211
211
212
212
# Integrand & Solution
213
213
function integrand (p:: Meshes.Point )
214
- x₁ = only (ustrip .(( to (p) )))
214
+ x₁ = only (ustrip .(to (p)))
215
215
√ (a^ 2 - x₁^ 2 ) * u " A"
216
216
end
217
217
solution = π * a^ 2 / 4 * u " A*m"
@@ -222,12 +222,13 @@ end
222
222
end
223
223
224
224
@testitem " Meshes.Box 2D" setup= [Combinations] begin
225
+ # Geometry
225
226
a = π
226
227
box = Box (Point (0 , 0 ), Point (a, a))
227
228
228
229
# Integrand & Solution
229
230
function integrand (p:: Meshes.Point )
230
- x₁, x₂ = ustrip .(( to (p) ))
231
+ x₁, x₂ = ustrip .(to (p))
231
232
(√ (a^ 2 - x₁^ 2 ) + √ (a^ 2 - x₂^ 2 )) * u " A"
232
233
end
233
234
solution = 2 a * (π * a^ 2 / 4 ) * u " A*m^2"
244
245
245
246
# Integrand & Solution
246
247
function integrand (p:: Meshes.Point )
247
- x₁, x₂, x₃ = ustrip .(( to (p) ))
248
+ x₁, x₂, x₃ = ustrip .(to (p))
248
249
(√ (a^ 2 - x₁^ 2 ) + √ (a^ 2 - x₂^ 2 ) + √ (a^ 2 - x₃^ 2 )) * u " A"
249
250
end
250
251
solution = 3 a^ 2 * (π * a^ 2 / 4 ) * u " A*m^3"
@@ -405,12 +406,15 @@ end
405
406
@testitem " Meshes.Ellipsoid" setup= [Combinations] begin
406
407
# Geometry
407
408
origin = Point (0 , 0 , 0 )
408
- radii = ( 1.0 , 2.0 , 0.5 )
409
- ellipsoid = Ellipsoid (radii , origin)
409
+ R = r₁ = r₂ = r₃ = 4.1
410
+ ellipsoid = Ellipsoid ((r₁, r₂, r₃) , origin)
410
411
411
412
# Integrand & Solution
412
- integrand (p) = 1.0 u " A"
413
- solution = Meshes. measure (ellipsoid) * u " A"
413
+ function integrand (p:: Meshes.Point )
414
+ x, y, z = ustrip .(u " m" , to (p))
415
+ (z^ 2 ) * u " A"
416
+ end
417
+ solution = (4 π * R^ 4 / 3 ) * u " A*m^2"
414
418
415
419
# Package and run tests
416
420
# Tolerances are higher due to `measure` being only an approximation
@@ -452,16 +456,20 @@ end
452
456
453
457
@testitem " Meshes.Hexahedron" setup= [Combinations] begin
454
458
# Geometry
455
- hexahedron = Hexahedron (Point (0 , 0 , 0 ), Point (2 , 0 , 0 ), Point (2 , 2 , 0 ),
456
- Point (0 , 2 , 0 ), Point (0 , 0 , 2 ), Point (1 , 0 , 2 ), Point (1 , 1 , 2 ), Point (0 , 1 , 2 ))
459
+ a = π
460
+ box = Box (Point (0 , 0 , 0 ), Point (a, a, a))
461
+ hexahedron = Hexahedron (discretize (box). vertices... )
457
462
458
463
# Integrand & Solution
459
- integrand (p) = 1.0 u " A"
460
- solution = Meshes. measure (hexahedron) * u " A"
464
+ function integrand (p:: Meshes.Point )
465
+ x₁, x₂, x₃ = ustrip .(to (p))
466
+ (√ (a^ 2 - x₁^ 2 ) + √ (a^ 2 - x₂^ 2 ) + √ (a^ 2 - x₃^ 2 )) * u " A"
467
+ end
468
+ solution = 3 a^ 2 * (π * a^ 2 / 4 ) * u " A*m^3"
461
469
462
470
# Package and run tests
463
471
testable = TestableGeometry (integrand, hexahedron, solution)
464
- runtests (testable)
472
+ runtests (testable; rtol = 1e-6 )
465
473
end
466
474
467
475
@testitem " Meshes.Line" setup= [Combinations] begin
@@ -675,15 +683,18 @@ end
675
683
676
684
@testitem " Meshes.Tetrahedron" setup= [Combinations] begin
677
685
# Geometry
678
- pt_n = Point (0 , 3 , 0 )
679
- pt_w = Point (- 7 , 0 , 0 )
680
- pt_e = Point (8 , 0 , 0 )
681
- ẑ = Vec (0 , 0 , 1 )
682
- tetrahedron = Tetrahedron (pt_n, pt_w, pt_e, pt_n + ẑ )
686
+ a = Point (0 , 0 , 0 )
687
+ b = Point (1 , 0 , 0 )
688
+ c = Point (0 , 1 , 0 )
689
+ d = Point (0 , 0 , 1 )
690
+ tetrahedron = Tetrahedron (a, b, c, d )
683
691
684
692
# Integrand & Solution
685
- integrand (p) = 1.0 u " A"
686
- solution = Meshes. measure (tetrahedron) * u " A"
693
+ function integrand (p:: Meshes.Point )
694
+ x, y, z = ustrip .(u " m" , to (p))
695
+ (x + 2 y + 3 z) * u " A"
696
+ end
697
+ solution = (1 // 4 ) * u " A*m^3"
687
698
688
699
# Package and run tests
689
700
testable = TestableGeometry (integrand, tetrahedron, solution)
@@ -692,13 +703,18 @@ end
692
703
693
704
@testitem " Meshes.Torus" setup= [Combinations] begin
694
705
# Geometry
695
- origin = Point (0 , 0 , 0 )
706
+ center = Point (0 , 0 , 0 )
696
707
ẑ = Vec (0 , 0 , 1 )
697
- torus = Torus (origin, ẑ, 3.5 , 1.25 )
708
+ R = 3.5 # radius from axis-of-revolution to center of circle being revolved
709
+ r = 1.2 # radius of circle being revolved
710
+ torus = Torus (center, ẑ, R, r)
698
711
699
712
# Integrand & Solution
700
- integrand (p) = 1.0 u " A"
701
- solution = Meshes. measure (torus) * u " A"
713
+ function integrand (p:: Meshes.Point )
714
+ x, y, z = ustrip .(u " m" , to (p))
715
+ (x^ 2 + y^ 2 ) * u " A"
716
+ end
717
+ solution = (2 π^ 2 * r * R * (2 R^ 2 + 3 r^ 2 )) * u " A*m^2"
702
718
703
719
# Package and run tests
704
720
testable = TestableGeometry (integrand, torus, solution)
@@ -707,14 +723,17 @@ end
707
723
708
724
@testitem " Meshes.Triangle" setup= [Combinations] begin
709
725
# Geometry
710
- pt_n = Point (0 , 1 , 0 )
711
- pt_w = Point (- 1 , 0 , 0 )
712
- pt_e = Point (1 , 0 , 0 )
713
- triangle = Triangle (pt_e, pt_n, pt_w )
726
+ a = Point (0 , 0 , 0 )
727
+ b = Point (1 , 0 , 0 )
728
+ c = Point (0 , 1 , 0 )
729
+ triangle = Triangle (a, b, c )
714
730
715
731
# Integrand & Solution
716
- integrand (p) = 1.0 u " A"
717
- solution = Meshes. measure (triangle) * u " A"
732
+ function integrand (p:: Meshes.Point )
733
+ x, y, z = ustrip .(u " m" , to (p))
734
+ (x + 2 y + 3 z) * u " A"
735
+ end
736
+ solution = (1 // 2 ) * u " A*m^2"
718
737
719
738
# Package and run tests
720
739
testable = TestableGeometry (integrand, triangle, solution)
0 commit comments