f, reg_fs)
parameters = params_next
outer_update_old = outer_update
hparams_old = hparams
hparams[0] = hparams[0] - args.outer_lr*outer_update
final_params = parameters
for p, new_p in zip(parameters, final_params[:len(parameters)]):
if warm_start:
p.data = new_p
else:
p.data = torch.zeros_like(p)
val_loss(final_params, hparams)
elif args.alg == 'STABLE':
if o_step == 0:
hparams_old = hparams
params_old = parameters
H_xy = torch.zeros([args.batch_size, 130107])
H_yy = torch.zeros([130107, 130107])
beta_k = args.inner_lr
alpha_k = args.outer_lr
tao = 0.5
# val_index = torch.randperm(args.training_size//args.batch_size)
# data_list = build_val_data(args, -val_index, images_list, labels_list, device)
data_list = [xmb_val[(o_step%train_list_len):], ymb_val[(o_step%train_list_len):]]
params_old, parameters, outer_update, H_xy, H_yy = stable(args, data_list, params_old, parameters,
hparams, hparams_old, H_xy, H_yy, tao, beta_k, alpha_k, out_f, reg_fs)
hparams_old = hparams
params_old = parameters
hparams[0] = hparams[0] - args.outer_lr*outer_update
final_params = parameters
# args.outer_lr = alpha weight = hparams
for p, new_p in zip(parameters, final_params[:len(parameters)]):
if warm_start:
p.data = new_p
else:
p.data = torch.zeros_like(p)
val_loss(final_params, hparams)
elif args.alg == 'VRBO':
if o_step%args.spider_epoch == 0:
if o_step + 3 >= len(xmb_val):
index = 0
else:
index = o_step
grad_x = stocbio(parameters, hparams, [xmb_val[index:], ymb_val[index:]], args, out_f, reg_fs)
output = out_f(xmb_train[index], parameters)
grad_y = gradient_gy(args, ymb_train[index], parameters, xmb_train[index], hparams, output, reg_fs)
if o_step == 0:
hparams_old = hparams
paras_new, grad_x, grad_y = vrbo(args, val_vr_list, train_vr_list, parameters, hparams,
hparams_old, grad_x, grad_y, o_step)
else:
paras_new, grad_x, grad_y = vrbo(args, val_vr_list, train_vr_list, parameters, hparams,
hparams_old, grad_x, grad_y, o_step)
hparams_old = hparams
parameters = paras_new
grad_norm_inner = torch.norm(grad_y)
print("Inner update: {:.4f}".format(grad_norm_inner))
print("Outer update: {:.4f}".format(torch.norm(grad_x)))
outer_update = grad_x
hparams[0] = hparams[0] - args.outer_lr*outer_update
final_params = parameters
for p, new_p in zip(parameters, final_params[:len(parameters)]):
if warm_start:
p.data = new_p
else:
p.data = torch.zeros_like(p)
val_loss(final_params, hparams)
else:
inner_losses = []
if params_history:
params_history = [params_history[-1]]
else:
params_history = [inner_opt.get_opt_params(parameters)]
for t in range(args.T):
params_history.append(inner_opt(params_history[-1], hparams, create_graph=False))
inner_losses.append(inner_opt.curr_loss)
if t % train_log_interval == 0 or t == args.T-1:
print('t={} loss: {}'.format(t, inner_losses[-1]))
final_params = params_history[-1]
outer_opt.zero_grad()
if args.alg == 'reverse':
hg.reverse(params_history[-args.hessian_q-1:], hparams, [inner_opt]*args.hessian_q, val_loss)
elif args.alg == 'AID-FP':
hg.fixed_point(final_params, hparams, args.hessian_q, inner_opt, val_loss, stochastic=False, tol=tol)
# elif args.alg == 'neuman':
# hg.neumann(final_params, hparams, args.K, inner_opt, val_loss, tol=tol)
elif args.alg == 'AID-CG':
hg.CG(final_params[:len(parameters)], hparams, args.hessian_q, inner_opt_cg, val_loss, stochastic=False, tol=tol)
outer_opt.step()
for p, new_p in zip(parameters, final_params[:len(parameters)]):
if warm_start:
p.data = new_p
else:
p.data = torch.zeros_like(p)
iter_time = time.time() - start_time
total_time += iter_time
if o_step % val_log_interval == 0 or o_step == args.T-1:
test_loss, test_acc = eval(final_params[:len(parameters)], x_test, y_test)
loss_acc_time_results[o_step+1, 0] = test_loss
loss_acc_time_results[o_step+1, 1] = test_acc
loss_acc_time_results[o_step+1, 2] = total_time
print('o_step={} ({:.2e}s) Val loss: {:.4e}, Val Acc: {:.2f}%'.format(o_step, iter_time, val_losses[-1],
100*val_accs[-1]))
print(' Test loss: {:.4e}, Test Acc: {:.2f}%'.format(test_loss, 100*test_acc))
print(' l2_hp norm: {:.4e}'.format(torch.norm(hparams[0])))
if len(hparams) == 2:
print(' l1_hp : ', torch.norm(hparams[1]))
if o_step == 30 and args.alg == 'stocBiO':
torch.save(hparams, 'hyparmas.pt')
torch.save(parameters, 'parameters.pt')
file_name = 'results.npy'
file_addr = os.path.join(args.save_folder, file_name)
with open(file_addr, 'wb') as f:
np.save(f, loss_acc_time_results)
print(loss_acc_time_results)
print('HPO ended in {:.2e} seconds\n'.format(total_time))
def from_sparse(x):
x = x.tocoo()
values = x.data
indices = np.vstack((x.row, x.col))
i = torch.LongTensor(indices)
v = torch.FloatTensor(values)
shape = x.shape
return torch.sparse.FloatTensor(i, v, torch.Size(shape))
def train_loss(params, hparams, data):
x_mb, y_mb = data
out = out_f(x_mb, params)
return F.cross_entropy(out, y_mb) + reg_f(params, *hparams)
def val_loss(opt_params, hparams):
x_mb, y_mb = next(val_iterator)
out = out_f(x_mb, opt_params[:len(parameters)])
val_loss = F.cross_entropy(out, y_mb)
pred = out.argmax(dim=1, keepdim=True) # get the index of the max log-probability
acc = pred.eq(y_mb.view_as(pred)).sum().item() / len(y_mb)
val_losses.append(tonp(val_loss))
val_accs.append(acc)
return val_loss
def reg_f(params, l2_reg_params, l1_reg_params=None):
ones_dxc = torch.ones(params[0].size())
r = 0.5 * ((params[0] ** 2) * torch.exp(l2_reg_params.unsqueeze(1) * ones_dxc)).mean()
if l1_reg_params is not None:
r += (params[0].abs() * torch.exp(l1_reg_params.unsqueeze(1) * ones_dxc)).mean()
return r
def reg_fs(params, hparams, loss):
reg = reg_f(params, *hparams)
return loss+reg
def out_f(x, params):
out = x @ params[0]
out += params[1] if len(params) == 2 else 0
return out
def main():
args = parse_args()
print(args)
train_model(args)
if __name__ == '__main__':
main()