From c3d3d0b23f3e62d0fe91d0eb2fc48a7afd18ed4f Mon Sep 17 00:00:00 2001 From: Mateusz Baran Date: Tue, 25 Sep 2018 20:03:00 +0200 Subject: [PATCH 01/11] basic implementation of monotonic interpolation methods implemented algorithms: * linear * finite difference * cardinal * Fritsch-Carlson * Fritsch-Butland * Steffen --- src/Interpolations.jl | 2 + src/io.jl | 14 ++ src/monotonic/monotonic.jl | 275 +++++++++++++++++++++++++++++++++ test/io.jl | 9 +- test/monotonic/runtests.jl | 43 ++++++ test/plots/monotonic/sanity.jl | 25 +++ test/runtests.jl | 3 + 7 files changed, 370 insertions(+), 1 deletion(-) create mode 100644 src/monotonic/monotonic.jl create mode 100644 test/monotonic/runtests.jl create mode 100644 test/plots/monotonic/sanity.jl diff --git a/src/Interpolations.jl b/src/Interpolations.jl index 3bae69ed..035362ad 100644 --- a/src/Interpolations.jl +++ b/src/Interpolations.jl @@ -28,6 +28,7 @@ export # see the following files for further exports: # b-splines/b-splines.jl # extrapolation/extrapolation.jl + # monotonic/monotonic.jl # scaling/scaling.jl using LinearAlgebra, SparseArrays @@ -382,6 +383,7 @@ end include("nointerp/nointerp.jl") include("b-splines/b-splines.jl") include("gridded/gridded.jl") +include("monotonic/monotonic.jl") include("extrapolation/extrapolation.jl") include("scaling/scaling.jl") include("utils.jl") diff --git a/src/io.jl b/src/io.jl index da0bdffb..eae584f2 100644 --- a/src/io.jl +++ b/src/io.jl @@ -44,6 +44,20 @@ function Base.showarg(io::IO, A::ScaledInterpolation{T}, toplevel) where {T} end end +function Base.showarg(io::IO, A::MonotonicInterpolation{T, TCoeffs, Tel, Type, K}, toplevel) where {T, TCoeffs, Tel, Type, K} + print(io, "interpolate(") + _showknots(io, A.knots) + print(io, ", ") + Base.showarg(io, A.A, false) + print(io, ", ") + show(io, A.it) + if toplevel + print(io, ") with element type ",T) + else + print(io, ')') + end +end + function Base.showarg(io::IO, A::Extrapolation{T,N,TI,IT,ET}, toplevel) where {T,N,TI,IT,ET} print(io, "extrapolate(") Base.showarg(io, A.itp, false) diff --git a/src/monotonic/monotonic.jl b/src/monotonic/monotonic.jl new file mode 100644 index 00000000..70b0e0cf --- /dev/null +++ b/src/monotonic/monotonic.jl @@ -0,0 +1,275 @@ + +#= + Interpolate using cubic Hermite splines. The breakpoints in arrays xbp and ybp are assumed to be sorted. + Evaluate the function in all points of the array xeval. + Methods: + "Linear" yuck + "FiniteDifference" classic cubic interpolation, no tension parameter + Finite difference can overshoot for non-monotonic data + "Cardinal" cubic cardinal splines, uses tension parameter which must be between [0,1] + cubin cardinal splines can overshoot for non-monotonic data + (increasing tension decreases overshoot) + "FritschCarlson" monotonic - tangents are first initialized, then adjusted if they are not monotonic + can overshoot for non-monotonic data + "FritschButland" monotonic - faster algorithm (only requires one pass) but somewhat higher apparent "tension" + "Steffen" monotonic - also only one pass, results usually between FritschCarlson and FritschButland + Sources: + Fritsch & Carlson (1980), "Monotone Piecewise Cubic Interpolation", doi:10.1137/0717021. + Fritsch & Butland (1984), "A Method for Constructing Local Monotone Piecewise Cubic Interpolants", doi:10.1137/0905021. + Steffen (1990), "A Simple Method for Monotonic Interpolation in One Dimension", http://adsabs.harvard.edu/abs/1990A%26A...239..443S + + Implementation based on http://bl.ocks.org/niclasmattsson/7bceb05fba6c71c78d507adae3d29417 +=# + +export + MonotonicInterpolationType, + LinearMonotonicInterpolation, + FiniteDifferenceMonotonicInterpolation, + CardinalMonotonicInterpolation, + FritschCarlsonMonotonicInterpolation, + FritschButlandMonotonicInterpolation, + SteffenMonotonicInterpolation + +abstract type MonotonicInterpolationType <: InterpolationType end + +struct LinearMonotonicInterpolation <: MonotonicInterpolationType +end + +struct FiniteDifferenceMonotonicInterpolation <: MonotonicInterpolationType +end + +struct CardinalMonotonicInterpolation{T<:Number} <: MonotonicInterpolationType + tension :: T # must be in [0, 1] +end + +struct FritschCarlsonMonotonicInterpolation <: MonotonicInterpolationType +end + +struct FritschButlandMonotonicInterpolation <: MonotonicInterpolationType +end + +struct SteffenMonotonicInterpolation <: MonotonicInterpolationType +end + +struct MonotonicInterpolation{T, TCoeffs, Tel, Type<:MonotonicInterpolationType, + K<:AbstractVector{<:Number}} <: AbstractInterpolation{T,1,DimSpec{Type}} + + it::Type + knots::K + A::Vector{Tel} + m::Vector{TCoeffs} + c::Vector{TCoeffs} + d::Vector{TCoeffs} +end + + +size(A::MonotonicInterpolation) = size(A.knots) +axes(A::MonotonicInterpolation) = axes(A.knots) + +function MonotonicInterpolation(::Type{TWeights}, it::IType, knots::K, A::Vector{Tel}, + m::Vector{TCoeffs}, c::Vector{TCoeffs}, d::Vector{TCoeffs}) where {TWeights, TCoeffs, Tel, IType<:MonotonicInterpolationType, K<:AbstractVector{<:Number}} + + isconcretetype(IType) || error("The b-spline type must be a leaf type (was $IType)") + isconcretetype(TCoeffs) || warn("For performance reasons, consider using an array of a concrete type (eltype(A) == $(eltype(A)))") + + cZero = zero(TWeights) + if isempty(A) + T = Base.promote_op(*, typeof(cZero), eltype(A)) + else + T = typeof(cZero * first(A)) + end + + MonotonicInterpolation{T, TCoeffs, Tel, IType, K}(it, knots, A, m, c, d) +end + +function interpolate(::Type{TWeights}, ::Type{TCoeffs}, knots::K, + A::AbstractArray{Tel,1}, it::IT) where {TWeights,TCoeffs,Tel,K<:AbstractVector{<:Number},IT<:MonotonicInterpolationType} + + # first we need to determine tangents (m) + n = length(knots) + m, Δ = calcTangents(TCoeffs, knots, A, it) + c = Vector{TCoeffs}(undef, n-1) + d = Vector{TCoeffs}(undef, n-1) + for k ∈ 1:n-1 + if IT == LinearMonotonicInterpolation + c[k] = d[k] = zero(TCoeffs) + else + xdiff = knots[k+1] - knots[k] + c[k] = (3*Δ[k] - 2*m[k] - m[k+1]) / xdiff + d[k] = (m[k] + m[k+1] - 2*Δ[k]) / (xdiff * xdiff) + end + end + + MonotonicInterpolation(TWeights, it, knots, A, m, c, d) +end + +function interpolate(knots::AbstractVector{<:Number}, A::AbstractArray{Tel,1}, + it::IT) where {Tel,N,IT<:MonotonicInterpolationType} + + interpolate(tweight(A), tcoef(A), knots, A, it) +end + +function (itp::MonotonicInterpolation)(x::Number) + x >= itp.knots[1] || return + x <= itp.knots[end] || return + + k = 1 + n = length(itp.knots) + while k < n-1 && x > itp.knots[k+1] + k += 1 + end + xdiff = x - itp.knots[k] + return itp.A[k] + itp.m[k]*xdiff + itp.c[k]*xdiff*xdiff + itp.d[k]*xdiff*xdiff*xdiff +end + +function calcTangents(::Type{TCoeffs}, x::AbstractVector{<:Number}, + y::AbstractVector{Tel}, method::LinearMonotonicInterpolation) where {TCoeffs, Tel} + + n = length(x) + Δ = Vector{TCoeffs}(undef, n-1) + m = Vector{TCoeffs}(undef, n) + for k in 1:n-1 + Δk = (y[k+1] - y[k]) / (x[k+1] - x[k]) + Δ[k] = Δk + m[k] = Δk + end + m[n] = Δ[n-1] + return (m, Δ) +end + +function calcTangents(::Type{TCoeffs}, x::AbstractVector{<:Number}, + y::AbstractVector{Tel}, method::FiniteDifferenceMonotonicInterpolation) where {TCoeffs, Tel} + + n = length(x) + Δ = Vector{TCoeffs}(undef, n-1) + m = Vector{TCoeffs}(undef, n) + for k in 1:n-1 + Δk = (y[k+1] - y[k]) / (x[k+1] - x[k]) + Δ[k] = Δk + if k == 1 # left endpoint + m[k] = Δk + else + m[k] = (Δ[k-1] + Δk) / 2 + end + end + m[n] = Δ[n-1] + return (m, Δ) +end + +function calcTangents(::Type{TCoeffs}, x::AbstractVector{<:Number}, + y::AbstractVector{Tel}, method::CardinalMonotonicInterpolation{T}) where {T, TCoeffs, Tel} + + n = length(x) + Δ = Vector{TCoeffs}(undef, n-1) + m = Vector{TCoeffs}(undef, n) + for k in 1:n-1 + Δk = (y[k+1] - y[k]) / (x[k+1] - x[k]) + Δ[k] = Δk + if k == 1 # left endpoint + m[k] = Δk + else + m[k] = (oneunit(T) - method.tension) * (y[k+1] - y[k-1]) / (x[k+1] - x[k-1]) + end + end + m[n] = Δ[n-1] + return (m, Δ) +end + +function calcTangents(::Type{TCoeffs}, x::AbstractVector{<:Number}, + y::AbstractVector{Tel}, method::FritschCarlsonMonotonicInterpolation) where {TCoeffs, Tel} + + n = length(x) + Δ = Vector{TCoeffs}(undef, n-1) + m = Vector{TCoeffs}(undef, n) + for k in 1:n-1 + Δk = (y[k+1] - y[k]) / (x[k+1] - x[k]) + Δ[k] = Δk + if k == 1 # left endpoint + m[k] = Δk + else + # If any consecutive secant lines change sign (i.e. curve changes direction), initialize the tangent to zero. + # This is needed to make the interpolation monotonic. Otherwise set tangent to the average of the secants. + if Δk <= zero(Δk) + m[k] = zero(TCoeffs) + else + m[k] = Δ[k-1] * (Δ[k-1] + Δk) / 2.0 + end + end + end + m[n] = Δ[n-1] + #= + Fritsch & Carlson derived necessary and sufficient conditions for monotonicity in their 1980 paper. Splines will be + monotonic if all tangents are in a certain region of the alpha-beta plane, with alpha and beta as defined below. + A robust choice is to put alpha & beta within a circle around origo with radius 3. The FritschCarlson algorithm + makes simple initial estimates of tangents and then does another pass over data points to move any outlier tangents + into the monotonic region. FritschButland & Steffen algorithms make more elaborate first estimates of tangents that + are guaranteed to lie in the monotonic region, so no second pass is necessary. + =# + + # Second pass of FritschCarlson: adjust any non-monotonic tangents. + for k in 1:n-1 + Δk = Δ[k] + if Δk == zero(TCoeffs) + m[k] = zero(TCoeffs) + m[k+1] = zero(TCoeffs) + continue + end + α = m[k] / Δk + β = m[k+1] / Δk + τ = 3.0 / sqrt(α^2 + β^2) + if τ < 1.0 # if we're outside the circle with radius 3 then move onto the circle + m[k] = τ * α * Δk + m[k+1] = τ * β * Δk + end + end + return (m, Δ) +end + +function calcTangents(::Type{TCoeffs}, x::AbstractVector{<:Number}, + y :: AbstractVector{Tel}, method :: FritschButlandMonotonicInterpolation) where {TCoeffs, Tel} + + n = length(x) + Δ = Vector{TCoeffs}(undef, n-1) + m = Vector{TCoeffs}(undef, n) + for k in 1:n-1 + Δk = (y[k+1] - y[k]) / (x[k+1] - x[k]) + Δ[k] = Δk + if k == 1 # left endpoint + m[k] = Δk + elseif Δ[k-1] * Δk <= zero(TCoeffs) + m[k] = zero(TCoeffs) + else + α = (1.0 + (x[k+1] - x[k]) / (x[k+1] - x[k-1])) / 3.0 + m[k] = Δ[k-1] * Δk / (α*Δk + (1.0 - α)*Δ[k-1]) + end + end + m[n] = Δ[n-1] + return (m, Δ) +end + +function calcTangents(::Type{TCoeffs}, x::AbstractVector{<:Number}, + y::AbstractVector{Tel}, method::SteffenMonotonicInterpolation) where {TCoeffs, Tel} + + n = length(x) + Δ = Vector{TCoeffs}(undef, n-1) + m = Vector{TCoeffs}(undef, n) + for k in 1:n-1 + Δk = (y[k+1] - y[k]) / (x[k+1] - x[k]) + Δ[k] = Δk + if k == 1 # left endpoint + m[k] = Δk + else + p = ((x[k+1] - x[k]) * Δ[k-1] + (x[k] - x[k-1]) * Δk) / (x[k+1] - x[k-1]) + m[k] = (sign(Δ[k-1]) + sign(Δk)) * + min(abs(Δ[k-1]), abs(Δk), 0.5*abs(p)) + end + end + m[n] = Δ[n-1] + return (m, Δ) +end + +# How many non-NoInterp dimensions are there? +count_interp_dims(::Type{<:MonotonicInterpolationType}) = 1 + +lbounds(itp::MonotonicInterpolation) = first(itp.knots) +ubounds(itp::MonotonicInterpolation) = last(itp.knots) diff --git a/test/io.jl b/test/io.jl index 6027c13e..5c5a9768 100644 --- a/test/io.jl +++ b/test/io.jl @@ -57,6 +57,13 @@ using Test @test summary(sitp2) == "21×41 scale(interpolate(OffsetArray(::Array{Float64,2}, 0:22, 0:42), BSpline(Quadratic(Flat(OnGrid())))), (-5.0:0.5:5.0,$SPACE-4.0:0.2:4.0)) with element type Float64" end + @testset "Monotonic" begin + A = rand(20) + A_x = collect(1.0:2.0:40.0) + itp = interpolate(A_x, A, FritschButlandMonotonicInterpolation()) + @test summary(itp) == "20-element interpolate(::Array{Float64,1}, ::Array{Float64,1}, FritschButlandMonotonicInterpolation()) with element type Float64" + end + @testset "Extrapolation" begin A = rand(8,20) @@ -67,4 +74,4 @@ using Test etpf = extrapolate(itpg, NaN) @test summary(etpf) == "8×20 extrapolate(interpolate(::Array{Float64,2}, BSpline(Linear())), NaN) with element type Float64" end -end # Module +end # testset diff --git a/test/monotonic/runtests.jl b/test/monotonic/runtests.jl new file mode 100644 index 00000000..f56aca1a --- /dev/null +++ b/test/monotonic/runtests.jl @@ -0,0 +1,43 @@ + +using Test +using Interpolations + +@testset "Monotonic" begin + x = [0.0, 0.2, 0.5, 0.6, 0.9, 1.0] + y = [(true, [-3.0, 0.0, 5.0, 10.0, 18.0, 22.0]), + (false, [10.0, 0.0, -5.0, 10.0, -8.0, -2.0])] + + # second item indicates if interpolating function can overshoot + # for non-monotonic data + itypes = [(LinearMonotonicInterpolation(), false), + (FiniteDifferenceMonotonicInterpolation(), true), + (CardinalMonotonicInterpolation(0.0), true), + (CardinalMonotonicInterpolation(0.5), true), + (CardinalMonotonicInterpolation(1.0), false), + (FritschCarlsonMonotonicInterpolation(), true), + (FritschButlandMonotonicInterpolation(), false), + (SteffenMonotonicInterpolation(), false)] + + for (it, overshoot) in itypes + for yi in 1:length(y) + monotonic, ys = y[yi] + itp = interpolate(x, ys, it) + for j in 1:6 + # checking values at nodes + @test itp(x[j]) ≈ ys[j] rtol = 1.e-15 atol = 1.e-14 + + # checking overshoot for non-monotonic data + # and monotonicity for monotonic data + if !monotonic && overshoot + continue + end + if j < 6 + r = range(x[j], stop = x[j+1], length = 100) + for k in 1:length(r)-1 + @test (ys[j+1] - ys[j]) * (itp(r[k+1]) - itp(r[k])) >= 0.0 + end + end + end + end + end +end diff --git a/test/plots/monotonic/sanity.jl b/test/plots/monotonic/sanity.jl new file mode 100644 index 00000000..b5505cd6 --- /dev/null +++ b/test/plots/monotonic/sanity.jl @@ -0,0 +1,25 @@ +using Plots +using Interpolations + +pyplot() + +x = [0.0, 0.2, 0.5, 0.6, 0.9, 1.0] +y = [10.0, 0.0, -5.0, 10.0, -8.0, -2.0] +grid = 0.0:0.002:1.0 + +itypes = MonotonicInterpolationType[LinearMonotonicInterpolation(), + FiniteDifferenceMonotonicInterpolation(), + CardinalMonotonicInterpolation(0.0), + CardinalMonotonicInterpolation(0.5), + CardinalMonotonicInterpolation(1.0), + FritschCarlsonMonotonicInterpolation(), + FritschButlandMonotonicInterpolation(), + SteffenMonotonicInterpolation() + ] + +scatter(x, y, label = "data") +for itype in itypes + itp = interpolate(x, y, itype) + plot!([x for x in grid], [itp(x) for x in grid], label = string(itype)) +end +gui() diff --git a/test/runtests.jl b/test/runtests.jl index c31533d9..8d37d5ac 100644 --- a/test/runtests.jl +++ b/test/runtests.jl @@ -25,6 +25,9 @@ const isci = get(ENV, "CI", "") in ("true", "True") # scaling tests include("scaling/runtests.jl") + # monotonic tests + include("monotonic/runtests.jl") + # test gradient evaluation include("gradient.jl") isci && println("finished gradient") From 58545137f4d4d0fa201611c6d6a753af557d4248 Mon Sep 17 00:00:00 2001 From: Mateusz Baran Date: Wed, 26 Sep 2018 12:04:14 +0200 Subject: [PATCH 02/11] argument checks for monotonic interpolation --- src/monotonic/monotonic.jl | 17 +++++++++++++---- test/monotonic/runtests.jl | 11 +++++++++++ 2 files changed, 24 insertions(+), 4 deletions(-) diff --git a/src/monotonic/monotonic.jl b/src/monotonic/monotonic.jl index 70b0e0cf..22d06af7 100644 --- a/src/monotonic/monotonic.jl +++ b/src/monotonic/monotonic.jl @@ -52,11 +52,11 @@ struct SteffenMonotonicInterpolation <: MonotonicInterpolationType end struct MonotonicInterpolation{T, TCoeffs, Tel, Type<:MonotonicInterpolationType, - K<:AbstractVector{<:Number}} <: AbstractInterpolation{T,1,DimSpec{Type}} + K<:AbstractVector{<:Number}, AType <: AbstractArray{Tel,1}} <: AbstractInterpolation{T,1,DimSpec{Type}} it::Type knots::K - A::Vector{Tel} + A::AType m::Vector{TCoeffs} c::Vector{TCoeffs} d::Vector{TCoeffs} @@ -66,12 +66,14 @@ end size(A::MonotonicInterpolation) = size(A.knots) axes(A::MonotonicInterpolation) = axes(A.knots) -function MonotonicInterpolation(::Type{TWeights}, it::IType, knots::K, A::Vector{Tel}, +function MonotonicInterpolation(::Type{TWeights}, it::IType, knots::K, A::AbstractArray{Tel,1}, m::Vector{TCoeffs}, c::Vector{TCoeffs}, d::Vector{TCoeffs}) where {TWeights, TCoeffs, Tel, IType<:MonotonicInterpolationType, K<:AbstractVector{<:Number}} isconcretetype(IType) || error("The b-spline type must be a leaf type (was $IType)") isconcretetype(TCoeffs) || warn("For performance reasons, consider using an array of a concrete type (eltype(A) == $(eltype(A)))") + check_monotonic(knots, A) + cZero = zero(TWeights) if isempty(A) T = Base.promote_op(*, typeof(cZero), eltype(A)) @@ -79,12 +81,14 @@ function MonotonicInterpolation(::Type{TWeights}, it::IType, knots::K, A::Vector T = typeof(cZero * first(A)) end - MonotonicInterpolation{T, TCoeffs, Tel, IType, K}(it, knots, A, m, c, d) + MonotonicInterpolation{T, TCoeffs, Tel, IType, K, typeof(A)}(it, knots, A, m, c, d) end function interpolate(::Type{TWeights}, ::Type{TCoeffs}, knots::K, A::AbstractArray{Tel,1}, it::IT) where {TWeights,TCoeffs,Tel,K<:AbstractVector{<:Number},IT<:MonotonicInterpolationType} + check_monotonic(knots, A) + # first we need to determine tangents (m) n = length(knots) m, Δ = calcTangents(TCoeffs, knots, A, it) @@ -122,6 +126,11 @@ function (itp::MonotonicInterpolation)(x::Number) return itp.A[k] + itp.m[k]*xdiff + itp.c[k]*xdiff*xdiff + itp.d[k]*xdiff*xdiff*xdiff end +@inline function check_monotonic(knots, A) + axes(knots) == axes(A) || throw(DimensionMismatch("knot vector must have the same axes as the corresponding array")) + issorted(knots) || error("knot-vector must be sorted in increasing order") +end + function calcTangents(::Type{TCoeffs}, x::AbstractVector{<:Number}, y::AbstractVector{Tel}, method::LinearMonotonicInterpolation) where {TCoeffs, Tel} diff --git a/test/monotonic/runtests.jl b/test/monotonic/runtests.jl index f56aca1a..9d71d221 100644 --- a/test/monotonic/runtests.jl +++ b/test/monotonic/runtests.jl @@ -40,4 +40,15 @@ using Interpolations end end end + + # fail tests + xWrong = [0.0, 1.0, -5.0, 3.0] + y2 = [1.0, 2.0, 3.0, 4.0] + y3 = [-3.0 0.0 5.0 10.0 18.0 22.0] + + for (it, overshoot) in itypes + @test_throws ErrorException interpolate(xWrong, y2, it) + @test_throws DimensionMismatch interpolate(x, y2, it) + @test_throws MethodError interpolate(x, y3, it) + end end From 28ad194a0f3709fd66cc012a6da557deab0c4bf1 Mon Sep 17 00:00:00 2001 From: Mateusz Baran Date: Wed, 26 Sep 2018 12:36:50 +0200 Subject: [PATCH 03/11] derivatives for monotonic interpolation --- src/monotonic/monotonic.jl | 17 ++++++++++++++--- test/gradient.jl | 24 ++++++++++++++++++++++++ 2 files changed, 38 insertions(+), 3 deletions(-) diff --git a/src/monotonic/monotonic.jl b/src/monotonic/monotonic.jl index 22d06af7..4a084cfe 100644 --- a/src/monotonic/monotonic.jl +++ b/src/monotonic/monotonic.jl @@ -113,19 +113,30 @@ function interpolate(knots::AbstractVector{<:Number}, A::AbstractArray{Tel,1}, interpolate(tweight(A), tcoef(A), knots, A, it) end -function (itp::MonotonicInterpolation)(x::Number) - x >= itp.knots[1] || return - x <= itp.knots[end] || return +@inline function findKnot(itp::MonotonicInterpolation, x::Number) + x >= itp.knots[1] || error("Given number $x is outside of interpolated range [$(itp.knots[1]), $(itp.knots[end])]") + x <= itp.knots[end] || error("Given number $x is outside of interpolated range [$(itp.knots[1]), $(itp.knots[end])]") k = 1 n = length(itp.knots) while k < n-1 && x > itp.knots[k+1] k += 1 end + return k +end + +function (itp::MonotonicInterpolation)(x::Number) + k = findKnot(itp, x) xdiff = x - itp.knots[k] return itp.A[k] + itp.m[k]*xdiff + itp.c[k]*xdiff*xdiff + itp.d[k]*xdiff*xdiff*xdiff end +function derivative(itp::MonotonicInterpolation, x::Number) + k = findKnot(itp, x) + xdiff = x - itp.knots[k] + return itp.m[k] + 2*itp.c[k]*xdiff + 3*itp.d[k]*xdiff*xdiff +end + @inline function check_monotonic(knots, A) axes(knots) == axes(A) || throw(DimensionMismatch("knot vector must have the same axes as the corresponding array")) issorted(knots) || error("knot-vector must be sorted in increasing order") diff --git a/test/gradient.jl b/test/gradient.jl index e91ec703..a35661dc 100644 --- a/test/gradient.jl +++ b/test/gradient.jl @@ -163,4 +163,28 @@ using Test, Interpolations, DualNumbers, LinearAlgebra end end + @testset "Monotonic" begin + x = [0.0, 0.2, 0.5, 0.6, 0.9, 1.0] + ys = [[-3.0, 0.0, 5.0, 10.0, 18.0, 22.0], + [10.0, 0.0, -5.0, 10.0, -8.0, -2.0]] + grid = 0.0:0.1:1.0 + + itypes = [LinearMonotonicInterpolation(), + FiniteDifferenceMonotonicInterpolation(), + CardinalMonotonicInterpolation(0.0), + CardinalMonotonicInterpolation(0.5), + CardinalMonotonicInterpolation(1.0), + FritschCarlsonMonotonicInterpolation(), + FritschButlandMonotonicInterpolation(), + SteffenMonotonicInterpolation()] + + for y in ys + for it in itypes + itp = interpolate(x, y, it) + for t in grid + @test Interpolations.derivative(itp, t) ≈ epsilon(itp(dual(t, 1.0))) atol = 1.e-12 + end + end + end + end end From 1bfd8d2011471e5ee95d8f17b83b98f87dd92dbf Mon Sep 17 00:00:00 2001 From: Mateusz Baran Date: Wed, 26 Sep 2018 12:53:26 +0200 Subject: [PATCH 04/11] Documentation for monotonic interpolation --- src/monotonic/monotonic.jl | 58 +++++++++++++++++++++++++++++++++++++- 1 file changed, 57 insertions(+), 1 deletion(-) diff --git a/src/monotonic/monotonic.jl b/src/monotonic/monotonic.jl index 4a084cfe..ee2670ca 100644 --- a/src/monotonic/monotonic.jl +++ b/src/monotonic/monotonic.jl @@ -22,7 +22,6 @@ =# export - MonotonicInterpolationType, LinearMonotonicInterpolation, FiniteDifferenceMonotonicInterpolation, CardinalMonotonicInterpolation, @@ -30,27 +29,84 @@ export FritschButlandMonotonicInterpolation, SteffenMonotonicInterpolation +""" + MonotonicInterpolationType + +Abstract class for all types of monotonic interpolation. +""" abstract type MonotonicInterpolationType <: InterpolationType end +""" + LinearMonotonicInterpolation + +Simple linear interpolation. +""" struct LinearMonotonicInterpolation <: MonotonicInterpolationType end +""" + FiniteDifferenceMonotonicInterpolation + +Classic cubic interpolation, no tension parameter. +Finite difference can overshoot for non-monotonic data. +""" struct FiniteDifferenceMonotonicInterpolation <: MonotonicInterpolationType end +""" + CardinalMonotonicInterpolation(tension) + +Cubic cardinal splines, uses `tension` parameter which must be between [0,1] +Cubin cardinal splines can overshoot for non-monotonic data +(increasing tension reduces overshoot). +""" struct CardinalMonotonicInterpolation{T<:Number} <: MonotonicInterpolationType tension :: T # must be in [0, 1] end +""" + FritschCarlsonMonotonicInterpolation + +Monotonic interpolation based on Fritsch & Carlson (1980), +"Monotone Piecewise Cubic Interpolation", doi:10.1137/0717021. + +Tangents are first initialized, then adjusted if they are not monotonic +can overshoot for non-monotonic data +""" struct FritschCarlsonMonotonicInterpolation <: MonotonicInterpolationType end +""" + FritschButlandMonotonicInterpolation + +Monotonic interpolation based on Fritsch & Butland (1984), +"A Method for Constructing Local Monotone Piecewise Cubic Interpolants", +doi:10.1137/0905021. + +Faster than FritschCarlsonMonotonicInterpolation (only requires one pass) +but somewhat higher apparent "tension". +""" struct FritschButlandMonotonicInterpolation <: MonotonicInterpolationType end +""" + SteffenMonotonicInterpolation + +Monotonic interpolation based on Steffen (1990), +"A Simple Method for Monotonic Interpolation in One Dimension", +http://adsabs.harvard.edu/abs/1990A%26A...239..443S + +Only one pass, results usually between FritschCarlson and FritschButland. +""" struct SteffenMonotonicInterpolation <: MonotonicInterpolationType end +""" + MonotonicInterpolation + +Monotonic interpolation up to third order represented by type, knots and +coefficients. Type is any concrete subtype of `MonotonicInterpolationType`. +""" struct MonotonicInterpolation{T, TCoeffs, Tel, Type<:MonotonicInterpolationType, K<:AbstractVector{<:Number}, AType <: AbstractArray{Tel,1}} <: AbstractInterpolation{T,1,DimSpec{Type}} From 9d651022cea95667a754ead61aad666a68e63c5b Mon Sep 17 00:00:00 2001 From: Mateusz Baran Date: Wed, 26 Sep 2018 13:53:16 +0200 Subject: [PATCH 05/11] faster knot searching in monotonic interpolation --- src/monotonic/monotonic.jl | 20 ++++++++------------ 1 file changed, 8 insertions(+), 12 deletions(-) diff --git a/src/monotonic/monotonic.jl b/src/monotonic/monotonic.jl index ee2670ca..014be197 100644 --- a/src/monotonic/monotonic.jl +++ b/src/monotonic/monotonic.jl @@ -169,26 +169,22 @@ function interpolate(knots::AbstractVector{<:Number}, A::AbstractArray{Tel,1}, interpolate(tweight(A), tcoef(A), knots, A, it) end -@inline function findKnot(itp::MonotonicInterpolation, x::Number) +function (itp::MonotonicInterpolation)(x::Number) x >= itp.knots[1] || error("Given number $x is outside of interpolated range [$(itp.knots[1]), $(itp.knots[end])]") x <= itp.knots[end] || error("Given number $x is outside of interpolated range [$(itp.knots[1]), $(itp.knots[end])]") - - k = 1 - n = length(itp.knots) - while k < n-1 && x > itp.knots[k+1] - k += 1 + k = searchsortedfirst(itp.knots, x) + if k > 1 + k -= 1 end - return k -end - -function (itp::MonotonicInterpolation)(x::Number) - k = findKnot(itp, x) xdiff = x - itp.knots[k] return itp.A[k] + itp.m[k]*xdiff + itp.c[k]*xdiff*xdiff + itp.d[k]*xdiff*xdiff*xdiff end function derivative(itp::MonotonicInterpolation, x::Number) - k = findKnot(itp, x) + k = searchsortedfirst(itp.knots, x) + if k > 1 + k -= 1 + end xdiff = x - itp.knots[k] return itp.m[k] + 2*itp.c[k]*xdiff + 3*itp.d[k]*xdiff*xdiff end From 9c687b48762aa8b3b51ceb277b67c2284194ced2 Mon Sep 17 00:00:00 2001 From: Mateusz Baran Date: Wed, 26 Sep 2018 20:00:01 +0200 Subject: [PATCH 06/11] minor changes in monotonic interpolation * additional documentation for interpolation coefficients * references added to `calcTangents` for Fritsch & Butland and Steffen methods * changed the type parameter name `K` to `TKnots` * changed "b-spline" to "spline" in error string --- src/monotonic/monotonic.jl | 36 ++++++++++++++++++++++-------------- 1 file changed, 22 insertions(+), 14 deletions(-) diff --git a/src/monotonic/monotonic.jl b/src/monotonic/monotonic.jl index 014be197..55cc66d4 100644 --- a/src/monotonic/monotonic.jl +++ b/src/monotonic/monotonic.jl @@ -105,27 +105,27 @@ end MonotonicInterpolation Monotonic interpolation up to third order represented by type, knots and -coefficients. Type is any concrete subtype of `MonotonicInterpolationType`. +coefficients. """ struct MonotonicInterpolation{T, TCoeffs, Tel, Type<:MonotonicInterpolationType, - K<:AbstractVector{<:Number}, AType <: AbstractArray{Tel,1}} <: AbstractInterpolation{T,1,DimSpec{Type}} + TKnots<:AbstractVector{<:Number}, AType <: AbstractArray{Tel,1}} <: AbstractInterpolation{T,1,DimSpec{Type}} it::Type - knots::K - A::AType - m::Vector{TCoeffs} - c::Vector{TCoeffs} - d::Vector{TCoeffs} + knots::TKnots + A::AType # constant parts of piecewise polynomials + m::Vector{TCoeffs} # coefficients of linear parts of piecewise polynomials + c::Vector{TCoeffs} # coefficients of quadratic parts of piecewise polynomials + d::Vector{TCoeffs} # coefficients of cubic parts of piecewise polynomials end size(A::MonotonicInterpolation) = size(A.knots) axes(A::MonotonicInterpolation) = axes(A.knots) -function MonotonicInterpolation(::Type{TWeights}, it::IType, knots::K, A::AbstractArray{Tel,1}, - m::Vector{TCoeffs}, c::Vector{TCoeffs}, d::Vector{TCoeffs}) where {TWeights, TCoeffs, Tel, IType<:MonotonicInterpolationType, K<:AbstractVector{<:Number}} +function MonotonicInterpolation(::Type{TWeights}, it::IType, knots::TKnots, A::AbstractArray{Tel,1}, + m::Vector{TCoeffs}, c::Vector{TCoeffs}, d::Vector{TCoeffs}) where {TWeights, TCoeffs, Tel, IType<:MonotonicInterpolationType, TKnots<:AbstractVector{<:Number}} - isconcretetype(IType) || error("The b-spline type must be a leaf type (was $IType)") + isconcretetype(IType) || error("The spline type must be a leaf type (was $IType)") isconcretetype(TCoeffs) || warn("For performance reasons, consider using an array of a concrete type (eltype(A) == $(eltype(A)))") check_monotonic(knots, A) @@ -137,11 +137,11 @@ function MonotonicInterpolation(::Type{TWeights}, it::IType, knots::K, A::Abstra T = typeof(cZero * first(A)) end - MonotonicInterpolation{T, TCoeffs, Tel, IType, K, typeof(A)}(it, knots, A, m, c, d) + MonotonicInterpolation{T, TCoeffs, Tel, IType, TKnots, typeof(A)}(it, knots, A, m, c, d) end -function interpolate(::Type{TWeights}, ::Type{TCoeffs}, knots::K, - A::AbstractArray{Tel,1}, it::IT) where {TWeights,TCoeffs,Tel,K<:AbstractVector{<:Number},IT<:MonotonicInterpolationType} +function interpolate(::Type{TWeights}, ::Type{TCoeffs}, knots::TKnots, + A::AbstractArray{Tel,1}, it::IT) where {TWeights,TCoeffs,Tel,TKnots<:AbstractVector{<:Number},IT<:MonotonicInterpolationType} check_monotonic(knots, A) @@ -164,7 +164,7 @@ function interpolate(::Type{TWeights}, ::Type{TCoeffs}, knots::K, end function interpolate(knots::AbstractVector{<:Number}, A::AbstractArray{Tel,1}, - it::IT) where {Tel,N,IT<:MonotonicInterpolationType} + it::IT) where {Tel,IT<:MonotonicInterpolationType} interpolate(tweight(A), tcoef(A), knots, A, it) end @@ -300,6 +300,10 @@ end function calcTangents(::Type{TCoeffs}, x::AbstractVector{<:Number}, y :: AbstractVector{Tel}, method :: FritschButlandMonotonicInterpolation) where {TCoeffs, Tel} + # based on Fritsch & Butland (1984), + # "A Method for Constructing Local Monotone Piecewise Cubic Interpolants", + # doi:10.1137/0905021. + n = length(x) Δ = Vector{TCoeffs}(undef, n-1) m = Vector{TCoeffs}(undef, n) @@ -322,6 +326,10 @@ end function calcTangents(::Type{TCoeffs}, x::AbstractVector{<:Number}, y::AbstractVector{Tel}, method::SteffenMonotonicInterpolation) where {TCoeffs, Tel} + # Steffen (1990), + # "A Simple Method for Monotonic Interpolation in One Dimension", + # http://adsabs.harvard.edu/abs/1990A%26A...239..443S + n = length(x) Δ = Vector{TCoeffs}(undef, n-1) m = Vector{TCoeffs}(undef, n) From c3763e3e4b150be1e87e3c4a948a0a9a787001b5 Mon Sep 17 00:00:00 2001 From: Mateusz Baran Date: Thu, 27 Sep 2018 10:15:55 +0200 Subject: [PATCH 07/11] more coherent type parameter naming in monotonic interpolation --- src/monotonic/monotonic.jl | 42 +++++++++++++++++++------------------- 1 file changed, 21 insertions(+), 21 deletions(-) diff --git a/src/monotonic/monotonic.jl b/src/monotonic/monotonic.jl index 55cc66d4..6edaac51 100644 --- a/src/monotonic/monotonic.jl +++ b/src/monotonic/monotonic.jl @@ -60,8 +60,8 @@ Cubic cardinal splines, uses `tension` parameter which must be between [0,1] Cubin cardinal splines can overshoot for non-monotonic data (increasing tension reduces overshoot). """ -struct CardinalMonotonicInterpolation{T<:Number} <: MonotonicInterpolationType - tension :: T # must be in [0, 1] +struct CardinalMonotonicInterpolation{TTension<:Number} <: MonotonicInterpolationType + tension :: TTension # must be in [0, 1] end """ @@ -107,12 +107,12 @@ end Monotonic interpolation up to third order represented by type, knots and coefficients. """ -struct MonotonicInterpolation{T, TCoeffs, Tel, Type<:MonotonicInterpolationType, - TKnots<:AbstractVector{<:Number}, AType <: AbstractArray{Tel,1}} <: AbstractInterpolation{T,1,DimSpec{Type}} +struct MonotonicInterpolation{T, TCoeffs, TEl, TInterpolationType<:MonotonicInterpolationType, + TKnots<:AbstractVector{<:Number}, TACoeff <: AbstractArray{TEl,1}} <: AbstractInterpolation{T,1,DimSpec{TInterpolationType}} - it::Type + it::TInterpolationType knots::TKnots - A::AType # constant parts of piecewise polynomials + A::TACoeff # constant parts of piecewise polynomials m::Vector{TCoeffs} # coefficients of linear parts of piecewise polynomials c::Vector{TCoeffs} # coefficients of quadratic parts of piecewise polynomials d::Vector{TCoeffs} # coefficients of cubic parts of piecewise polynomials @@ -122,10 +122,10 @@ end size(A::MonotonicInterpolation) = size(A.knots) axes(A::MonotonicInterpolation) = axes(A.knots) -function MonotonicInterpolation(::Type{TWeights}, it::IType, knots::TKnots, A::AbstractArray{Tel,1}, - m::Vector{TCoeffs}, c::Vector{TCoeffs}, d::Vector{TCoeffs}) where {TWeights, TCoeffs, Tel, IType<:MonotonicInterpolationType, TKnots<:AbstractVector{<:Number}} +function MonotonicInterpolation(::Type{TWeights}, it::TInterpolationType, knots::TKnots, A::AbstractArray{TEl,1}, + m::Vector{TCoeffs}, c::Vector{TCoeffs}, d::Vector{TCoeffs}) where {TWeights, TCoeffs, TEl, TInterpolationType<:MonotonicInterpolationType, TKnots<:AbstractVector{<:Number}} - isconcretetype(IType) || error("The spline type must be a leaf type (was $IType)") + isconcretetype(TInterpolationType) || error("The spline type must be a leaf type (was $TInterpolationType)") isconcretetype(TCoeffs) || warn("For performance reasons, consider using an array of a concrete type (eltype(A) == $(eltype(A)))") check_monotonic(knots, A) @@ -137,11 +137,11 @@ function MonotonicInterpolation(::Type{TWeights}, it::IType, knots::TKnots, A::A T = typeof(cZero * first(A)) end - MonotonicInterpolation{T, TCoeffs, Tel, IType, TKnots, typeof(A)}(it, knots, A, m, c, d) + MonotonicInterpolation{T, TCoeffs, TEl, TInterpolationType, TKnots, typeof(A)}(it, knots, A, m, c, d) end function interpolate(::Type{TWeights}, ::Type{TCoeffs}, knots::TKnots, - A::AbstractArray{Tel,1}, it::IT) where {TWeights,TCoeffs,Tel,TKnots<:AbstractVector{<:Number},IT<:MonotonicInterpolationType} + A::AbstractArray{TEl,1}, it::TInterpolationType) where {TWeights,TCoeffs,TEl,TKnots<:AbstractVector{<:Number},TInterpolationType<:MonotonicInterpolationType} check_monotonic(knots, A) @@ -151,7 +151,7 @@ function interpolate(::Type{TWeights}, ::Type{TCoeffs}, knots::TKnots, c = Vector{TCoeffs}(undef, n-1) d = Vector{TCoeffs}(undef, n-1) for k ∈ 1:n-1 - if IT == LinearMonotonicInterpolation + if TInterpolationType == LinearMonotonicInterpolation c[k] = d[k] = zero(TCoeffs) else xdiff = knots[k+1] - knots[k] @@ -163,8 +163,8 @@ function interpolate(::Type{TWeights}, ::Type{TCoeffs}, knots::TKnots, MonotonicInterpolation(TWeights, it, knots, A, m, c, d) end -function interpolate(knots::AbstractVector{<:Number}, A::AbstractArray{Tel,1}, - it::IT) where {Tel,IT<:MonotonicInterpolationType} +function interpolate(knots::AbstractVector{<:Number}, A::AbstractArray{TEl,1}, + it::TInterpolationType) where {TEl,TInterpolationType<:MonotonicInterpolationType} interpolate(tweight(A), tcoef(A), knots, A, it) end @@ -195,7 +195,7 @@ end end function calcTangents(::Type{TCoeffs}, x::AbstractVector{<:Number}, - y::AbstractVector{Tel}, method::LinearMonotonicInterpolation) where {TCoeffs, Tel} + y::AbstractVector{TEl}, method::LinearMonotonicInterpolation) where {TCoeffs, TEl} n = length(x) Δ = Vector{TCoeffs}(undef, n-1) @@ -210,7 +210,7 @@ function calcTangents(::Type{TCoeffs}, x::AbstractVector{<:Number}, end function calcTangents(::Type{TCoeffs}, x::AbstractVector{<:Number}, - y::AbstractVector{Tel}, method::FiniteDifferenceMonotonicInterpolation) where {TCoeffs, Tel} + y::AbstractVector{TEl}, method::FiniteDifferenceMonotonicInterpolation) where {TCoeffs, TEl} n = length(x) Δ = Vector{TCoeffs}(undef, n-1) @@ -229,7 +229,7 @@ function calcTangents(::Type{TCoeffs}, x::AbstractVector{<:Number}, end function calcTangents(::Type{TCoeffs}, x::AbstractVector{<:Number}, - y::AbstractVector{Tel}, method::CardinalMonotonicInterpolation{T}) where {T, TCoeffs, Tel} + y::AbstractVector{TEl}, method::CardinalMonotonicInterpolation{TTension}) where {TTension, TCoeffs, TEl} n = length(x) Δ = Vector{TCoeffs}(undef, n-1) @@ -240,7 +240,7 @@ function calcTangents(::Type{TCoeffs}, x::AbstractVector{<:Number}, if k == 1 # left endpoint m[k] = Δk else - m[k] = (oneunit(T) - method.tension) * (y[k+1] - y[k-1]) / (x[k+1] - x[k-1]) + m[k] = (oneunit(TTension) - method.tension) * (y[k+1] - y[k-1]) / (x[k+1] - x[k-1]) end end m[n] = Δ[n-1] @@ -248,7 +248,7 @@ function calcTangents(::Type{TCoeffs}, x::AbstractVector{<:Number}, end function calcTangents(::Type{TCoeffs}, x::AbstractVector{<:Number}, - y::AbstractVector{Tel}, method::FritschCarlsonMonotonicInterpolation) where {TCoeffs, Tel} + y::AbstractVector{TEl}, method::FritschCarlsonMonotonicInterpolation) where {TCoeffs, TEl} n = length(x) Δ = Vector{TCoeffs}(undef, n-1) @@ -298,7 +298,7 @@ function calcTangents(::Type{TCoeffs}, x::AbstractVector{<:Number}, end function calcTangents(::Type{TCoeffs}, x::AbstractVector{<:Number}, - y :: AbstractVector{Tel}, method :: FritschButlandMonotonicInterpolation) where {TCoeffs, Tel} + y :: AbstractVector{TEl}, method :: FritschButlandMonotonicInterpolation) where {TCoeffs, TEl} # based on Fritsch & Butland (1984), # "A Method for Constructing Local Monotone Piecewise Cubic Interpolants", @@ -324,7 +324,7 @@ function calcTangents(::Type{TCoeffs}, x::AbstractVector{<:Number}, end function calcTangents(::Type{TCoeffs}, x::AbstractVector{<:Number}, - y::AbstractVector{Tel}, method::SteffenMonotonicInterpolation) where {TCoeffs, Tel} + y::AbstractVector{TEl}, method::SteffenMonotonicInterpolation) where {TCoeffs, TEl} # Steffen (1990), # "A Simple Method for Monotonic Interpolation in One Dimension", From 89dec3babf9211f7b4c75c1c93663870db1a7259 Mon Sep 17 00:00:00 2001 From: Mateusz Baran Date: Thu, 27 Sep 2018 19:11:02 +0200 Subject: [PATCH 08/11] new gradient, gradient1, hessian and hessian1 function for monotonic interpolation --- src/monotonic/monotonic.jl | 21 ++++++++++++++++++++- test/gradient.jl | 4 +++- test/hessian.jl | 30 +++++++++++++++++++++++++++++- test/plots/monotonic/sanity.jl | 2 +- 4 files changed, 53 insertions(+), 4 deletions(-) diff --git a/src/monotonic/monotonic.jl b/src/monotonic/monotonic.jl index 6edaac51..28d13770 100644 --- a/src/monotonic/monotonic.jl +++ b/src/monotonic/monotonic.jl @@ -180,7 +180,12 @@ function (itp::MonotonicInterpolation)(x::Number) return itp.A[k] + itp.m[k]*xdiff + itp.c[k]*xdiff*xdiff + itp.d[k]*xdiff*xdiff*xdiff end -function derivative(itp::MonotonicInterpolation, x::Number) +function gradient(itp::MonotonicInterpolation, x::AbstractArray{<:Number, 1}) + length(x) == 1 || error("Given vector x ($x) should have exactly one element") + return SVector(gradient1(itp, x[1])) +end + +function gradient1(itp::MonotonicInterpolation, x::Number) k = searchsortedfirst(itp.knots, x) if k > 1 k -= 1 @@ -189,6 +194,20 @@ function derivative(itp::MonotonicInterpolation, x::Number) return itp.m[k] + 2*itp.c[k]*xdiff + 3*itp.d[k]*xdiff*xdiff end +function hessian(itp::MonotonicInterpolation, x::AbstractArray{<:Number, 1}) + length(x) == 1 || error("Given vector x ($x) should have exactly one element") + return SVector(hessian1(itp, x[1])) +end + +function hessian1(itp::MonotonicInterpolation, x::Number) + k = searchsortedfirst(itp.knots, x) + if k > 1 + k -= 1 + end + xdiff = x - itp.knots[k] + return 2*itp.c[k] + 6*itp.d[k]*xdiff +end + @inline function check_monotonic(knots, A) axes(knots) == axes(A) || throw(DimensionMismatch("knot vector must have the same axes as the corresponding array")) issorted(knots) || error("knot-vector must be sorted in increasing order") diff --git a/test/gradient.jl b/test/gradient.jl index a35661dc..20e60cf5 100644 --- a/test/gradient.jl +++ b/test/gradient.jl @@ -182,7 +182,9 @@ using Test, Interpolations, DualNumbers, LinearAlgebra for it in itypes itp = interpolate(x, y, it) for t in grid - @test Interpolations.derivative(itp, t) ≈ epsilon(itp(dual(t, 1.0))) atol = 1.e-12 + gradval = epsilon(itp(dual(t, 1.0))) + @test Interpolations.gradient1(itp, t) ≈ gradval atol = 1.e-12 + @test Interpolations.gradient(itp, [t])[1] ≈ gradval atol = 1.e-12 end end end diff --git a/test/hessian.jl b/test/hessian.jl index 2af7574d..c128668a 100644 --- a/test/hessian.jl +++ b/test/hessian.jl @@ -1,4 +1,4 @@ -using Test, Interpolations, LinearAlgebra +using Test, Interpolations, LinearAlgebra, ForwardDiff @testset "Hessians" begin nx = 5 @@ -42,4 +42,32 @@ using Test, Interpolations, LinearAlgebra v = A2[:, 2] itpcol = interpolate(v, BSpline(Quadratic(Flat(OnCell())))) @test Interpolations.hessian(itp, 3.2, 2) == Interpolations.hessian(itpcol, 3.2) + + + @testset "Monotonic" begin + x = [0.0, 0.2, 0.5, 0.6, 0.9, 1.0] + ys = [[-3.0, 0.0, 5.0, 10.0, 18.0, 22.0], + [10.0, 0.0, -5.0, 10.0, -8.0, -2.0]] + grid = 0.0:0.1:1.0 + + itypes = [LinearMonotonicInterpolation(), + FiniteDifferenceMonotonicInterpolation(), + CardinalMonotonicInterpolation(0.0), + CardinalMonotonicInterpolation(0.5), + CardinalMonotonicInterpolation(1.0), + FritschCarlsonMonotonicInterpolation(), + FritschButlandMonotonicInterpolation(), + SteffenMonotonicInterpolation()] + + for y in ys + for it in itypes + itp = interpolate(x, y, it) + for t in grid + hessval = ForwardDiff.hessian(u -> itp(u[1]), [t])[1, 1] + @test Interpolations.hessian1(itp, t) ≈ hessval atol = 1.e-12 + @test Interpolations.hessian(itp, [t])[1] ≈ hessval atol = 1.e-12 + end + end + end + end end diff --git a/test/plots/monotonic/sanity.jl b/test/plots/monotonic/sanity.jl index b5505cd6..419e84c1 100644 --- a/test/plots/monotonic/sanity.jl +++ b/test/plots/monotonic/sanity.jl @@ -7,7 +7,7 @@ x = [0.0, 0.2, 0.5, 0.6, 0.9, 1.0] y = [10.0, 0.0, -5.0, 10.0, -8.0, -2.0] grid = 0.0:0.002:1.0 -itypes = MonotonicInterpolationType[LinearMonotonicInterpolation(), +itypes = [LinearMonotonicInterpolation(), FiniteDifferenceMonotonicInterpolation(), CardinalMonotonicInterpolation(0.0), CardinalMonotonicInterpolation(0.5), From 514185a3e663da272e0de138587346f9d8f343ca Mon Sep 17 00:00:00 2001 From: Tim Holy Date: Fri, 28 Sep 2018 07:14:36 -0500 Subject: [PATCH 09/11] Small fixes for Monotonic indexing rules --- src/monotonic/monotonic.jl | 19 +++++++++---------- 1 file changed, 9 insertions(+), 10 deletions(-) diff --git a/src/monotonic/monotonic.jl b/src/monotonic/monotonic.jl index 28d13770..fb385851 100644 --- a/src/monotonic/monotonic.jl +++ b/src/monotonic/monotonic.jl @@ -170,8 +170,7 @@ function interpolate(knots::AbstractVector{<:Number}, A::AbstractArray{TEl,1}, end function (itp::MonotonicInterpolation)(x::Number) - x >= itp.knots[1] || error("Given number $x is outside of interpolated range [$(itp.knots[1]), $(itp.knots[end])]") - x <= itp.knots[end] || error("Given number $x is outside of interpolated range [$(itp.knots[1]), $(itp.knots[end])]") + @boundscheck (checkbounds(Bool, itp, x) || Base.throw_boundserror(itp, (x,))) k = searchsortedfirst(itp.knots, x) if k > 1 k -= 1 @@ -180,12 +179,12 @@ function (itp::MonotonicInterpolation)(x::Number) return itp.A[k] + itp.m[k]*xdiff + itp.c[k]*xdiff*xdiff + itp.d[k]*xdiff*xdiff*xdiff end -function gradient(itp::MonotonicInterpolation, x::AbstractArray{<:Number, 1}) - length(x) == 1 || error("Given vector x ($x) should have exactly one element") - return SVector(gradient1(itp, x[1])) +function gradient(itp::MonotonicInterpolation, x::Number) + return SVector(gradient1(itp, x)) end function gradient1(itp::MonotonicInterpolation, x::Number) + @boundscheck (checkbounds(Bool, itp, x) || Base.throw_boundserror(itp, (x,))) k = searchsortedfirst(itp.knots, x) if k > 1 k -= 1 @@ -194,12 +193,12 @@ function gradient1(itp::MonotonicInterpolation, x::Number) return itp.m[k] + 2*itp.c[k]*xdiff + 3*itp.d[k]*xdiff*xdiff end -function hessian(itp::MonotonicInterpolation, x::AbstractArray{<:Number, 1}) - length(x) == 1 || error("Given vector x ($x) should have exactly one element") - return SVector(hessian1(itp, x[1])) +function hessian(itp::MonotonicInterpolation, x::Number) + return SVector(hessian1(itp, x)) end function hessian1(itp::MonotonicInterpolation, x::Number) + @boundscheck (checkbounds(Bool, itp, x) || Base.throw_boundserror(itp, (x,))) k = searchsortedfirst(itp.knots, x) if k > 1 k -= 1 @@ -370,5 +369,5 @@ end # How many non-NoInterp dimensions are there? count_interp_dims(::Type{<:MonotonicInterpolationType}) = 1 -lbounds(itp::MonotonicInterpolation) = first(itp.knots) -ubounds(itp::MonotonicInterpolation) = last(itp.knots) +lbounds(itp::MonotonicInterpolation) = (first(itp.knots),) +ubounds(itp::MonotonicInterpolation) = (last(itp.knots),) From a2144cfa7c42b994ea02998f60a04cffae45ebc5 Mon Sep 17 00:00:00 2001 From: Mateusz Baran Date: Fri, 28 Sep 2018 14:46:20 +0200 Subject: [PATCH 10/11] Removal of two incorrect tests for monotonic interpolation. They test gradient/hessian with array as an argument. --- test/gradient.jl | 1 - test/hessian.jl | 1 - 2 files changed, 2 deletions(-) diff --git a/test/gradient.jl b/test/gradient.jl index 3d65b00f..2123113f 100644 --- a/test/gradient.jl +++ b/test/gradient.jl @@ -194,7 +194,6 @@ using Test, Interpolations, DualNumbers, LinearAlgebra for t in grid gradval = epsilon(itp(dual(t, 1.0))) @test Interpolations.gradient1(itp, t) ≈ gradval atol = 1.e-12 - @test Interpolations.gradient(itp, [t])[1] ≈ gradval atol = 1.e-12 end end end diff --git a/test/hessian.jl b/test/hessian.jl index c128668a..8ee7daee 100644 --- a/test/hessian.jl +++ b/test/hessian.jl @@ -65,7 +65,6 @@ using Test, Interpolations, LinearAlgebra, ForwardDiff for t in grid hessval = ForwardDiff.hessian(u -> itp(u[1]), [t])[1, 1] @test Interpolations.hessian1(itp, t) ≈ hessval atol = 1.e-12 - @test Interpolations.hessian(itp, [t])[1] ≈ hessval atol = 1.e-12 end end end From e6a38cb4f89de2546f11b04bf5a53896bcff5ad6 Mon Sep 17 00:00:00 2001 From: Mateusz Baran Date: Fri, 28 Sep 2018 15:59:27 +0200 Subject: [PATCH 11/11] Re-insertion of fixed gradient/hessian tests for monotonic interpolation --- test/gradient.jl | 1 + test/hessian.jl | 1 + 2 files changed, 2 insertions(+) diff --git a/test/gradient.jl b/test/gradient.jl index 2123113f..6c0ec136 100644 --- a/test/gradient.jl +++ b/test/gradient.jl @@ -194,6 +194,7 @@ using Test, Interpolations, DualNumbers, LinearAlgebra for t in grid gradval = epsilon(itp(dual(t, 1.0))) @test Interpolations.gradient1(itp, t) ≈ gradval atol = 1.e-12 + @test Interpolations.gradient(itp, t)[1] ≈ gradval atol = 1.e-12 end end end diff --git a/test/hessian.jl b/test/hessian.jl index 8ee7daee..297f6965 100644 --- a/test/hessian.jl +++ b/test/hessian.jl @@ -65,6 +65,7 @@ using Test, Interpolations, LinearAlgebra, ForwardDiff for t in grid hessval = ForwardDiff.hessian(u -> itp(u[1]), [t])[1, 1] @test Interpolations.hessian1(itp, t) ≈ hessval atol = 1.e-12 + @test Interpolations.hessian(itp, t)[1] ≈ hessval atol = 1.e-12 end end end