-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathAbstractDifferentiationFiniteDifferencesExt.jl
55 lines (45 loc) · 1.65 KB
/
AbstractDifferentiationFiniteDifferencesExt.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
module AbstractDifferentiationFiniteDifferencesExt
if isdefined(Base, :get_extension)
import AbstractDifferentiation as AD
using FiniteDifferences: FiniteDifferences
else
import ..AbstractDifferentiation as AD
using ..FiniteDifferences: FiniteDifferences
end
"""
FiniteDifferencesBackend(method=FiniteDifferences.central_fdm(5, 1))
Create an AD backend that uses forward mode with FiniteDifferences.jl.
"""
function AD.FiniteDifferencesBackend()
return AD.FiniteDifferencesBackend(FiniteDifferences.central_fdm(5, 1))
end
function AD.jacobian(ba::AD.FiniteDifferencesBackend, f, xs...)
return FiniteDifferences.jacobian(ba.method, f, xs...)
end
function AD.gradient(ba::AD.FiniteDifferencesBackend, f, xs...)
return FiniteDifferences.grad(ba.method, f, xs...)
end
function AD.pushforward_function(ba::AD.FiniteDifferencesBackend, f, xs...)
return function pushforward(vs)
ws = FiniteDifferences.jvp(ba.method, f, tuple.(xs, vs)...)
return length(xs) == 1 ? (ws,) : ws
end
end
function AD.pullback_function(ba::AD.FiniteDifferencesBackend, f, xs...)
function pullback(vs)
return FiniteDifferences.j′vp(ba.method, f, vs, xs...)
end
end
# Ensure consistency with `value_and_pullback` function
function AD.value_and_pullback_function(ba::AD.FiniteDifferencesBackend, f, xs...)
value = f(xs...)
function fd_pullback(vs)
return FiniteDifferences.j′vp(ba.method, f, vs, xs...)
end
return value, fd_pullback
end
# Better performance: issue #87
function AD.derivative(ba::AD.FiniteDifferencesBackend, f::TF, x::Real) where {TF<:Function}
return (ba.method(f, x),)
end
end # module