diff --git a/src/Interpolations.jl b/src/Interpolations.jl index b7cd1e3e..91a50669 100644 --- a/src/Interpolations.jl +++ b/src/Interpolations.jl @@ -28,6 +28,7 @@ export # see the following files for further exports: # b-splines/b-splines.jl # extrapolation/extrapolation.jl + # monotonic/monotonic.jl # scaling/scaling.jl using LinearAlgebra, SparseArrays @@ -388,6 +389,7 @@ end include("nointerp/nointerp.jl") include("b-splines/b-splines.jl") include("gridded/gridded.jl") +include("monotonic/monotonic.jl") include("extrapolation/extrapolation.jl") include("scaling/scaling.jl") include("utils.jl") diff --git a/src/io.jl b/src/io.jl index da0bdffb..eae584f2 100644 --- a/src/io.jl +++ b/src/io.jl @@ -44,6 +44,20 @@ function Base.showarg(io::IO, A::ScaledInterpolation{T}, toplevel) where {T} end end +function Base.showarg(io::IO, A::MonotonicInterpolation{T, TCoeffs, Tel, Type, K}, toplevel) where {T, TCoeffs, Tel, Type, K} + print(io, "interpolate(") + _showknots(io, A.knots) + print(io, ", ") + Base.showarg(io, A.A, false) + print(io, ", ") + show(io, A.it) + if toplevel + print(io, ") with element type ",T) + else + print(io, ')') + end +end + function Base.showarg(io::IO, A::Extrapolation{T,N,TI,IT,ET}, toplevel) where {T,N,TI,IT,ET} print(io, "extrapolate(") Base.showarg(io, A.itp, false) diff --git a/src/monotonic/monotonic.jl b/src/monotonic/monotonic.jl new file mode 100644 index 00000000..fb385851 --- /dev/null +++ b/src/monotonic/monotonic.jl @@ -0,0 +1,373 @@ + +#= + Interpolate using cubic Hermite splines. The breakpoints in arrays xbp and ybp are assumed to be sorted. + Evaluate the function in all points of the array xeval. + Methods: + "Linear" yuck + "FiniteDifference" classic cubic interpolation, no tension parameter + Finite difference can overshoot for non-monotonic data + "Cardinal" cubic cardinal splines, uses tension parameter which must be between [0,1] + cubin cardinal splines can overshoot for non-monotonic data + (increasing tension decreases overshoot) + "FritschCarlson" monotonic - tangents are first initialized, then adjusted if they are not monotonic + can overshoot for non-monotonic data + "FritschButland" monotonic - faster algorithm (only requires one pass) but somewhat higher apparent "tension" + "Steffen" monotonic - also only one pass, results usually between FritschCarlson and FritschButland + Sources: + Fritsch & Carlson (1980), "Monotone Piecewise Cubic Interpolation", doi:10.1137/0717021. + Fritsch & Butland (1984), "A Method for Constructing Local Monotone Piecewise Cubic Interpolants", doi:10.1137/0905021. + Steffen (1990), "A Simple Method for Monotonic Interpolation in One Dimension", http://adsabs.harvard.edu/abs/1990A%26A...239..443S + + Implementation based on http://bl.ocks.org/niclasmattsson/7bceb05fba6c71c78d507adae3d29417 +=# + +export + LinearMonotonicInterpolation, + FiniteDifferenceMonotonicInterpolation, + CardinalMonotonicInterpolation, + FritschCarlsonMonotonicInterpolation, + FritschButlandMonotonicInterpolation, + SteffenMonotonicInterpolation + +""" + MonotonicInterpolationType + +Abstract class for all types of monotonic interpolation. +""" +abstract type MonotonicInterpolationType <: InterpolationType end + +""" + LinearMonotonicInterpolation + +Simple linear interpolation. +""" +struct LinearMonotonicInterpolation <: MonotonicInterpolationType +end + +""" + FiniteDifferenceMonotonicInterpolation + +Classic cubic interpolation, no tension parameter. +Finite difference can overshoot for non-monotonic data. +""" +struct FiniteDifferenceMonotonicInterpolation <: MonotonicInterpolationType +end + +""" + CardinalMonotonicInterpolation(tension) + +Cubic cardinal splines, uses `tension` parameter which must be between [0,1] +Cubin cardinal splines can overshoot for non-monotonic data +(increasing tension reduces overshoot). +""" +struct CardinalMonotonicInterpolation{TTension<:Number} <: MonotonicInterpolationType + tension :: TTension # must be in [0, 1] +end + +""" + FritschCarlsonMonotonicInterpolation + +Monotonic interpolation based on Fritsch & Carlson (1980), +"Monotone Piecewise Cubic Interpolation", doi:10.1137/0717021. + +Tangents are first initialized, then adjusted if they are not monotonic +can overshoot for non-monotonic data +""" +struct FritschCarlsonMonotonicInterpolation <: MonotonicInterpolationType +end + +""" + FritschButlandMonotonicInterpolation + +Monotonic interpolation based on Fritsch & Butland (1984), +"A Method for Constructing Local Monotone Piecewise Cubic Interpolants", +doi:10.1137/0905021. + +Faster than FritschCarlsonMonotonicInterpolation (only requires one pass) +but somewhat higher apparent "tension". +""" +struct FritschButlandMonotonicInterpolation <: MonotonicInterpolationType +end + +""" + SteffenMonotonicInterpolation + +Monotonic interpolation based on Steffen (1990), +"A Simple Method for Monotonic Interpolation in One Dimension", +http://adsabs.harvard.edu/abs/1990A%26A...239..443S + +Only one pass, results usually between FritschCarlson and FritschButland. +""" +struct SteffenMonotonicInterpolation <: MonotonicInterpolationType +end + +""" + MonotonicInterpolation + +Monotonic interpolation up to third order represented by type, knots and +coefficients. +""" +struct MonotonicInterpolation{T, TCoeffs, TEl, TInterpolationType<:MonotonicInterpolationType, + TKnots<:AbstractVector{<:Number}, TACoeff <: AbstractArray{TEl,1}} <: AbstractInterpolation{T,1,DimSpec{TInterpolationType}} + + it::TInterpolationType + knots::TKnots + A::TACoeff # constant parts of piecewise polynomials + m::Vector{TCoeffs} # coefficients of linear parts of piecewise polynomials + c::Vector{TCoeffs} # coefficients of quadratic parts of piecewise polynomials + d::Vector{TCoeffs} # coefficients of cubic parts of piecewise polynomials +end + + +size(A::MonotonicInterpolation) = size(A.knots) +axes(A::MonotonicInterpolation) = axes(A.knots) + +function MonotonicInterpolation(::Type{TWeights}, it::TInterpolationType, knots::TKnots, A::AbstractArray{TEl,1}, + m::Vector{TCoeffs}, c::Vector{TCoeffs}, d::Vector{TCoeffs}) where {TWeights, TCoeffs, TEl, TInterpolationType<:MonotonicInterpolationType, TKnots<:AbstractVector{<:Number}} + + isconcretetype(TInterpolationType) || error("The spline type must be a leaf type (was $TInterpolationType)") + isconcretetype(TCoeffs) || warn("For performance reasons, consider using an array of a concrete type (eltype(A) == $(eltype(A)))") + + check_monotonic(knots, A) + + cZero = zero(TWeights) + if isempty(A) + T = Base.promote_op(*, typeof(cZero), eltype(A)) + else + T = typeof(cZero * first(A)) + end + + MonotonicInterpolation{T, TCoeffs, TEl, TInterpolationType, TKnots, typeof(A)}(it, knots, A, m, c, d) +end + +function interpolate(::Type{TWeights}, ::Type{TCoeffs}, knots::TKnots, + A::AbstractArray{TEl,1}, it::TInterpolationType) where {TWeights,TCoeffs,TEl,TKnots<:AbstractVector{<:Number},TInterpolationType<:MonotonicInterpolationType} + + check_monotonic(knots, A) + + # first we need to determine tangents (m) + n = length(knots) + m, Δ = calcTangents(TCoeffs, knots, A, it) + c = Vector{TCoeffs}(undef, n-1) + d = Vector{TCoeffs}(undef, n-1) + for k ∈ 1:n-1 + if TInterpolationType == LinearMonotonicInterpolation + c[k] = d[k] = zero(TCoeffs) + else + xdiff = knots[k+1] - knots[k] + c[k] = (3*Δ[k] - 2*m[k] - m[k+1]) / xdiff + d[k] = (m[k] + m[k+1] - 2*Δ[k]) / (xdiff * xdiff) + end + end + + MonotonicInterpolation(TWeights, it, knots, A, m, c, d) +end + +function interpolate(knots::AbstractVector{<:Number}, A::AbstractArray{TEl,1}, + it::TInterpolationType) where {TEl,TInterpolationType<:MonotonicInterpolationType} + + interpolate(tweight(A), tcoef(A), knots, A, it) +end + +function (itp::MonotonicInterpolation)(x::Number) + @boundscheck (checkbounds(Bool, itp, x) || Base.throw_boundserror(itp, (x,))) + k = searchsortedfirst(itp.knots, x) + if k > 1 + k -= 1 + end + xdiff = x - itp.knots[k] + return itp.A[k] + itp.m[k]*xdiff + itp.c[k]*xdiff*xdiff + itp.d[k]*xdiff*xdiff*xdiff +end + +function gradient(itp::MonotonicInterpolation, x::Number) + return SVector(gradient1(itp, x)) +end + +function gradient1(itp::MonotonicInterpolation, x::Number) + @boundscheck (checkbounds(Bool, itp, x) || Base.throw_boundserror(itp, (x,))) + k = searchsortedfirst(itp.knots, x) + if k > 1 + k -= 1 + end + xdiff = x - itp.knots[k] + return itp.m[k] + 2*itp.c[k]*xdiff + 3*itp.d[k]*xdiff*xdiff +end + +function hessian(itp::MonotonicInterpolation, x::Number) + return SVector(hessian1(itp, x)) +end + +function hessian1(itp::MonotonicInterpolation, x::Number) + @boundscheck (checkbounds(Bool, itp, x) || Base.throw_boundserror(itp, (x,))) + k = searchsortedfirst(itp.knots, x) + if k > 1 + k -= 1 + end + xdiff = x - itp.knots[k] + return 2*itp.c[k] + 6*itp.d[k]*xdiff +end + +@inline function check_monotonic(knots, A) + axes(knots) == axes(A) || throw(DimensionMismatch("knot vector must have the same axes as the corresponding array")) + issorted(knots) || error("knot-vector must be sorted in increasing order") +end + +function calcTangents(::Type{TCoeffs}, x::AbstractVector{<:Number}, + y::AbstractVector{TEl}, method::LinearMonotonicInterpolation) where {TCoeffs, TEl} + + n = length(x) + Δ = Vector{TCoeffs}(undef, n-1) + m = Vector{TCoeffs}(undef, n) + for k in 1:n-1 + Δk = (y[k+1] - y[k]) / (x[k+1] - x[k]) + Δ[k] = Δk + m[k] = Δk + end + m[n] = Δ[n-1] + return (m, Δ) +end + +function calcTangents(::Type{TCoeffs}, x::AbstractVector{<:Number}, + y::AbstractVector{TEl}, method::FiniteDifferenceMonotonicInterpolation) where {TCoeffs, TEl} + + n = length(x) + Δ = Vector{TCoeffs}(undef, n-1) + m = Vector{TCoeffs}(undef, n) + for k in 1:n-1 + Δk = (y[k+1] - y[k]) / (x[k+1] - x[k]) + Δ[k] = Δk + if k == 1 # left endpoint + m[k] = Δk + else + m[k] = (Δ[k-1] + Δk) / 2 + end + end + m[n] = Δ[n-1] + return (m, Δ) +end + +function calcTangents(::Type{TCoeffs}, x::AbstractVector{<:Number}, + y::AbstractVector{TEl}, method::CardinalMonotonicInterpolation{TTension}) where {TTension, TCoeffs, TEl} + + n = length(x) + Δ = Vector{TCoeffs}(undef, n-1) + m = Vector{TCoeffs}(undef, n) + for k in 1:n-1 + Δk = (y[k+1] - y[k]) / (x[k+1] - x[k]) + Δ[k] = Δk + if k == 1 # left endpoint + m[k] = Δk + else + m[k] = (oneunit(TTension) - method.tension) * (y[k+1] - y[k-1]) / (x[k+1] - x[k-1]) + end + end + m[n] = Δ[n-1] + return (m, Δ) +end + +function calcTangents(::Type{TCoeffs}, x::AbstractVector{<:Number}, + y::AbstractVector{TEl}, method::FritschCarlsonMonotonicInterpolation) where {TCoeffs, TEl} + + n = length(x) + Δ = Vector{TCoeffs}(undef, n-1) + m = Vector{TCoeffs}(undef, n) + for k in 1:n-1 + Δk = (y[k+1] - y[k]) / (x[k+1] - x[k]) + Δ[k] = Δk + if k == 1 # left endpoint + m[k] = Δk + else + # If any consecutive secant lines change sign (i.e. curve changes direction), initialize the tangent to zero. + # This is needed to make the interpolation monotonic. Otherwise set tangent to the average of the secants. + if Δk <= zero(Δk) + m[k] = zero(TCoeffs) + else + m[k] = Δ[k-1] * (Δ[k-1] + Δk) / 2.0 + end + end + end + m[n] = Δ[n-1] + #= + Fritsch & Carlson derived necessary and sufficient conditions for monotonicity in their 1980 paper. Splines will be + monotonic if all tangents are in a certain region of the alpha-beta plane, with alpha and beta as defined below. + A robust choice is to put alpha & beta within a circle around origo with radius 3. The FritschCarlson algorithm + makes simple initial estimates of tangents and then does another pass over data points to move any outlier tangents + into the monotonic region. FritschButland & Steffen algorithms make more elaborate first estimates of tangents that + are guaranteed to lie in the monotonic region, so no second pass is necessary. + =# + + # Second pass of FritschCarlson: adjust any non-monotonic tangents. + for k in 1:n-1 + Δk = Δ[k] + if Δk == zero(TCoeffs) + m[k] = zero(TCoeffs) + m[k+1] = zero(TCoeffs) + continue + end + α = m[k] / Δk + β = m[k+1] / Δk + τ = 3.0 / sqrt(α^2 + β^2) + if τ < 1.0 # if we're outside the circle with radius 3 then move onto the circle + m[k] = τ * α * Δk + m[k+1] = τ * β * Δk + end + end + return (m, Δ) +end + +function calcTangents(::Type{TCoeffs}, x::AbstractVector{<:Number}, + y :: AbstractVector{TEl}, method :: FritschButlandMonotonicInterpolation) where {TCoeffs, TEl} + + # based on Fritsch & Butland (1984), + # "A Method for Constructing Local Monotone Piecewise Cubic Interpolants", + # doi:10.1137/0905021. + + n = length(x) + Δ = Vector{TCoeffs}(undef, n-1) + m = Vector{TCoeffs}(undef, n) + for k in 1:n-1 + Δk = (y[k+1] - y[k]) / (x[k+1] - x[k]) + Δ[k] = Δk + if k == 1 # left endpoint + m[k] = Δk + elseif Δ[k-1] * Δk <= zero(TCoeffs) + m[k] = zero(TCoeffs) + else + α = (1.0 + (x[k+1] - x[k]) / (x[k+1] - x[k-1])) / 3.0 + m[k] = Δ[k-1] * Δk / (α*Δk + (1.0 - α)*Δ[k-1]) + end + end + m[n] = Δ[n-1] + return (m, Δ) +end + +function calcTangents(::Type{TCoeffs}, x::AbstractVector{<:Number}, + y::AbstractVector{TEl}, method::SteffenMonotonicInterpolation) where {TCoeffs, TEl} + + # Steffen (1990), + # "A Simple Method for Monotonic Interpolation in One Dimension", + # http://adsabs.harvard.edu/abs/1990A%26A...239..443S + + n = length(x) + Δ = Vector{TCoeffs}(undef, n-1) + m = Vector{TCoeffs}(undef, n) + for k in 1:n-1 + Δk = (y[k+1] - y[k]) / (x[k+1] - x[k]) + Δ[k] = Δk + if k == 1 # left endpoint + m[k] = Δk + else + p = ((x[k+1] - x[k]) * Δ[k-1] + (x[k] - x[k-1]) * Δk) / (x[k+1] - x[k-1]) + m[k] = (sign(Δ[k-1]) + sign(Δk)) * + min(abs(Δ[k-1]), abs(Δk), 0.5*abs(p)) + end + end + m[n] = Δ[n-1] + return (m, Δ) +end + +# How many non-NoInterp dimensions are there? +count_interp_dims(::Type{<:MonotonicInterpolationType}) = 1 + +lbounds(itp::MonotonicInterpolation) = (first(itp.knots),) +ubounds(itp::MonotonicInterpolation) = (last(itp.knots),) diff --git a/test/gradient.jl b/test/gradient.jl index 3e8bd4c5..6c0ec136 100644 --- a/test/gradient.jl +++ b/test/gradient.jl @@ -172,4 +172,31 @@ using Test, Interpolations, DualNumbers, LinearAlgebra dest = Vector{Float64}(undef, 1) Interpolations.gradient!(dest, interp_linear, 1.5) @test dest == g + + @testset "Monotonic" begin + x = [0.0, 0.2, 0.5, 0.6, 0.9, 1.0] + ys = [[-3.0, 0.0, 5.0, 10.0, 18.0, 22.0], + [10.0, 0.0, -5.0, 10.0, -8.0, -2.0]] + grid = 0.0:0.1:1.0 + + itypes = [LinearMonotonicInterpolation(), + FiniteDifferenceMonotonicInterpolation(), + CardinalMonotonicInterpolation(0.0), + CardinalMonotonicInterpolation(0.5), + CardinalMonotonicInterpolation(1.0), + FritschCarlsonMonotonicInterpolation(), + FritschButlandMonotonicInterpolation(), + SteffenMonotonicInterpolation()] + + for y in ys + for it in itypes + itp = interpolate(x, y, it) + for t in grid + gradval = epsilon(itp(dual(t, 1.0))) + @test Interpolations.gradient1(itp, t) ≈ gradval atol = 1.e-12 + @test Interpolations.gradient(itp, t)[1] ≈ gradval atol = 1.e-12 + end + end + end + end end diff --git a/test/hessian.jl b/test/hessian.jl index 2af7574d..297f6965 100644 --- a/test/hessian.jl +++ b/test/hessian.jl @@ -1,4 +1,4 @@ -using Test, Interpolations, LinearAlgebra +using Test, Interpolations, LinearAlgebra, ForwardDiff @testset "Hessians" begin nx = 5 @@ -42,4 +42,32 @@ using Test, Interpolations, LinearAlgebra v = A2[:, 2] itpcol = interpolate(v, BSpline(Quadratic(Flat(OnCell())))) @test Interpolations.hessian(itp, 3.2, 2) == Interpolations.hessian(itpcol, 3.2) + + + @testset "Monotonic" begin + x = [0.0, 0.2, 0.5, 0.6, 0.9, 1.0] + ys = [[-3.0, 0.0, 5.0, 10.0, 18.0, 22.0], + [10.0, 0.0, -5.0, 10.0, -8.0, -2.0]] + grid = 0.0:0.1:1.0 + + itypes = [LinearMonotonicInterpolation(), + FiniteDifferenceMonotonicInterpolation(), + CardinalMonotonicInterpolation(0.0), + CardinalMonotonicInterpolation(0.5), + CardinalMonotonicInterpolation(1.0), + FritschCarlsonMonotonicInterpolation(), + FritschButlandMonotonicInterpolation(), + SteffenMonotonicInterpolation()] + + for y in ys + for it in itypes + itp = interpolate(x, y, it) + for t in grid + hessval = ForwardDiff.hessian(u -> itp(u[1]), [t])[1, 1] + @test Interpolations.hessian1(itp, t) ≈ hessval atol = 1.e-12 + @test Interpolations.hessian(itp, t)[1] ≈ hessval atol = 1.e-12 + end + end + end + end end diff --git a/test/io.jl b/test/io.jl index 6027c13e..5c5a9768 100644 --- a/test/io.jl +++ b/test/io.jl @@ -57,6 +57,13 @@ using Test @test summary(sitp2) == "21×41 scale(interpolate(OffsetArray(::Array{Float64,2}, 0:22, 0:42), BSpline(Quadratic(Flat(OnGrid())))), (-5.0:0.5:5.0,$SPACE-4.0:0.2:4.0)) with element type Float64" end + @testset "Monotonic" begin + A = rand(20) + A_x = collect(1.0:2.0:40.0) + itp = interpolate(A_x, A, FritschButlandMonotonicInterpolation()) + @test summary(itp) == "20-element interpolate(::Array{Float64,1}, ::Array{Float64,1}, FritschButlandMonotonicInterpolation()) with element type Float64" + end + @testset "Extrapolation" begin A = rand(8,20) @@ -67,4 +74,4 @@ using Test etpf = extrapolate(itpg, NaN) @test summary(etpf) == "8×20 extrapolate(interpolate(::Array{Float64,2}, BSpline(Linear())), NaN) with element type Float64" end -end # Module +end # testset diff --git a/test/monotonic/runtests.jl b/test/monotonic/runtests.jl new file mode 100644 index 00000000..9d71d221 --- /dev/null +++ b/test/monotonic/runtests.jl @@ -0,0 +1,54 @@ + +using Test +using Interpolations + +@testset "Monotonic" begin + x = [0.0, 0.2, 0.5, 0.6, 0.9, 1.0] + y = [(true, [-3.0, 0.0, 5.0, 10.0, 18.0, 22.0]), + (false, [10.0, 0.0, -5.0, 10.0, -8.0, -2.0])] + + # second item indicates if interpolating function can overshoot + # for non-monotonic data + itypes = [(LinearMonotonicInterpolation(), false), + (FiniteDifferenceMonotonicInterpolation(), true), + (CardinalMonotonicInterpolation(0.0), true), + (CardinalMonotonicInterpolation(0.5), true), + (CardinalMonotonicInterpolation(1.0), false), + (FritschCarlsonMonotonicInterpolation(), true), + (FritschButlandMonotonicInterpolation(), false), + (SteffenMonotonicInterpolation(), false)] + + for (it, overshoot) in itypes + for yi in 1:length(y) + monotonic, ys = y[yi] + itp = interpolate(x, ys, it) + for j in 1:6 + # checking values at nodes + @test itp(x[j]) ≈ ys[j] rtol = 1.e-15 atol = 1.e-14 + + # checking overshoot for non-monotonic data + # and monotonicity for monotonic data + if !monotonic && overshoot + continue + end + if j < 6 + r = range(x[j], stop = x[j+1], length = 100) + for k in 1:length(r)-1 + @test (ys[j+1] - ys[j]) * (itp(r[k+1]) - itp(r[k])) >= 0.0 + end + end + end + end + end + + # fail tests + xWrong = [0.0, 1.0, -5.0, 3.0] + y2 = [1.0, 2.0, 3.0, 4.0] + y3 = [-3.0 0.0 5.0 10.0 18.0 22.0] + + for (it, overshoot) in itypes + @test_throws ErrorException interpolate(xWrong, y2, it) + @test_throws DimensionMismatch interpolate(x, y2, it) + @test_throws MethodError interpolate(x, y3, it) + end +end diff --git a/test/plots/monotonic/sanity.jl b/test/plots/monotonic/sanity.jl new file mode 100644 index 00000000..419e84c1 --- /dev/null +++ b/test/plots/monotonic/sanity.jl @@ -0,0 +1,25 @@ +using Plots +using Interpolations + +pyplot() + +x = [0.0, 0.2, 0.5, 0.6, 0.9, 1.0] +y = [10.0, 0.0, -5.0, 10.0, -8.0, -2.0] +grid = 0.0:0.002:1.0 + +itypes = [LinearMonotonicInterpolation(), + FiniteDifferenceMonotonicInterpolation(), + CardinalMonotonicInterpolation(0.0), + CardinalMonotonicInterpolation(0.5), + CardinalMonotonicInterpolation(1.0), + FritschCarlsonMonotonicInterpolation(), + FritschButlandMonotonicInterpolation(), + SteffenMonotonicInterpolation() + ] + +scatter(x, y, label = "data") +for itype in itypes + itp = interpolate(x, y, itype) + plot!([x for x in grid], [itp(x) for x in grid], label = string(itype)) +end +gui() diff --git a/test/runtests.jl b/test/runtests.jl index c31533d9..8d37d5ac 100644 --- a/test/runtests.jl +++ b/test/runtests.jl @@ -25,6 +25,9 @@ const isci = get(ENV, "CI", "") in ("true", "True") # scaling tests include("scaling/runtests.jl") + # monotonic tests + include("monotonic/runtests.jl") + # test gradient evaluation include("gradient.jl") isci && println("finished gradient")