diff --git a/Project.toml b/Project.toml
index 52915e111..8be585cce 100644
--- a/Project.toml
+++ b/Project.toml
@@ -1,51 +1,51 @@
 name = "ModelPredictiveControl"
 uuid = "61f9bdb8-6ae4-484a-811f-bbf86720c31c"
 authors = ["Francis Gagnon"]
-version = "1.4.4"
+version = "1.5.0"
 
 [deps]
-LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
-Logging = "56ddb016-857b-54e1-b83d-db4d58db5568"
-Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
 ControlSystemsBase = "aaaaaaaa-a6ca-5380-bf3e-84a91bcd477e"
+DifferentiationInterface = "a0c0ee7d-e4b9-4e03-894e-1c5f64a51d63"
 ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210"
 Ipopt = "b6b21f68-93f8-5de0-b562-5493be1d77c9"
 JuMP = "4076af6c-e467-56ae-b986-b466b2749572"
+LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
+Logging = "56ddb016-857b-54e1-b83d-db4d58db5568"
 OSQP = "ab2f91bb-94b4-55e3-9ba0-7f65df51de79"
 PreallocationTools = "d236fae5-4411-538c-8e31-a6e3d9e00b46"
 PrecompileTools = "aea7be01-6a6a-4083-8856-8a6e6704d82a"
 ProgressLogging = "33c8b6b6-d38a-422a-b730-caa89a2f386c"
+Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
 RecipesBase = "3cdcf5f2-1ef4-517c-9805-6587b60abb01"
+SparseConnectivityTracer = "9f842d2f-2579-4b1d-911e-f412cf18a3f5"
+SparseMatrixColorings = "0a514795-09f3-496d-8182-132a7b665d35"
 
 [compat]
-julia = "1.10"
-LinearAlgebra = "1.10"
-Logging = "1.10"
-Random = "1.10"
 ControlSystemsBase = "1.9"
+DifferentiationInterface = "0.6.45"
 ForwardDiff = "0.10"
 Ipopt = "1"
 JuMP = "1.21"
+LinearAlgebra = "1.10"
+Logging = "1.10"
 OSQP = "0.8"
 PreallocationTools = "0.4.14"
 PrecompileTools = "1"
 ProgressLogging = "0.1"
+Random = "1.10"
 RecipesBase = "1"
+SparseConnectivityTracer = "0.6.13"
+SparseMatrixColorings = "0.4.14"
+julia = "1.10"
 
 [extras]
 DAQP = "c47d62df-3981-49c8-9651-128b1cd08617"
 Documenter = "e30172f5-a6a5-5a46-863b-614d45cd2de4"
+FiniteDiff = "6a86dc24-6348-571c-b903-95158fe2bd41"
 Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80"
 Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
-TestItems = "1c621080-faea-4a02-84b6-bbd5e436b8fe"
 TestItemRunner = "f8b46487-2199-4994-9208-9a1283c18c0a"
+TestItems = "1c621080-faea-4a02-84b6-bbd5e436b8fe"
 
 [targets]
-test = [
-    "Test", 
-    "TestItems", 
-    "TestItemRunner", 
-    "Documenter", 
-    "Plots", 
-    "DAQP"
-    ]
+test = ["Test", "TestItems", "TestItemRunner", "Documenter", "Plots", "DAQP", "FiniteDiff"]
diff --git a/README.md b/README.md
index c93120ee4..63bb8bfc0 100644
--- a/README.md
+++ b/README.md
@@ -9,7 +9,9 @@ An open source [model predictive control](https://en.wikipedia.org/wiki/Model_pr
 package for Julia.
 
 The package depends on [`ControlSystemsBase.jl`](https://github.com/JuliaControl/ControlSystems.jl)
-for the linear systems and [`JuMP.jl`](https://github.com/jump-dev/JuMP.jl) for the solving.
+for the linear systems, [`JuMP.jl`](https://github.com/jump-dev/JuMP.jl) for the
+optimization and [`DifferentiationInterface.jl`](https://github.com/JuliaDiff/DifferentiationInterface.jl)
+for the differentiation.
 
 ## Installation
 
@@ -102,9 +104,13 @@ for more detailed examples.
   - measured disturbances
   - input setpoints
 - easy integration with `Plots.jl`
-- optimization based on `JuMP.jl`:
-  - quickly compare multiple optimizers
-  - nonlinear solvers relying on automatic differentiation (exact derivative)
+- optimization based on `JuMP.jl` to quickly compare multiple optimizers:
+  - many quadratic solvers for linear control
+  - many nonlinear solvers for nonlinear control (local or global)
+- derivatives based on `DifferentiationInterface.jl` to compare different approaches:
+  - automatic differentiation (exact solution)
+  - symbolic differentiation (exact solution)
+  - finite difference (approximate solution)
 - supported transcription methods of the optimization problem:
   - direct single shooting
   - direct multiple shooting
diff --git a/docs/Project.toml b/docs/Project.toml
index cd71da677..1be7cf0fe 100644
--- a/docs/Project.toml
+++ b/docs/Project.toml
@@ -1,19 +1,20 @@
 [deps]
-LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
-Logging = "56ddb016-857b-54e1-b83d-db4d58db5568"
 ControlSystemsBase = "aaaaaaaa-a6ca-5380-bf3e-84a91bcd477e"
 DAQP = "c47d62df-3981-49c8-9651-128b1cd08617"
 Documenter = "e30172f5-a6a5-5a46-863b-614d45cd2de4"
+DocumenterInterLinks = "d12716ef-a0f6-4df4-a9f1-a5a34e75c656"
 JuMP = "4076af6c-e467-56ae-b986-b466b2749572"
+LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
+Logging = "56ddb016-857b-54e1-b83d-db4d58db5568"
 ModelingToolkit = "961ee093-0014-501f-94e3-6117800e7a78"
 Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80"
 
 [compat]
-LinearAlgebra = "1.10"
-Logging = "1.10"
 ControlSystemsBase = "1"
+DAQP = "0.6"
 Documenter = "1"
 JuMP = "1"
-DAQP = "0.6"
-Plots = "1"
+LinearAlgebra = "1.10"
+Logging = "1.10"
 ModelingToolkit = "9.50"
+Plots = "1"
diff --git a/docs/make.jl b/docs/make.jl
index 37de69d4b..de69e08d8 100644
--- a/docs/make.jl
+++ b/docs/make.jl
@@ -3,9 +3,17 @@ ENV["PLOTS_TEST"] = "true"
 ENV["GKSwstype"] = "nul"
 push!(LOAD_PATH,"../src/")
 
-using Documenter
+using Documenter, DocumenterInterLinks
 using ModelPredictiveControl
 
+links = InterLinks(
+    "Julia" => "https://docs.julialang.org/en/v1/objects.inv",
+    "ControlSystemsBase" => "https://juliacontrol.github.io/ControlSystems.jl/stable/objects.inv",
+    "JuMP" => "https://jump.dev/JuMP.jl/stable/objects.inv",
+    "DifferentiationInterface" => "https://juliadiff.org/DifferentiationInterface.jl/DifferentiationInterface/stable/objects.inv",
+    "ForwardDiff" => "https://juliadiff.org/ForwardDiff.jl/stable/objects.inv",
+)
+
 DocMeta.setdocmeta!(
     ModelPredictiveControl, 
     :DocTestSetup, 
@@ -16,6 +24,7 @@ makedocs(
     sitename    = "ModelPredictiveControl.jl",
     #format = Documenter.LaTeX(platform = "none"),
     doctest     = true,
+    plugins     = [links],
     format      = Documenter.HTML(
         prettyurls = get(ENV, "CI", nothing) == "true",
         edit_link = "main"
diff --git a/docs/src/index.md b/docs/src/index.md
index 230b4459e..4be5bb160 100644
--- a/docs/src/index.md
+++ b/docs/src/index.md
@@ -4,14 +4,17 @@ An open source [model predictive control](https://en.wikipedia.org/wiki/Model_pr
 package for Julia.
 
 The package depends on [`ControlSystemsBase.jl`](https://github.com/JuliaControl/ControlSystems.jl)
-for the linear systems and [`JuMP.jl`](https://github.com/jump-dev/JuMP.jl) for the solving.
+for the linear systems, [`JuMP.jl`](https://github.com/jump-dev/JuMP.jl) for the
+optimization and [`DifferentiationInterface.jl`](https://github.com/JuliaDiff/DifferentiationInterface.jl)
+for the differentiation.
 
 The objective is to provide a simple, clear and modular framework to quickly design model
 predictive controllers (MPCs) in Julia, while preserving the flexibility for advanced
 real-time optimization. Modern MPCs based on closed-loop state estimators are the main focus
 of the package, but classical approaches that rely on internal models are also possible. The
-`JuMP.jl` interface allows the user to test different solvers easily if the performance of
-the default settings is not satisfactory.
+`JuMP` and `DifferentiationInterface` dependencies allows the user to test different
+optimizers and automatic differentiation (AD) backends easily if the performances of the
+default settings are not satisfactory.
 
 The documentation is divided in two parts:
 
diff --git a/docs/src/manual/mtk.md b/docs/src/manual/mtk.md
index 29f616bc8..605ed0af1 100644
--- a/docs/src/manual/mtk.md
+++ b/docs/src/manual/mtk.md
@@ -11,8 +11,8 @@ old_logger = global_logger(); global_logger(errlogger);
 
 ## Pendulum Model
 
-This example integrates the simple pendulum model of the [last section](@ref man_nonlin) in the
-[`ModelingToolkit.jl`](https://docs.sciml.ai/ModelingToolkit/stable/) (MTK) framework and
+This example integrates the simple pendulum model of the [last section](@ref man_nonlin) in
+[`ModelingToolkit`](https://docs.sciml.ai/ModelingToolkit/stable/) (MTK) framework and
 extracts appropriate `f!` and `h!` functions to construct a [`NonLinModel`](@ref). An
 [`NonLinMPC`](@ref) is designed from this model and simulated to reproduce the results of
 the last section.
diff --git a/docs/src/manual/nonlinmpc.md b/docs/src/manual/nonlinmpc.md
index 57bc2f28d..1c5032b3b 100644
--- a/docs/src/manual/nonlinmpc.md
+++ b/docs/src/manual/nonlinmpc.md
@@ -329,7 +329,7 @@ Nonlinear MPC is more computationally expensive than [`LinMPC`](@ref). Solving t
 should always be faster than the sampling time ``T_s = 0.1`` s for real-time operation. This
 requirement is sometimes hard to meet on electronics or mechanical systems because of the
 fast dynamics. To ease the design and comparison with [`LinMPC`](@ref), the [`linearize`](@ref)
-function allows automatic linearization of [`NonLinModel`](@ref) based on [`ForwardDiff.jl`](https://juliadiff.org/ForwardDiff.jl/stable/).
+function allows automatic linearization of [`NonLinModel`](@ref) based on [`ForwardDiff`](@extref ForwardDiff).
 We first linearize `model` at the point ``θ = π`` rad and ``ω = τ = 0`` (inverted position):
 
 ```@example man_nonlin
diff --git a/src/ModelPredictiveControl.jl b/src/ModelPredictiveControl.jl
index bf65b67c8..ead8faf96 100644
--- a/src/ModelPredictiveControl.jl
+++ b/src/ModelPredictiveControl.jl
@@ -1,12 +1,19 @@
 module ModelPredictiveControl
 
-using PrecompileTools
+using PrecompileTools 
 using LinearAlgebra
 using Random: randn
 
 using RecipesBase
 using ProgressLogging
-using ForwardDiff
+
+using DifferentiationInterface: ADTypes.AbstractADType, AutoForwardDiff, AutoSparse
+using DifferentiationInterface: gradient!, jacobian!, prepare_gradient, prepare_jacobian
+using DifferentiationInterface: Constant, Cache
+using SparseConnectivityTracer: TracerSparsityDetector
+using SparseMatrixColorings: GreedyColoringAlgorithm, sparsity_pattern
+
+import ForwardDiff
 
 import ControlSystemsBase
 import ControlSystemsBase: ss, tf, delay
@@ -18,7 +25,7 @@ import JuMP
 import JuMP: MOIU, MOI, GenericModel, Model, optimizer_with_attributes, register
 import JuMP: @variable, @operator, @constraint, @objective
 
-import PreallocationTools: DiffCache, get_tmp
+import PreallocationTools: DiffCache, get_tmp # TODO: remove this dep if possible (with Cache of DI.jl)
 
 import OSQP, Ipopt
 
diff --git a/src/controller/execute.jl b/src/controller/execute.jl
index d9176d3e3..d7cb78b81 100644
--- a/src/controller/execute.jl
+++ b/src/controller/execute.jl
@@ -123,19 +123,19 @@ function getinfo(mpc::PredictiveController{NT}) where NT<:Real
     x̂0end = similar(mpc.estim.x̂0)
     Ue, Ŷe = Vector{NT}(undef, nUe), Vector{NT}(undef, nŶe)
     U0, Ŷ0 = similar(mpc.Uop), similar(mpc.Yop)
-    X̂0, Û0 = Vector{NT}(undef, nX̂0), Vector{NT}(undef, nÛ0)
+    Û0, X̂0 = Vector{NT}(undef, nÛ0), Vector{NT}(undef, nX̂0)
     U,  Ŷ  = similar(mpc.Uop), similar(mpc.Yop)
-    Ŷs = similar(mpc.Yop)
     U0 = getU0!(U0, mpc, Z̃)
-    ΔŨ = getΔŨ!(ΔŨ, mpc, mpc.transcription, Z̃)
+    ΔŨ = getΔŨ!(ΔŨ, mpc, transcription, Z̃)
     Ŷ0, x̂0end  = predict!(Ŷ0, x̂0end, X̂0, Û0, mpc, model, transcription, U0, Z̃)
     Ue, Ŷe = extended_vectors!(Ue, Ŷe, mpc, U0, Ŷ0)
     U .= U0 .+ mpc.Uop
     Ŷ .= Ŷ0 .+ mpc.Yop
     J = obj_nonlinprog!(Ŷ0, U0, mpc, model, Ue, Ŷe, ΔŨ)
+    Ŷs = similar(mpc.Yop)
     predictstoch!(Ŷs, mpc, mpc.estim)
     info[:ΔU]   = Z̃[1:mpc.Hc*model.nu]
-    info[:ϵ]    = mpc.nϵ == 1 ? mpc.Z̃[end] : zero(NT)
+    info[:ϵ]    = getϵ(mpc, Z̃)
     info[:J]    = J
     info[:U]    = U
     info[:u]    = info[:U][1:model.nu]
@@ -161,6 +161,15 @@ function getinfo(mpc::PredictiveController{NT}) where NT<:Real
     return info
 end
 
+"""
+    getϵ(mpc::PredictiveController, Z̃) -> ϵ
+
+Get the slack `ϵ` from the decision vector `Z̃` if present, otherwise return 0.
+"""
+function getϵ(mpc::PredictiveController, Z̃::AbstractVector{NT}) where NT<:Real
+    return mpc.nϵ ≠ 0 ? Z̃[end] : zero(NT)
+end
+
 """
     addinfo!(info, mpc::PredictiveController) -> info
 
@@ -361,6 +370,9 @@ function obj_nonlinprog!(
     return JR̂y + JΔŨ + JR̂u + E_JE
 end
 
+"No custom nonlinear constraints `gc` by default, return `gc` unchanged." 
+con_custom!(gc, ::PredictiveController, _ , _, _ ) = gc
+
 "By default, the economic term is zero."
 function obj_econ(::PredictiveController, ::SimModel, _ , ::AbstractVector{NT}) where NT
     return zero(NT)
diff --git a/src/controller/linmpc.jl b/src/controller/linmpc.jl
index 224d0fdf7..d13cab407 100644
--- a/src/controller/linmpc.jl
+++ b/src/controller/linmpc.jl
@@ -135,7 +135,7 @@ arguments. This controller allocates memory at each time step for the optimizati
 
 # Arguments
 - `model::LinModel` : model used for controller predictions and state estimations.
-- `Hp=10+nk`: prediction horizon ``H_p``, `nk` is the number of delays in `model`.
+- `Hp=10+nk` : prediction horizon ``H_p``, `nk` is the number of delays in `model`.
 - `Hc=2` : control horizon ``H_c``.
 - `Mwt=fill(1.0,model.ny)` : main diagonal of ``\mathbf{M}`` weight matrix (vector).
 - `Nwt=fill(0.1,model.nu)` : main diagonal of ``\mathbf{N}`` weight matrix (vector).
@@ -146,8 +146,8 @@ arguments. This controller allocates memory at each time step for the optimizati
 - `Cwt=1e5` : slack variable weight ``C`` (scalar), use `Cwt=Inf` for hard constraints only.
 - `transcription=SingleShooting()` : a [`TranscriptionMethod`](@ref) for the optimization.
 - `optim=JuMP.Model(OSQP.MathOptInterfaceOSQP.Optimizer)` : quadratic optimizer used in
-  the predictive controller, provided as a [`JuMP.Model`](https://jump.dev/JuMP.jl/stable/api/JuMP/#JuMP.Model)
-  (default to [`OSQP`](https://osqp.org/docs/parsers/jump.html) optimizer).
+  the predictive controller, provided as a [`JuMP.Model`](@extref) object (default to 
+  [`OSQP`](https://osqp.org/docs/parsers/jump.html) optimizer).
 - additional keyword arguments are passed to [`SteadyKalmanFilter`](@ref) constructor.
 
 # Examples
@@ -259,11 +259,11 @@ function LinMPC(
 end
 
 """
-    init_optimization!(mpc::LinMPC, model::LinModel, optim)
+    init_optimization!(mpc::LinMPC, model::LinModel, optim::JuMP.GenericModel) -> nothing
 
 Init the quadratic optimization for [`LinMPC`](@ref) controllers.
 """
-function init_optimization!(mpc::LinMPC, model::LinModel, optim)
+function init_optimization!(mpc::LinMPC, model::LinModel, optim::JuMP.GenericModel)
     # --- variables and linear constraints ---
     con = mpc.con
     nZ̃ = length(mpc.Z̃)
diff --git a/src/controller/nonlinmpc.jl b/src/controller/nonlinmpc.jl
index 36b86a0cd..a60321367 100644
--- a/src/controller/nonlinmpc.jl
+++ b/src/controller/nonlinmpc.jl
@@ -1,11 +1,20 @@
-const DEFAULT_NONLINMPC_OPTIMIZER = optimizer_with_attributes(Ipopt.Optimizer,"sb"=>"yes")
 const DEFAULT_NONLINMPC_TRANSCRIPTION = SingleShooting()
+const DEFAULT_NONLINMPC_OPTIMIZER = optimizer_with_attributes(Ipopt.Optimizer,"sb"=>"yes")
+const DEFAULT_NONLINMPC_GRADIENT  = AutoForwardDiff()
+const DEFAULT_NONLINMPC_JACDENSE  = AutoForwardDiff()
+const DEFAULT_NONLINMPC_JACSPARSE = AutoSparse(
+    AutoForwardDiff();
+    sparsity_detector=TracerSparsityDetector(),
+    coloring_algorithm=GreedyColoringAlgorithm(),
+)
 
 struct NonLinMPC{
     NT<:Real, 
     SE<:StateEstimator,
     TM<:TranscriptionMethod,
-    JM<:JuMP.GenericModel, 
+    JM<:JuMP.GenericModel,
+    GB<:AbstractADType,
+    JB<:AbstractADType, 
     PT<:Any,
     JEfunc<:Function,
     GCfunc<:Function
@@ -16,6 +25,8 @@ struct NonLinMPC{
     # different since solvers that support non-Float64 are scarce.
     optim::JM
     con::ControllerConstraint{NT, GCfunc}
+    gradient::GB
+    jacobian::JB
     Z̃::Vector{NT}
     ŷ::Vector{NT}
     Hp::Int
@@ -52,12 +63,14 @@ struct NonLinMPC{
     function NonLinMPC{NT}(
         estim::SE, 
         Hp, Hc, M_Hp, N_Hc, L_Hp, Cwt, Ewt, JE::JEfunc, gc!::GCfunc, nc, p::PT, 
-        transcription::TM, optim::JM
+        transcription::TM, optim::JM, gradient::GB, jacobian::JB
     ) where {
             NT<:Real, 
             SE<:StateEstimator, 
             TM<:TranscriptionMethod,
             JM<:JuMP.GenericModel,
+            GB<:AbstractADType,
+            JB<:AbstractADType,
             PT<:Any,
             JEfunc<:Function, 
             GCfunc<:Function, 
@@ -94,8 +107,9 @@ struct NonLinMPC{
         nZ̃ = get_nZ(estim, transcription, Hp, Hc) + nϵ
         Z̃ = zeros(NT, nZ̃)
         buffer = PredictiveControllerBuffer(estim, transcription, Hp, Hc, nϵ)
-        mpc = new{NT, SE, TM, JM, PT, JEfunc, GCfunc}(
+        mpc = new{NT, SE, TM, JM, GB, JB, PT, JEfunc, GCfunc}(
             estim, transcription, optim, con,
+            gradient, jacobian,
             Z̃, ŷ,
             Hp, Hc, nϵ,
             weights,
@@ -187,8 +201,11 @@ This controller allocates memory at each time step for the optimization.
 - `p=model.p` : ``J_E`` and ``\mathbf{g_c}`` functions parameter ``\mathbf{p}`` (any type).
 - `transcription=SingleShooting()` : a [`TranscriptionMethod`](@ref) for the optimization.
 - `optim=JuMP.Model(Ipopt.Optimizer)` : nonlinear optimizer used in the predictive
-   controller, provided as a [`JuMP.Model`](https://jump.dev/JuMP.jl/stable/api/JuMP/#JuMP.Model)
-   (default to [`Ipopt`](https://github.com/jump-dev/Ipopt.jl) optimizer).
+   controller, provided as a [`JuMP.Model`](@extref) object (default to [`Ipopt`](https://github.com/jump-dev/Ipopt.jl) optimizer).
+- `gradient=AutoForwardDiff()` : an `AbstractADType` backend for the gradient of the objective
+   function, see [`DifferentiationInterface` doc](@extref DifferentiationInterface List).
+- `jacobian=default_jacobian(transcription)` : an `AbstractADType` backend for the Jacobian
+   of the nonlinear constraints, see `gradient` above for the options (default in Extended Help).
 - additional keyword arguments are passed to [`UnscentedKalmanFilter`](@ref) constructor 
   (or [`SteadyKalmanFilter`](@ref), for [`LinModel`](@ref)).
 
@@ -237,10 +254,19 @@ NonLinMPC controller with a sample time Ts = 10.0 s, Ipopt optimizer, UnscentedK
     The keyword argument `nc` is the number of elements in `LHS`, and `gc!`, an alias for
     the `gc` argument (both `gc` and `gc!` accepts non-mutating and mutating functions). 
     
-    The optimization relies on [`JuMP`](https://github.com/jump-dev/JuMP.jl) automatic 
-    differentiation (AD) to compute the objective and constraint derivatives. Optimizers 
-    generally benefit from exact derivatives like AD. However, the [`NonLinModel`](@ref) 
-    state-space functions must be compatible with this feature. See [Automatic differentiation](https://jump.dev/JuMP.jl/stable/manual/nlp/#Automatic-differentiation)
+    By default, the optimization relies on dense [`ForwardDiff`](@extref ForwardDiff)
+    automatic differentiation (AD) to compute the objective and constraint derivatives. One
+    exception: if `transcription` is not a [`SingleShooting`](@ref), the `jacobian` argument
+    defaults to this [sparse backend](@extref DifferentiationInterface AutoSparse-object):
+    ```julia
+    AutoSparse(
+        AutoForwardDiff(); 
+        sparsity_detector  = TracerSparsityDetector(), 
+        coloring_algorithm = GreedyColoringAlgorithm()
+    )
+    ```
+    Optimizers generally benefit from exact derivatives like AD. However, the [`NonLinModel`](@ref) 
+    state-space functions must be compatible with this feature. See [`JuMP` documentation](@extref JuMP Common-mistakes-when-writing-a-user-defined-operator)
     for common mistakes when writing these functions.
 
     Note that if `Cwt≠Inf`, the attribute `nlp_scaling_max_gradient` of `Ipopt` is set to 
@@ -265,13 +291,15 @@ function NonLinMPC(
     p = model.p,
     transcription::TranscriptionMethod = DEFAULT_NONLINMPC_TRANSCRIPTION,
     optim::JuMP.GenericModel = JuMP.Model(DEFAULT_NONLINMPC_OPTIMIZER, add_bridges=false),
+    gradient::AbstractADType = DEFAULT_NONLINMPC_GRADIENT,
+    jacobian::AbstractADType = default_jacobian(transcription),
     kwargs...
 )
     estim = UnscentedKalmanFilter(model; kwargs...)
     return NonLinMPC(
         estim; 
         Hp, Hc, Mwt, Nwt, Lwt, Cwt, Ewt, JE, gc, nc, p, M_Hp, N_Hc, L_Hp, 
-        transcription, optim
+        transcription, optim, gradient, jacobian
     )
 end
 
@@ -294,13 +322,15 @@ function NonLinMPC(
     p = model.p,
     transcription::TranscriptionMethod = DEFAULT_NONLINMPC_TRANSCRIPTION,
     optim::JuMP.GenericModel = JuMP.Model(DEFAULT_NONLINMPC_OPTIMIZER, add_bridges=false),
+    gradient::AbstractADType = DEFAULT_NONLINMPC_GRADIENT,
+    jacobian::AbstractADType = default_jacobian(transcription),
     kwargs...
 )
     estim = SteadyKalmanFilter(model; kwargs...)
     return NonLinMPC(
         estim; 
         Hp, Hc, Mwt, Nwt, Lwt, Cwt, Ewt, JE, gc, nc, p, M_Hp, N_Hc, L_Hp, 
-        transcription, optim
+        transcription, optim, gradient, jacobian
     )
 end
 
@@ -347,6 +377,8 @@ function NonLinMPC(
     p = estim.model.p,
     transcription::TranscriptionMethod = DEFAULT_NONLINMPC_TRANSCRIPTION,
     optim::JuMP.GenericModel = JuMP.Model(DEFAULT_NONLINMPC_OPTIMIZER, add_bridges=false),
+    gradient::AbstractADType = DEFAULT_NONLINMPC_GRADIENT,
+    jacobian::AbstractADType = default_jacobian(transcription),
 ) where {
     NT<:Real, 
     SE<:StateEstimator{NT}
@@ -360,10 +392,13 @@ function NonLinMPC(
     gc! = get_mutating_gc(NT, gc)
     return NonLinMPC{NT}(
         estim, Hp, Hc, M_Hp, N_Hc, L_Hp, Cwt, Ewt, JE, gc!, nc, p, 
-        transcription, optim
+        transcription, optim, gradient, jacobian
     )
 end
 
+default_jacobian(::SingleShooting)      = DEFAULT_NONLINMPC_JACDENSE
+default_jacobian(::TranscriptionMethod) = DEFAULT_NONLINMPC_JACSPARSE
+
 """
     validate_JE(NT, JE) -> nothing
 
@@ -477,11 +512,11 @@ function addinfo!(info, mpc::NonLinMPC{NT}) where NT<:Real
 end
 
 """
-    init_optimization!(mpc::NonLinMPC, model::SimModel, optim)
+    init_optimization!(mpc::NonLinMPC, model::SimModel, optim::JuMP.GenericModel) -> nothing
 
 Init the nonlinear optimization for [`NonLinMPC`](@ref) controllers.
 """
-function init_optimization!(mpc::NonLinMPC, model::SimModel, optim)
+function init_optimization!(mpc::NonLinMPC, model::SimModel, optim::JuMP.GenericModel)
     # --- variables and linear constraints ---
     con, transcription = mpc.con, mpc.transcription
     nZ̃ = length(mpc.Z̃)
@@ -505,7 +540,9 @@ function init_optimization!(mpc::NonLinMPC, model::SimModel, optim)
             JuMP.set_attribute(optim, "nlp_scaling_max_gradient", 10.0/C)
         end
     end
-    Jfunc, ∇Jfunc!, gfuncs, ∇gfuncs!, geqfuncs, ∇geqfuncs! = get_optim_functions(mpc, optim)
+    Jfunc, ∇Jfunc!, gfuncs, ∇gfuncs!, geqfuncs, ∇geqfuncs! = get_optim_functions(
+        mpc, optim
+    )
     @operator(optim, J, nZ̃, Jfunc, ∇Jfunc!)
     @objective(optim, Min, J(Z̃var...))
     init_nonlincon!(mpc, model, transcription, gfuncs, ∇gfuncs!, geqfuncs, ∇geqfuncs!)
@@ -530,120 +567,97 @@ This method is really intricate and I'm not proud of it. That's because of 3 ele
 - These functions are used inside the nonlinear optimization, so they must be type-stable
   and as efficient as possible.
 - The `JuMP` NLP syntax forces splatting for the decision variable, which implies use
-  of `Vararg{T,N}` (see the [performance tip](https://docs.julialang.org/en/v1/manual/performance-tips/#Be-aware-of-when-Julia-avoids-specializing))
-  and memoization to avoid redundant computations. This is already complex, but it's even
+  of `Vararg{T,N}` (see the [performance tip][@extref Julia Be-aware-of-when-Julia-avoids-specializing]
+  ) and memoization to avoid redundant computations. This is already complex, but it's even
   worse knowing that most automatic differentiation tools do not support splatting.
 - The signature of gradient and hessian functions is not the same for univariate (`nZ̃ == 1`)
   and multivariate (`nZ̃ > 1`) operators in `JuMP`. Both must be defined.
 
-Inspired from: [User-defined operators with vector outputs](https://jump.dev/JuMP.jl/stable/tutorials/nonlinear/tips_and_tricks/#User-defined-operators-with-vector-outputs)
+Inspired from: [User-defined operators with vector outputs](@extref JuMP User-defined-operators-with-vector-outputs)
 """
 function get_optim_functions(mpc::NonLinMPC, ::JuMP.GenericModel{JNT}) where JNT<:Real
-    model, transcription = mpc.estim.model, mpc.transcription
+    # ----- common cache for Jfunc, gfuncs, geqfuncs called with floats -------------------
+    model = mpc.estim.model
     nu, ny, nx̂, nϵ, Hp, Hc = model.nu, model.ny, mpc.estim.nx̂, mpc.nϵ, mpc.Hp, mpc.Hc
     ng, nc, neq = length(mpc.con.i_g), mpc.con.nc, mpc.con.neq
     nZ̃, nU, nŶ, nX̂ = length(mpc.Z̃), Hp*nu, Hp*ny, Hp*nx̂
-    nΔŨ, nUe, nŶe = nu*Hc + nϵ, nU + nu, nŶ + ny
-    Ncache = nZ̃ + 3 
-    myNaN = convert(JNT, NaN) # fill Z̃ with NaNs to force update_simulations! at 1st call:
-    # ---------------------- differentiation cache ---------------------------------------
-    Z̃_cache::DiffCache{Vector{JNT}, Vector{JNT}}      = DiffCache(fill(myNaN, nZ̃), Ncache)
-    ΔŨ_cache::DiffCache{Vector{JNT}, Vector{JNT}}     = DiffCache(zeros(JNT, nΔŨ), Ncache)
-    x̂0end_cache::DiffCache{Vector{JNT}, Vector{JNT}}  = DiffCache(zeros(JNT, nx̂),  Ncache)
-    Ŷe_cache::DiffCache{Vector{JNT}, Vector{JNT}}     = DiffCache(zeros(JNT, nŶe), Ncache)
-    Ue_cache::DiffCache{Vector{JNT}, Vector{JNT}}     = DiffCache(zeros(JNT, nUe), Ncache)
-    Ŷ0_cache::DiffCache{Vector{JNT}, Vector{JNT}}     = DiffCache(zeros(JNT, nŶ),  Ncache)
-    U0_cache::DiffCache{Vector{JNT}, Vector{JNT}}     = DiffCache(zeros(JNT, nU),  Ncache)
-    Û0_cache::DiffCache{Vector{JNT}, Vector{JNT}}     = DiffCache(zeros(JNT, nU),  Ncache)
-    X̂0_cache::DiffCache{Vector{JNT}, Vector{JNT}}     = DiffCache(zeros(JNT, nX̂),  Ncache)
-    gc_cache::DiffCache{Vector{JNT}, Vector{JNT}}     = DiffCache(zeros(JNT, nc),  Ncache)
-    g_cache::DiffCache{Vector{JNT}, Vector{JNT}}      = DiffCache(zeros(JNT, ng),  Ncache)
-    geq_cache::DiffCache{Vector{JNT}, Vector{JNT}}    = DiffCache(zeros(JNT, neq), Ncache)
-    # --------------------- update simulation function ------------------------------------
-    function update_simulations!(
-        Z̃arg::Union{NTuple{N, T}, AbstractVector{T}}, Z̃cache
-    ) where {N, T<:Real}
-        if isdifferent(Z̃cache, Z̃arg)
-            for i in eachindex(Z̃cache)
-                # Z̃cache .= Z̃arg is type unstable with Z̃arg::NTuple{N, FowardDiff.Dual}
-                Z̃cache[i] = Z̃arg[i]
-            end
-            Z̃ = Z̃cache
-            ϵ = (nϵ ≠ 0) ? Z̃[end] : zero(T) # ϵ = 0 if nϵ == 0 (meaning no relaxation)
-            ΔŨ     = get_tmp(ΔŨ_cache, T)
-            x̂0end  = get_tmp(x̂0end_cache, T)
-            Ue, Ŷe = get_tmp(Ue_cache, T), get_tmp(Ŷe_cache, T)
-            U0, Ŷ0 = get_tmp(U0_cache, T), get_tmp(Ŷ0_cache, T)
-            X̂0, Û0 = get_tmp(X̂0_cache, T), get_tmp(Û0_cache, T) 
-            gc, g  = get_tmp(gc_cache, T), get_tmp(g_cache, T)
-            geq    = get_tmp(geq_cache, T)
-            U0 = getU0!(U0, mpc, Z̃)
-            ΔŨ = getΔŨ!(ΔŨ, mpc, transcription, Z̃)
-            Ŷ0, x̂0end  = predict!(Ŷ0, x̂0end, X̂0, Û0, mpc, model, transcription, U0, Z̃)
-            Ue, Ŷe = extended_vectors!(Ue, Ŷe, mpc, U0, Ŷ0)
-            gc  = con_custom!(gc, mpc, Ue, Ŷe, ϵ)
-            g   = con_nonlinprog!(g, mpc, model, transcription, x̂0end, Ŷ0, gc, ϵ)
-            geq = con_nonlinprogeq!(geq, X̂0, Û0, mpc, model, transcription, U0, Z̃)
-        end
-        return nothing
-    end
-    # --------------------- objective functions -------------------------------------------
+    nΔŨ, nUe, nŶe = nu*Hc + nϵ, nU + nu, nŶ + ny  
+    strict = Val(true)
+    myNaN  = convert(JNT, NaN)  # NaN to force update_simulations! at first call:
+    Z̃ ::Vector{JNT}                  = fill(myNaN, nZ̃)
+    ΔŨ::Vector{JNT}                  = zeros(JNT, nΔŨ)
+    x̂0end::Vector{JNT}               = zeros(JNT, nx̂)
+    Ue::Vector{JNT}, Ŷe::Vector{JNT} = zeros(JNT, nUe), zeros(JNT, nŶe)
+    U0::Vector{JNT}, Ŷ0::Vector{JNT} = zeros(JNT, nU),  zeros(JNT, nŶ)
+    Û0::Vector{JNT}, X̂0::Vector{JNT} = zeros(JNT, nU),  zeros(JNT, nX̂)
+    gc::Vector{JNT}, g::Vector{JNT}  = zeros(JNT, nc),  zeros(JNT, ng)
+    geq::Vector{JNT}                 = zeros(JNT, neq)
+    # ---------------------- objective function ------------------------------------------- 
     function Jfunc(Z̃arg::Vararg{T, N}) where {N, T<:Real}
-        update_simulations!(Z̃arg, get_tmp(Z̃_cache, T))
-        ΔŨ = get_tmp(ΔŨ_cache, T)
-        Ue, Ŷe = get_tmp(Ue_cache, T), get_tmp(Ŷe_cache, T)
-        U0, Ŷ0 = get_tmp(U0_cache, T), get_tmp(Ŷ0_cache, T)
+        if isdifferent(Z̃arg, Z̃)
+            Z̃ .= Z̃arg
+            update_predictions!(ΔŨ, x̂0end, Ue, Ŷe, U0, Ŷ0, Û0, X̂0, gc, g, geq, mpc, Z̃)
+        end
         return obj_nonlinprog!(Ŷ0, U0, mpc, model, Ue, Ŷe, ΔŨ)::T
     end
-    function Jfunc_vec(Z̃arg::AbstractVector{T}) where T<:Real 
-        update_simulations!(Z̃arg, get_tmp(Z̃_cache, T))
-        ΔŨ = get_tmp(ΔŨ_cache, T)
-        Ue, Ŷe = get_tmp(Ue_cache, T), get_tmp(Ŷe_cache, T)
-        U0, Ŷ0 = get_tmp(U0_cache, T), get_tmp(Ŷ0_cache, T)
-        return obj_nonlinprog!(Ŷ0, U0, mpc, model, Ue, Ŷe, ΔŨ)::T
+    function Jfunc!(Z̃, ΔŨ, x̂0end, Ue, Ŷe, U0, Ŷ0, Û0, X̂0, gc, g, geq)
+        update_predictions!(ΔŨ, x̂0end, Ue, Ŷe, U0, Ŷ0, Û0, X̂0, gc, g, geq, mpc, Z̃)
+        return obj_nonlinprog!(Ŷ0, U0, mpc, model, Ue, Ŷe, ΔŨ)
     end
-    Z̃_∇J      = fill(myNaN, nZ̃) 
-    ∇J        = Vector{JNT}(undef, nZ̃)       # gradient of objective J
-    ∇J_buffer = GradientBuffer(Jfunc_vec, Z̃_∇J)
+    Z̃_∇J = fill(myNaN, nZ̃) 
+    ∇J_context = (
+        Cache(ΔŨ), Cache(x̂0end), Cache(Ue), Cache(Ŷe), Cache(U0), Cache(Ŷ0), 
+        Cache(Û0), Cache(X̂0), 
+        Cache(gc), Cache(g), Cache(geq),
+    )
+    ∇J_prep = prepare_gradient(Jfunc!, mpc.gradient, Z̃_∇J, ∇J_context...; strict)
+    ∇J = Vector{JNT}(undef, nZ̃)
     ∇Jfunc! = if nZ̃ == 1
-        function (Z̃arg::T) where T<:Real 
+        function (Z̃arg)
             Z̃_∇J .= Z̃arg
-            gradient!(∇J, ∇J_buffer, Z̃_∇J)
+            gradient!(Jfunc!, ∇J, ∇J_prep, mpc.gradient, Z̃_∇J, ∇J_context...)
             return ∇J[begin]    # univariate syntax, see JuMP.@operator doc
         end
     else
         function (∇J::AbstractVector{T}, Z̃arg::Vararg{T, N}) where {N, T<:Real}
             Z̃_∇J .= Z̃arg
-            gradient!(∇J, ∇J_buffer, Z̃_∇J)
+            gradient!(Jfunc!, ∇J, ∇J_prep, mpc.gradient, Z̃_∇J, ∇J_context...)
             return ∇J           # multivariate syntax, see JuMP.@operator doc
         end
     end
     # --------------------- inequality constraint functions -------------------------------
     gfuncs = Vector{Function}(undef, ng)
     for i in eachindex(gfuncs)
-        func_i = function (Z̃arg::Vararg{T, N}) where {N, T<:Real}
-            update_simulations!(Z̃arg, get_tmp(Z̃_cache, T))
-            g = get_tmp(g_cache, T)
+        gfunc_i = function (Z̃arg::Vararg{T, N}) where {N, T<:Real}
+            if isdifferent(Z̃arg, Z̃)
+                Z̃ .= Z̃arg
+                update_predictions!(ΔŨ, x̂0end, Ue, Ŷe, U0, Ŷ0, Û0, X̂0, gc, g, geq, mpc, Z̃)
+            end
             return g[i]::T
         end
-        gfuncs[i] = func_i
+        gfuncs[i] = gfunc_i
     end
-    function gfunc_vec!(g, Z̃vec::AbstractVector{T}) where T<:Real
-        update_simulations!(Z̃vec, get_tmp(Z̃_cache, T))
-        g .= get_tmp(g_cache, T)
-        return g
+    function gfunc!(g, Z̃, ΔŨ, x̂0end, Ue, Ŷe, U0, Ŷ0, Û0, X̂0, gc, geq)
+        return update_predictions!(ΔŨ, x̂0end, Ue, Ŷe, U0, Ŷ0, Û0, X̂0, gc, g, geq, mpc, Z̃)
     end
-    Z̃_∇g      = fill(myNaN, nZ̃)
-    g_vec     = Vector{JNT}(undef, ng)
-    ∇g        = Matrix{JNT}(undef, ng, nZ̃)   # Jacobian of inequality constraints g
-    ∇g_buffer = JacobianBuffer(gfunc_vec!, g_vec, Z̃_∇g)
-    ∇gfuncs!  = Vector{Function}(undef, ng)
+    Z̃_∇g = fill(myNaN, nZ̃)
+    ∇g_context = (
+        Cache(ΔŨ), Cache(x̂0end), Cache(Ue), Cache(Ŷe), Cache(U0), Cache(Ŷ0), 
+        Cache(Û0), Cache(X̂0), 
+        Cache(gc), Cache(geq),
+    )
+    # temporarily enable all the inequality constraints for sparsity detection:
+    mpc.con.i_g[1:end-nc] .= true
+    ∇g_prep  = prepare_jacobian(gfunc!, g, mpc.jacobian, Z̃_∇g, ∇g_context...; strict)
+    mpc.con.i_g[1:end-nc] .= false
+    ∇g = init_diffmat(JNT, mpc.jacobian, ∇g_prep, nZ̃, ng)
+    ∇gfuncs! = Vector{Function}(undef, ng)
     for i in eachindex(∇gfuncs!)
-        ∇gfuncs![i] = if nZ̃ == 1
+        ∇gfuncs_i! = if nZ̃ == 1
             function (Z̃arg::T) where T<:Real
                 if isdifferent(Z̃arg, Z̃_∇g)
                     Z̃_∇g .= Z̃arg
-                    jacobian!(∇g, ∇g_buffer, g_vec, Z̃_∇g)
+                    jacobian!(gfunc!, g, ∇g, ∇g_prep, mpc.jacobian, Z̃_∇g, ∇g_context...)
                 end
                 return ∇g[i, begin]            # univariate syntax, see JuMP.@operator doc
             end
@@ -651,47 +665,80 @@ function get_optim_functions(mpc::NonLinMPC, ::JuMP.GenericModel{JNT}) where JNT
             function (∇g_i, Z̃arg::Vararg{T, N}) where {N, T<:Real}
                 if isdifferent(Z̃arg, Z̃_∇g)
                     Z̃_∇g .= Z̃arg
-                    jacobian!(∇g, ∇g_buffer, g_vec, Z̃_∇g)
+                    jacobian!(gfunc!, g, ∇g, ∇g_prep, mpc.jacobian, Z̃_∇g, ∇g_context...)
                 end
                 return ∇g_i .= @views ∇g[i, :] # multivariate syntax, see JuMP.@operator doc
             end
         end
+        ∇gfuncs![i] = ∇gfuncs_i!
     end
     # --------------------- equality constraint functions ---------------------------------
     geqfuncs = Vector{Function}(undef, neq)
     for i in eachindex(geqfuncs)
-        func_i = function (Z̃arg::Vararg{T, N}) where {N, T<:Real}
-            update_simulations!(Z̃arg, get_tmp(Z̃_cache, T))
-            geq = get_tmp(geq_cache, T)
+        geqfunc_i = function (Z̃arg::Vararg{T, N}) where {N, T<:Real}
+            if isdifferent(Z̃arg, Z̃)
+                Z̃ .= Z̃arg
+                update_predictions!(ΔŨ, x̂0end, Ue, Ŷe, U0, Ŷ0, Û0, X̂0, gc, g, geq, mpc, Z̃)
+            end
             return geq[i]::T
         end
-        geqfuncs[i] = func_i          
+        geqfuncs[i] = geqfunc_i          
     end
-    function geqfunc_vec!(geq, Z̃vec::AbstractVector{T}) where T<:Real
-        update_simulations!(Z̃vec, get_tmp(Z̃_cache, T))
-        geq .= get_tmp(geq_cache, T)
-        return geq
+    function geqfunc!(geq, Z̃, ΔŨ, x̂0end, Ue, Ŷe, U0, Ŷ0, Û0, X̂0, gc, g) 
+        return update_predictions!(ΔŨ, x̂0end, Ue, Ŷe, U0, Ŷ0, Û0, X̂0, gc, g, geq, mpc, Z̃)
     end
-    Z̃_∇geq      = fill(myNaN, nZ̃)               # NaN to force update at 1st call
-    geq_vec     = Vector{JNT}(undef, neq)
-    ∇geq        = Matrix{JNT}(undef, neq, nZ̃)   # Jacobian of equality constraints geq
-    ∇geq_buffer = JacobianBuffer(geqfunc_vec!, geq_vec, Z̃_∇geq)
-    ∇geqfuncs!  = Vector{Function}(undef, neq)
+    Z̃_∇geq = fill(myNaN, nZ̃)
+    ∇geq_context = (
+        Cache(ΔŨ), Cache(x̂0end), Cache(Ue), Cache(Ŷe), Cache(U0), Cache(Ŷ0),
+        Cache(Û0), Cache(X̂0),
+        Cache(gc), Cache(g)
+    )
+    ∇geq_prep = prepare_jacobian(geqfunc!, geq, mpc.jacobian, Z̃_∇geq, ∇geq_context...; strict)
+    ∇geq = init_diffmat(JNT, mpc.jacobian, ∇geq_prep, nZ̃, neq)
+    ∇geqfuncs! = Vector{Function}(undef, neq)
     for i in eachindex(∇geqfuncs!)
         # only multivariate syntax, univariate is impossible since nonlinear equality
         # constraints imply MultipleShooting, thus input increment ΔU and state X̂0 in Z̃:
-        ∇geqfuncs![i] = 
+        ∇geqfuncs_i! = 
             function (∇geq_i, Z̃arg::Vararg{T, N}) where {N, T<:Real}
                 if isdifferent(Z̃arg, Z̃_∇geq)
                     Z̃_∇geq .= Z̃arg
-                    jacobian!(∇geq, ∇geq_buffer, geq_vec, Z̃_∇geq)
+                    jacobian!(
+                        geqfunc!, geq, ∇geq, ∇geq_prep, mpc.jacobian, Z̃_∇geq, ∇geq_context...
+                    )
                 end
                 return ∇geq_i .= @views ∇geq[i, :]
             end
+        ∇geqfuncs![i] = ∇geqfuncs_i!
     end
     return Jfunc, ∇Jfunc!, gfuncs, ∇gfuncs!, geqfuncs, ∇geqfuncs!
 end
 
+"""
+    update_predictions!(
+        ΔŨ, x̂0end, Ue, Ŷe, U0, Ŷ0, Û0, X̂0, gc, g, geq, 
+        mpc::PredictiveController, Z̃
+    ) -> nothing
+
+Update in-place all vectors for the predictions of `mpc` controller at decision vector `Z̃`. 
+
+The method mutates all the arguments before the `mpc` argument.
+"""
+function update_predictions!(
+    ΔŨ, x̂0end, Ue, Ŷe, U0, Ŷ0, Û0, X̂0, gc, g, geq, mpc::PredictiveController, Z̃
+)
+    model, transcription = mpc.estim.model, mpc.transcription
+    U0 = getU0!(U0, mpc, Z̃)
+    ΔŨ = getΔŨ!(ΔŨ, mpc, transcription, Z̃)
+    Ŷ0, x̂0end  = predict!(Ŷ0, x̂0end, X̂0, Û0, mpc, model, transcription, U0, Z̃)
+    Ue, Ŷe = extended_vectors!(Ue, Ŷe, mpc, U0, Ŷ0)
+    ϵ = getϵ(mpc, Z̃)
+    gc  = con_custom!(gc, mpc, Ue, Ŷe, ϵ)
+    g   = con_nonlinprog!(g, mpc, model, transcription, x̂0end, Ŷ0, gc, ϵ)
+    geq = con_nonlinprogeq!(geq, X̂0, Û0, mpc, model, transcription, U0, Z̃)
+    return nothing
+end
+
 @doc raw"""
     con_custom!(gc, mpc::NonLinMPC, Ue, Ŷe, ϵ) -> gc
 
diff --git a/src/controller/transcription.jl b/src/controller/transcription.jl
index 65737bd72..9e3f5c0e7 100644
--- a/src/controller/transcription.jl
+++ b/src/controller/transcription.jl
@@ -624,7 +624,7 @@ function init_nonlincon!(
         for i in 1:con.nc
             name = Symbol("g_c_$i")
             optim[name] = JuMP.add_nonlinear_operator(
-                optim, nZ̃, gfuncs[i_base+i]; name
+                optim, nZ̃, gfuncs[i_base+i], ∇gfuncs![i_base+i]; name
             )
         end
     end
diff --git a/src/estimator/kalman.jl b/src/estimator/kalman.jl
index 62516b4d5..43e69e5f3 100644
--- a/src/estimator/kalman.jl
+++ b/src/estimator/kalman.jl
@@ -81,7 +81,7 @@ end
 Construct a steady-state Kalman Filter with the [`LinModel`](@ref) `model`.
 
 The steady-state (or [asymptotic](https://en.wikipedia.org/wiki/Kalman_filter#Asymptotic_form))
-Kalman filter is based on the process model :
+Kalman filter is based on the process model:
 ```math
 \begin{aligned}
     \mathbf{x}(k+1) &= 
@@ -160,7 +160,7 @@ SteadyKalmanFilter estimator with a sample time Ts = 0.5 s, LinModel and:
     !!! tip
         Increasing `σQint_u` and `σQint_ym` values increases the integral action "gain".
 
-    The constructor pre-compute the steady-state Kalman gain `K̂` with the [`kalman`](https://juliacontrol.github.io/ControlSystems.jl/stable/lib/synthesis/#ControlSystemsBase.kalman-Tuple{Any,%20Any,%20Any,%20Any,%20Any,%20Vararg{Any}})
+    The constructor pre-compute the steady-state Kalman gain `K̂` with the [`kalman`](@extref ControlSystemsBase.kalman)
     function. It can sometimes fail, for example when `model` matrices are ill-conditioned.
     In such a case, you can try the alternative time-varying [`KalmanFilter`](@ref).
 """
@@ -802,7 +802,7 @@ See [`init_ukf`](@ref) for the definition of the constants ``\mathbf{m̂, Ŝ}``
 superscript in e.g. ``\mathbf{X̂}_{k-1}^j(k)`` refers the vector at the ``j``th column of 
 ``\mathbf{X̂}_{k-1}(k)``. The symbol ``\mathbf{0}`` is a vector with zeros. The number of
 sigma points is ``n_σ = 2 n_\mathbf{x̂} + 1``. The matrices ``\sqrt{\mathbf{P̂}_{k-1}(k)}``
-and ``\sqrt{\mathbf{P̂}_{k}(k)}`` are the the lower triangular factors of [`cholesky`](https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/#LinearAlgebra.cholesky)
+and ``\sqrt{\mathbf{P̂}_{k}(k)}`` are the the lower triangular factors of [`cholesky`](@extref Julia LinearAlgebra.cholesky)
 results. The correction and prediction step equations are provided below. The correction
 step is skipped if `estim.direct == true` since it's already done by the user.
 
@@ -951,8 +951,8 @@ Construct an extended Kalman Filter with the [`SimModel`](@ref) `model`.
 Both [`LinModel`](@ref) and [`NonLinModel`](@ref) are supported. The process model and the
 keyword arguments are identical to [`UnscentedKalmanFilter`](@ref), except for `α`, `β` and 
 `κ` which do not apply to the extended Kalman Filter. The Jacobians of the augmented model 
-``\mathbf{f̂, ĥ}`` are computed with [`ForwardDiff.jl`](https://github.com/JuliaDiff/ForwardDiff.jl)
-automatic differentiation. This estimator allocates memory for the Jacobians.
+``\mathbf{f̂, ĥ}`` are computed with [`ForwardDiff`](@extref ForwardDiff) automatic
+differentiation. This estimator allocates memory for the Jacobians.
 
 !!! warning
     See the Extended Help of [`linearize`](@ref) function if you get an error like:    
@@ -1043,9 +1043,9 @@ augmented process model:
 \end{aligned}
 ```
 The matrix ``\mathbf{Ĥ^m}`` is the rows of ``\mathbf{Ĥ}`` that are measured outputs. The
-function [`ForwardDiff.jacobian`](https://juliadiff.org/ForwardDiff.jl/stable/user/api/#ForwardDiff.jacobian)
-automatically computes them. The correction and prediction step equations are provided below.
-The correction step is skipped if `estim.direct == true` since it's already done by the user.
+Jacobians are computed with [`ForwardDiff`](@extref ForwardDiff). The correction and 
+prediction step equations are provided below. The correction step is skipped if 
+`estim.direct == true` since it's already done by the user.
 
 # Correction Step
 ```math
diff --git a/src/estimator/luenberger.jl b/src/estimator/luenberger.jl
index 6000cf073..26f841e6e 100644
--- a/src/estimator/luenberger.jl
+++ b/src/estimator/luenberger.jl
@@ -77,8 +77,8 @@ Extended Help). The argument `poles` is a vector of `model.nx + sum(nint_u) + su
 elements specifying the observer poles/eigenvalues (near ``z=0.5`` by default). The observer
 is constructed with a direct transmission from ``\mathbf{y^m}`` if `direct=true` (a.k.a. 
 current observers, in opposition to the delayed/prediction form). The method computes the
-observer gain `K̂` with [`place`](https://juliacontrol.github.io/ControlSystems.jl/stable/lib/synthesis/#ControlSystemsBase.place).
-This estimator is allocation-free.
+observer gain `K̂` with [`place`](@extref ControlSystemsBase.place) function. This estimator
+is allocation-free.
 
 # Examples
 ```jldoctest
diff --git a/src/estimator/mhe/construct.jl b/src/estimator/mhe/construct.jl
index 953181384..b6ae2dbbb 100644
--- a/src/estimator/mhe/construct.jl
+++ b/src/estimator/mhe/construct.jl
@@ -1,5 +1,7 @@
 const DEFAULT_LINMHE_OPTIMIZER    = OSQP.MathOptInterfaceOSQP.Optimizer
 const DEFAULT_NONLINMHE_OPTIMIZER = optimizer_with_attributes(Ipopt.Optimizer,"sb"=>"yes")
+const DEFAULT_NONLINMHE_GRADIENT  = AutoForwardDiff()
+const DEFAULT_NONLINMHE_JACOBIAN  = AutoForwardDiff()
 
 @doc raw"""
 Include all the data for the constraints of [`MovingHorizonEstimator`](@ref).
@@ -46,6 +48,8 @@ struct MovingHorizonEstimator{
     NT<:Real, 
     SM<:SimModel,
     JM<:JuMP.GenericModel,
+    GB<:AbstractADType,
+    JB<:AbstractADType,
     CE<:StateEstimator,
 } <: StateEstimator{NT}
     model::SM
@@ -53,6 +57,8 @@ struct MovingHorizonEstimator{
     # different since solvers that support non-Float64 are scarce.
     optim::JM
     con::EstimatorConstraint{NT}
+    gradient::GB
+    jacobian::JB
     covestim::CE
     Z̃::Vector{NT}
     lastu0::Vector{NT}
@@ -108,9 +114,18 @@ struct MovingHorizonEstimator{
     corrected::Vector{Bool}
     buffer::StateEstimatorBuffer{NT}
     function MovingHorizonEstimator{NT}(
-        model::SM, He, i_ym, nint_u, nint_ym, P̂_0, Q̂, R̂, Cwt, optim::JM, covestim::CE;
+        model::SM, 
+        He, i_ym, nint_u, nint_ym, P̂_0, Q̂, R̂, Cwt, 
+        optim::JM, gradient::GB, jacobian::JB, covestim::CE;
         direct=true
-    ) where {NT<:Real, SM<:SimModel{NT}, JM<:JuMP.GenericModel, CE<:StateEstimator{NT}}
+    ) where {
+            NT<:Real, 
+            SM<:SimModel{NT}, 
+            JM<:JuMP.GenericModel, 
+            GB<:AbstractADType,
+            JB<:AbstractADType,
+            CE<:StateEstimator{NT}
+        }
         nu, ny, nd = model.nu, model.ny, model.nd
         He < 1  && throw(ArgumentError("Estimation horizon He should be ≥ 1"))
         Cwt < 0 && throw(ArgumentError("Cwt weight should be ≥ 0"))
@@ -154,8 +169,10 @@ struct MovingHorizonEstimator{
         P̂arr_old = copy(P̂_0)
         Nk = [0]
         corrected = [false]
-        estim = new{NT, SM, JM, CE}(
-            model, optim, con, covestim,  
+        estim = new{NT, SM, JM, GB, JB, CE}(
+            model, optim, con, 
+            gradient, jacobian,
+            covestim,  
             Z̃, lastu0, x̂op, f̂op, x̂0, 
             He, nϵ,
             i_ym, nx̂, nym, nyu, nxs, 
@@ -253,9 +270,13 @@ transcription for now.
 - `σPint_ym_0=fill(1,sum(nint_ym))` or *`sigmaPint_ym_0`* : same than `σP_0` but for the unmeasured
     disturbances at measured outputs ``\mathbf{P_{int_{ym}}}(0)`` (composed of integrators).
 - `Cwt=Inf` : slack variable weight ``C``, default to `Inf` meaning hard constraints only.
-- `optim=default_optim_mhe(model)` : a [`JuMP.Model`](https://jump.dev/JuMP.jl/stable/api/JuMP/#JuMP.Model)
-   with a quadratic/nonlinear optimizer for solving (default to [`Ipopt`](https://github.com/jump-dev/Ipopt.jl),
+- `optim=default_optim_mhe(model)` : a [`JuMP.Model`](@extref) object with a quadratic or
+   nonlinear optimizer for solving (default to [`Ipopt`](https://github.com/jump-dev/Ipopt.jl),
    or [`OSQP`](https://osqp.org/docs/parsers/jump.html) if `model` is a [`LinModel`](@ref)).
+- `gradient=AutoForwardDiff()` : an `AbstractADType` backend for the gradient of the objective
+   function when `model` is not a [`LinModel`](@ref), see [`DifferentiationInterface` doc](@extref DifferentiationInterface List).
+- `jacobian=AutoForwardDiff()` : an `AbstractADType` backend for the Jacobian of the
+   constraints when `model` is not a [`LinModel`](@ref), see `gradient` above for the options.
 - `direct=true`: construct with a direct transmission from ``\mathbf{y^m}`` (a.k.a. current
    estimator, in opposition to the delayed/predictor form).
 
@@ -336,10 +357,12 @@ MovingHorizonEstimator estimator with a sample time Ts = 10.0 s, Ipopt optimizer
     - If `model` is a [`LinModel`](@ref), the optimization is treated as a quadratic program
       with a time-varying Hessian, which is generally cheaper than nonlinear programming. By
       default, a [`KalmanFilter`](@ref) estimates the arrival covariance (customizable).
-    - Else, a nonlinear program with automatic differentiation (AD) solves the optimization.
-      Optimizers generally benefit from exact derivatives like AD. However, the `f` and `h` 
-      functions must be compatible with this feature. See [Automatic differentiation](https://jump.dev/JuMP.jl/stable/manual/nlp/#Automatic-differentiation)
-      for common mistakes when writing these functions. An [`UnscentedKalmanFilter`](@ref)
+    - Else, a nonlinear program with dense [`ForwardDiff`](@extref ForwardDiff) automatic
+      differentiation (AD) compute the objective and constraint derivatives by default 
+      (customizable). Optimizers generally benefit from exact derivatives like AD. However, 
+      the `f` and `h` functions must be compatible with this feature. See the 
+      [`JuMP` documentation](@extref JuMP Common-mistakes-when-writing-a-user-defined-operator)
+      for common mistakes when writing these functions. Also, an [`UnscentedKalmanFilter`](@ref)
       estimates the arrival covariance by default.
     
     The slack variable ``ϵ`` relaxes the constraints if enabled, see [`setconstraint!`](@ref). 
@@ -365,6 +388,8 @@ function MovingHorizonEstimator(
     sigmaQint_ym   = fill(1, max(sum(nint_ym), 0)),
     Cwt::Real = Inf,
     optim::JM = default_optim_mhe(model),
+    gradient::AbstractADType = DEFAULT_NONLINMHE_GRADIENT,
+    jacobian::AbstractADType = DEFAULT_NONLINMHE_JACOBIAN,
     direct = true,
     σP_0       = sigmaP_0,
     σQ         = sigmaQ,
@@ -380,7 +405,7 @@ function MovingHorizonEstimator(
     R̂  = Hermitian(diagm(NT[σR;].^2), :L)
     isnothing(He) && throw(ArgumentError("Estimation horizon He must be explicitly specified")) 
     return MovingHorizonEstimator(
-        model, He, i_ym, nint_u, nint_ym, P̂_0, Q̂, R̂, Cwt; direct, optim
+        model, He, i_ym, nint_u, nint_ym, P̂_0, Q̂, R̂, Cwt; direct, optim, gradient, jacobian
     )
 end
 
@@ -391,6 +416,8 @@ default_optim_mhe(::SimModel) = JuMP.Model(DEFAULT_NONLINMHE_OPTIMIZER, add_brid
     MovingHorizonEstimator(
         model, He, i_ym, nint_u, nint_ym, P̂_0, Q̂, R̂, Cwt=Inf;
         optim=default_optim_mhe(model), 
+        gradient=AutoForwardDiff(),
+        jacobian=AutoForwardDiff(),
         direct=true,
         covestim=default_covestim_mhe(model, i_ym, nint_u, nint_ym, P̂_0, Q̂, R̂; direct)
     )
@@ -407,12 +434,17 @@ supported types are [`KalmanFilter`](@ref), [`UnscentedKalmanFilter`](@ref) and
 function MovingHorizonEstimator(
     model::SM, He, i_ym, nint_u, nint_ym, P̂_0, Q̂, R̂, Cwt=Inf;
     optim::JM = default_optim_mhe(model),
+    gradient::AbstractADType = DEFAULT_NONLINMHE_GRADIENT,
+    jacobian::AbstractADType = DEFAULT_NONLINMHE_JACOBIAN,
     direct = true,
     covestim::CE = default_covestim_mhe(model, i_ym, nint_u, nint_ym, P̂_0, Q̂, R̂; direct)
 ) where {NT<:Real, SM<:SimModel{NT}, JM<:JuMP.GenericModel, CE<:StateEstimator{NT}}
     P̂_0, Q̂, R̂ = to_mat(P̂_0), to_mat(Q̂), to_mat(R̂)
     return MovingHorizonEstimator{NT}(
-        model, He, i_ym, nint_u, nint_ym, P̂_0, Q̂ , R̂, Cwt, optim, covestim; direct
+        model, 
+        He, i_ym, nint_u, nint_ym, P̂_0, Q̂ , R̂, Cwt, 
+        optim, gradient, jacobian, covestim; 
+        direct
     )
 end
 
@@ -1179,17 +1211,19 @@ function init_predmat_mhe(
 end
 
 """
-    init_optimization!(estim::MovingHorizonEstimator, model::SimModel, optim)
+    init_optimization!(
+        estim::MovingHorizonEstimator, model::LinModel, optim::JuMP.GenericModel
+    )
 
 Init the quadratic optimization of [`MovingHorizonEstimator`](@ref).
 """
 function init_optimization!(
-    estim::MovingHorizonEstimator, ::LinModel, optim::JuMP.GenericModel
+    estim::MovingHorizonEstimator, model::LinModel, optim::JuMP.GenericModel,
 )
     nZ̃ = length(estim.Z̃)
     JuMP.num_variables(optim) == 0 || JuMP.empty!(optim)
     JuMP.set_silent(optim)
-    limit_solve_time(estim.optim, estim.model.Ts)
+    limit_solve_time(optim, model.Ts)
     @variable(optim, Z̃var[1:nZ̃])
     A = estim.con.A[estim.con.i_b, :]
     b = estim.con.b[estim.con.i_b]
@@ -1199,19 +1233,21 @@ function init_optimization!(
 end
 
 """
-    init_optimization!(estim::MovingHorizonEstimator, model::SimModel, optim)
+    init_optimization!(
+        estim::MovingHorizonEstimator, model::SimModel, optim::JuMP.GenericModel,
+    ) -> nothing
 
 Init the nonlinear optimization of [`MovingHorizonEstimator`](@ref).
 """
 function init_optimization!(
-    estim::MovingHorizonEstimator, model::SimModel, optim::JuMP.GenericModel{JNT},
+    estim::MovingHorizonEstimator, model::SimModel, optim::JuMP.GenericModel{JNT}
 ) where JNT<:Real
     C, con = estim.C, estim.con
     nZ̃ = length(estim.Z̃)
     # --- variables and linear constraints ---
     JuMP.num_variables(optim) == 0 || JuMP.empty!(optim)
     JuMP.set_silent(optim)
-    limit_solve_time(estim.optim, estim.model.Ts)
+    limit_solve_time(optim, model.Ts)
     @variable(optim, Z̃var[1:nZ̃])
     A = estim.con.A[con.i_b, :]
     b = estim.con.b[con.i_b]
@@ -1266,7 +1302,7 @@ end
 
 """
     get_optim_functions(
-        estim::MovingHorizonEstimator, optim::JuMP.GenericModel
+        estim::MovingHorizonEstimator, optim::JuMP.GenericModel,
     ) -> Jfunc, ∇Jfunc!, gfuncs, ∇gfuncs!
 
 Return the functions for the nonlinear optimization of [`MovingHorizonEstimator`](@ref).
@@ -1280,115 +1316,96 @@ This method is really intricate and I'm not proud of it. That's because of 3 ele
 - These functions are used inside the nonlinear optimization, so they must be type-stable
   and as efficient as possible.
 - The `JuMP` NLP syntax forces splatting for the decision variable, which implies use
-  of `Vararg{T,N}` (see the [performance tip](https://docs.julialang.org/en/v1/manual/performance-tips/#Be-aware-of-when-Julia-avoids-specializing))
+  of `Vararg{T,N}` (see the [performance tip](@extref Julia Be-aware-of-when-Julia-avoids-specializing))
   and memoization to avoid redundant computations. This is already complex, but it's even
   worse knowing that most automatic differentiation tools do not support splatting.
 - The signature of gradient and hessian functions is not the same for univariate (`nZ̃ == 1`)
   and multivariate (`nZ̃ > 1`) operators in `JuMP`. Both must be defined.
 
-Inspired from: [User-defined operators with vector outputs](https://jump.dev/JuMP.jl/stable/tutorials/nonlinear/tips_and_tricks/#User-defined-operators-with-vector-outputs)
+Inspired from: [User-defined operators with vector outputs](@extref JuMP User-defined-operators-with-vector-outputs)
 """
 function get_optim_functions(
-    estim::MovingHorizonEstimator, ::JuMP.GenericModel{JNT}
+    estim::MovingHorizonEstimator, ::JuMP.GenericModel{JNT},
 ) where {JNT <: Real}
+    # ---------- common cache for Jfunc, gfuncs called with floats ------------------------
     model, con = estim.model, estim.con
     nx̂, nym, nŷ, nu, nϵ, He = estim.nx̂, estim.nym, model.ny, model.nu, estim.nϵ, estim.He
     nV̂, nX̂, ng, nZ̃ = He*nym, He*nx̂, length(con.i_g), length(estim.Z̃)
-    Ncache = nZ̃ + 3
-    myNaN = convert(JNT, NaN) # fill Z̃ with NaNs to force update_simulations! at 1st call:
-    # ---------------------- differentiation cache ---------------------------------------
-    Z̃_cache::DiffCache{Vector{JNT}, Vector{JNT}}  = DiffCache(fill(myNaN, nZ̃), Ncache)
-    V̂_cache::DiffCache{Vector{JNT}, Vector{JNT}}  = DiffCache(zeros(JNT, nV̂),  Ncache)
-    g_cache::DiffCache{Vector{JNT}, Vector{JNT}}  = DiffCache(zeros(JNT, ng),  Ncache)
-    X̂0_cache::DiffCache{Vector{JNT}, Vector{JNT}} = DiffCache(zeros(JNT, nX̂),  Ncache)
-    x̄_cache::DiffCache{Vector{JNT}, Vector{JNT}}  = DiffCache(zeros(JNT, nx̂),  Ncache)
-    û0_cache::DiffCache{Vector{JNT}, Vector{JNT}} = DiffCache(zeros(JNT, nu),  Ncache)
-    ŷ0_cache::DiffCache{Vector{JNT}, Vector{JNT}} = DiffCache(zeros(JNT, nŷ),  Ncache)
-    # --------------------- update simulation function ------------------------------------
-    function update_simulations!(
-        Z̃arg::Union{NTuple{N, T}, AbstractVector{T}}, Z̃cache
-    ) where {N, T <:Real}
-        if isdifferent(Z̃cache, Z̃arg)
-            for i in eachindex(Z̃cache)
-                # Z̃cache .= Z̃arg is type unstable with Z̃arg::NTuple{N, FowardDiff.Dual}
-                Z̃cache[i] = Z̃arg[i]
-            end
-            Z̃ = Z̃cache
-            ϵ = (nϵ ≠ 0) ? Z̃[begin] : zero(T) # ϵ = 0 if Cwt=Inf (meaning: no relaxation)
-            V̂,  X̂0 = get_tmp(V̂_cache, T),  get_tmp(X̂0_cache, T)
-            û0, ŷ0 = get_tmp(û0_cache, T), get_tmp(ŷ0_cache, T)
-            g      = get_tmp(g_cache, T)
-            V̂, X̂0  = predict!(V̂, X̂0, û0, ŷ0, estim, model, Z̃)
-            g = con_nonlinprog!(g, estim, model, X̂0, V̂, ϵ)
-        end
-        return nothing
-    end
+    myNaN = convert(JNT, NaN) # NaN to force update_simulations! at first call
+    strict = Val(true)
+    Z̃::Vector{JNT}                   = fill(myNaN, nZ̃) 
+    V̂::Vector{JNT},  X̂0::Vector{JNT} = zeros(JNT, nV̂), zeros(JNT, nX̂)
+    û0::Vector{JNT}, ŷ0::Vector{JNT} = zeros(JNT, nu), zeros(JNT, nŷ)
+    g::Vector{JNT}                   = zeros(JNT, ng)
+    x̄::Vector{JNT}                   = zeros(JNT, nx̂)
     # --------------------- objective functions -------------------------------------------
     function Jfunc(Z̃arg::Vararg{T, N}) where {N, T<:Real}
-        Z̃ = get_tmp(Z̃_cache, T)
-        update_simulations!(Z̃arg, Z̃)
-        x̄, V̂ = get_tmp(x̄_cache, T), get_tmp(V̂_cache, T)
+        if isdifferent(Z̃arg, Z̃)
+            Z̃ .= Z̃arg
+            update_prediction!(V̂, X̂0, û0, ŷ0, g, estim, Z̃)
+        end
         return obj_nonlinprog!(x̄, estim, model, V̂, Z̃)::T
     end
-    function Jfunc_vec(Z̃arg::AbstractVector{T}) where T<:Real
-        Z̃ = get_tmp(Z̃_cache, T)
-        update_simulations!(Z̃arg, Z̃)
-        x̄, V̂ = get_tmp(x̄_cache, T), get_tmp(V̂_cache, T)
-        return obj_nonlinprog!(x̄, estim, model, V̂, Z̃)::T
+    function Jfunc!(Z̃, V̂, X̂0, û0, ŷ0, g, x̄)
+        update_prediction!(V̂, X̂0, û0, ŷ0, g, estim, Z̃)
+        return obj_nonlinprog!(x̄, estim, model, V̂, Z̃)
     end
-    Z̃_∇J      = fill(myNaN, nZ̃) 
-    ∇J        = Vector{JNT}(undef, nZ̃)       # gradient of objective J
-    ∇J_buffer = GradientBuffer(Jfunc_vec, Z̃_∇J)
-    ∇Jfunc! = if nZ̃ == 1
-        function (Z̃arg::T) where T<:Real 
-            Z̃_∇J .= Z̃arg
-            gradient!(∇J, ∇J_buffer, Z̃_∇J)
-            return ∇J[begin]    # univariate syntax, see JuMP.@operator doc
-        end
-    else
-        function (∇J::AbstractVector{T}, Z̃arg::Vararg{T, N}) where {N, T<:Real}
-            Z̃_∇J .= Z̃arg
-            gradient!(∇J, ∇J_buffer, Z̃_∇J)
-            return ∇J           # multivariate syntax, see JuMP.@operator doc
-        end
+    Z̃_∇J    = fill(myNaN, nZ̃) 
+    ∇J_context = (
+        Cache(V̂),  Cache(X̂0),
+        Cache(û0), Cache(ŷ0),
+        Cache(g),
+        Cache(x̄),
+    )
+    # temporarily "fill" the estimation window for the preperation of the gradient: 
+    estim.Nk[] = He
+    ∇J_prep = prepare_gradient(Jfunc!, estim.gradient, Z̃_∇J, ∇J_context...; strict)
+    estim.Nk[] = 0
+    ∇J = Vector{JNT}(undef, nZ̃)
+    ∇Jfunc! = function (∇J::AbstractVector{T}, Z̃arg::Vararg{T, N}) where {N, T<:Real}
+        # only the multivariate syntax of JuMP.@operator, univariate is impossible for MHE
+        # since Z̃ comprises the arrival state estimate AND the estimated process noise
+        Z̃_∇J .= Z̃arg
+        gradient!(Jfunc!, ∇J, ∇J_prep, estim.gradient, Z̃_∇J, ∇J_context...)
+        return ∇J
     end
+    
     # --------------------- inequality constraint functions -------------------------------
     gfuncs = Vector{Function}(undef, ng)
     for i in eachindex(gfuncs)
-        func_i = function (Z̃arg::Vararg{T, N}) where {N, T<:Real}
-            update_simulations!(Z̃arg, get_tmp(Z̃_cache, T))
-            g = get_tmp(g_cache, T)
+        gfunc_i = function (Z̃arg::Vararg{T, N}) where {N, T<:Real}
+            if isdifferent(Z̃arg, Z̃)
+                Z̃ .= Z̃arg
+                update_prediction!(V̂, X̂0, û0, ŷ0, g, estim, Z̃)
+            end
             return g[i]::T
         end
-        gfuncs[i] = func_i
+        gfuncs[i] = gfunc_i
     end
-    function gfunc_vec!(g, Z̃vec::AbstractVector{T}) where T<:Real
-        update_simulations!(Z̃vec, get_tmp(Z̃_cache, T))
-        g .= get_tmp(g_cache, T)
-        return g
+    function gfunc!(g, Z̃, V̂, X̂0, û0, ŷ0)
+        return update_prediction!(V̂, X̂0, û0, ŷ0, g, estim, Z̃)
     end
-    Z̃_∇g      = fill(myNaN, nZ̃)
-    g_vec     = Vector{JNT}(undef, ng)
-    ∇g        = Matrix{JNT}(undef, ng, nZ̃)   # Jacobian of inequality constraints g
-    ∇g_buffer = JacobianBuffer(gfunc_vec!, g_vec, Z̃_∇g)
-    ∇gfuncs!  = Vector{Function}(undef, ng)
+    Z̃_∇g     = fill(myNaN, nZ̃)
+    ∇g_context = (
+        Cache(V̂),  Cache(X̂0),
+        Cache(û0), Cache(ŷ0),
+    )
+    # temporarily enable all the inequality constraints for sparsity detection:
+    estim.con.i_g .= true  
+    estim.Nk[] = He
+    ∇g_prep  = prepare_jacobian(gfunc!, g, estim.jacobian, Z̃_∇g, ∇g_context...; strict)
+    estim.con.i_g .= false
+    estim.Nk[] = 0
+    ∇g = init_diffmat(JNT, estim.jacobian, ∇g_prep, nZ̃, ng)
+    ∇gfuncs! = Vector{Function}(undef, ng)
     for i in eachindex(∇gfuncs!)
-        ∇gfuncs![i] = if nZ̃ == 1
-            function (Z̃arg::T) where T<:Real
-                if isdifferent(Z̃arg, Z̃_∇g)
-                    Z̃_∇g .= Z̃arg
-                    jacobian!(∇g, ∇g_buffer, g_vec, Z̃_∇g)
-                end
-                return ∇g[i, begin]            # univariate syntax, see JuMP.@operator doc
-            end
-        else
-            function (∇g_i, Z̃arg::Vararg{T, N}) where {N, T<:Real}
-                if isdifferent(Z̃arg, Z̃_∇g)
-                    Z̃_∇g .= Z̃arg
-                    jacobian!(∇g, ∇g_buffer, g_vec, Z̃_∇g)
-                end
-                return ∇g_i .= @views ∇g[i, :] # multivariate syntax, see JuMP.@operator doc
+        ∇gfuncs![i] = function (∇g_i, Z̃arg::Vararg{T, N}) where {N, T<:Real}
+            # only the multivariate syntax of JuMP.@operator, see above for the explanation
+            if isdifferent(Z̃arg, Z̃_∇g)
+                Z̃_∇g .= Z̃arg
+                jacobian!(gfunc!, g, ∇g, ∇g_prep, estim.jacobian, Z̃_∇g, ∇g_context...)
             end
+            return ∇g_i .= @views ∇g[i, :]
         end
     end
     return Jfunc, ∇Jfunc!, gfuncs, ∇gfuncs!
diff --git a/src/estimator/mhe/execute.jl b/src/estimator/mhe/execute.jl
index 0511eba81..de73b9411 100644
--- a/src/estimator/mhe/execute.jl
+++ b/src/estimator/mhe/execute.jl
@@ -160,6 +160,15 @@ function getinfo(estim::MovingHorizonEstimator{NT}) where NT<:Real
     return info
 end
 
+"""
+    getϵ(estim::MovingHorizonEstimator, Z̃) -> ϵ
+
+Get the slack `ϵ` from the decision vector `Z̃` if present, otherwise return 0.
+"""
+function getϵ(estim::MovingHorizonEstimator, Z̃::AbstractVector{NT}) where NT<:Real
+    return estim.nϵ ≠ 0 ? Z̃[begin] : zero(NT)
+end
+
 """
     add_data_windows!(estim::MovingHorizonEstimator, y0m, d0, u0=estim.lastu0) -> ismoving
 
@@ -370,7 +379,7 @@ where ``\mathbf{ŵ}_{k-1}(k-j)`` is the input increment for time ``k-j`` comput
 last time step ``k-1``. It then calls `JuMP.optimize!(estim.optim)` and extract the
 solution. A failed optimization prints an `@error` log in the REPL and returns the 
 warm-start value. A failed optimization also prints [`getinfo`](@ref) results in
-the debug log [if activated](https://docs.julialang.org/en/v1/stdlib/Logging/#Example:-Enable-debug-level-messages).
+the debug log [if activated](@extref Julia Example:-Enable-debug-level-messages).
 """
 function optim_objective!(estim::MovingHorizonEstimator{NT}) where NT<:Real
     model, optim = estim.model, estim.optim
@@ -501,7 +510,9 @@ Objective function of [`MovingHorizonEstimator`](@ref) when `model` is a [`LinMo
 It can be called on a [`MovingHorizonEstimator`](@ref) object to evaluate the objective 
 function at specific `Z̃` and `V̂` values.
 """
-function obj_nonlinprog!( _ , estim::MovingHorizonEstimator, ::LinModel, _ , Z̃)
+function obj_nonlinprog!(
+    _ , estim::MovingHorizonEstimator, ::LinModel, _ , Z̃::AbstractVector{NT}
+) where NT<:Real
     return obj_quadprog(Z̃, estim.H̃, estim.q̃) + estim.r[]
 end
 
@@ -513,14 +524,16 @@ Objective function of the MHE when `model` is not a [`LinModel`](@ref).
 The function `dot(x, A, x)` is a performant way of calculating `x'*A*x`. This method mutates
 `x̄` vector arguments.
 """
-function obj_nonlinprog!(x̄, estim::MovingHorizonEstimator, ::SimModel, V̂, Z̃) 
+function obj_nonlinprog!(
+    x̄, estim::MovingHorizonEstimator, ::SimModel, V̂, Z̃::AbstractVector{NT}
+) where NT<:Real
     nϵ, Nk = estim.nϵ, estim.Nk[] 
     nYm, nŴ, nx̂, invP̄ = Nk*estim.nym, Nk*estim.nx̂, estim.nx̂, estim.invP̄
     nx̃ = nϵ + nx̂
     invQ̂_Nk, invR̂_Nk = @views estim.invQ̂_He[1:nŴ, 1:nŴ], estim.invR̂_He[1:nYm, 1:nYm]
     x̂0arr, Ŵ, V̂ = @views Z̃[nx̃-nx̂+1:nx̃], Z̃[nx̃+1:nx̃+nŴ], V̂[1:nYm]
     x̄ .= estim.x̂0arr_old .- x̂0arr
-    Jϵ = nϵ ≠ 0 ? estim.C*Z̃[begin]^2 : 0
+    Jϵ = nϵ ≠ 0 ? estim.C*Z̃[begin]^2 : zero(NT)
     return dot(x̄, invP̄, x̄) + dot(Ŵ, invQ̂_Nk, Ŵ) + dot(V̂, invR̂_Nk, V̂) + Jϵ
 end
 
@@ -582,6 +595,22 @@ function predict!(V̂, X̂0, û0, ŷ0, estim::MovingHorizonEstimator, model::S
     return V̂, X̂0
 end
 
+
+"""
+    update_predictions!(V̂, X̂0, û0, ŷ0, g, estim::MovingHorizonEstimator, Z̃)
+
+Update in-place the vectors for the predictions of `estim` estimator at decision vector `Z̃`.
+
+The method mutates all the arguments before `estim` argument.
+"""
+function update_prediction!(V̂, X̂0, û0, ŷ0, g, estim::MovingHorizonEstimator, Z̃)
+    model = estim.model
+    V̂, X̂0  = predict!(V̂, X̂0, û0, ŷ0, estim, model, Z̃)
+    ϵ = getϵ(estim, Z̃)
+    g = con_nonlinprog!(g, estim, model, X̂0, V̂, ϵ)
+    return nothing
+end
+
 """
     con_nonlinprog!(g, estim::MovingHorizonEstimator, model::SimModel, X̂0, V̂, ϵ)
 
diff --git a/src/general.jl b/src/general.jl
index 700c3f1c1..90a411dbc 100644
--- a/src/general.jl
+++ b/src/general.jl
@@ -6,41 +6,6 @@ const DEFAULT_LWT = 0.0
 const DEFAULT_CWT = 1e5
 const DEFAULT_EWT = 0.0
 
-"Abstract type for all differentiation buffers."
-abstract type DifferentiationBuffer end
-
-function Base.show(io::IO, buffer::DifferentiationBuffer) 
-    return print(io, "DifferentiationBuffer with a $(typeof(buffer.config).name.name)")
-end
-
-"Struct with both function and configuration for ForwardDiff gradient."
-struct GradientBuffer{FT<:Function, CT<:ForwardDiff.GradientConfig} <: DifferentiationBuffer
-    f::FT
-    config::CT
-end
-
-"Create a GradientBuffer with function `f` and input `x`."
-GradientBuffer(f, x) = GradientBuffer(f, ForwardDiff.GradientConfig(f, x))
-
-"Compute in-place and return the gradient of `buffer.f` at `x`."
-function gradient!(g, buffer::GradientBuffer, x)
-    return ForwardDiff.gradient!(g, buffer.f, x, buffer.config)
-end
-
-"Struct with both function and configuration for ForwardDiff Jacobian."
-struct JacobianBuffer{FT<:Function, CT<:ForwardDiff.JacobianConfig} <: DifferentiationBuffer
-    f!::FT
-    config::CT
-end
-
-"Create a JacobianBuffer with in-place function `f!`, output `y` and input `x`."
-JacobianBuffer(f!, y, x) = JacobianBuffer(f!, ForwardDiff.JacobianConfig(f!, y, x))
-
-"Compute in-place and return the Jacobian matrix of `buffer.f!` at `x`."
-function jacobian!(A, buffer::JacobianBuffer, y, x)
-    return ForwardDiff.jacobian!(A, buffer.f!, y, x, buffer.config)
-end
-
 "Termination status that means 'no solution available'."
 const ERROR_STATUSES = (
     JuMP.INFEASIBLE, JuMP.DUAL_INFEASIBLE, JuMP.LOCALLY_INFEASIBLE, 
@@ -91,6 +56,10 @@ function limit_solve_time(optim::GenericModel, Ts)
     end
 end
 
+"Init a differentiation result matrix as dense or sparse matrix, as required by `backend`."
+init_diffmat(T, backend::AbstractADType, _  , nx , ny) = Matrix{T}(undef, ny, nx)
+init_diffmat(T, backend::AutoSparse    ,prep , _ , _ ) = similar(sparsity_pattern(prep), T)
+
 "Verify that x and y elements are different using `!==`."
 isdifferent(x, y) = any(xi !== yi for (xi, yi) in zip(x, y))
 
diff --git a/src/model/linearization.jl b/src/model/linearization.jl
index 6fc47130c..c25156c61 100644
--- a/src/model/linearization.jl
+++ b/src/model/linearization.jl
@@ -1,72 +1,49 @@
-"A linearization buffer for the [`linearize`](@ref) function."
-struct LinearizationBuffer{
-    NT <:Real,
-    JB_FUD <:JacobianBuffer,
-    JB_FXD <:JacobianBuffer,
-    JB_FXU <:JacobianBuffer,
-    JB_HD  <:JacobianBuffer,
-    JB_HX  <:JacobianBuffer
-}
-    x::Vector{NT}
-    u::Vector{NT}
-    d::Vector{NT}
-    buffer_f_at_u_d::JB_FUD
-    buffer_f_at_x_d::JB_FXD
-    buffer_f_at_x_u::JB_FXU
-    buffer_h_at_d  ::JB_HD
-    buffer_h_at_x  ::JB_HX
-    function LinearizationBuffer(
-        x::Vector{NT}, 
-        u::Vector{NT}, 
-        d::Vector{NT},
-        buffer_f_at_u_d::JB_FUD, 
-        buffer_f_at_x_d::JB_FXD, 
-        buffer_f_at_x_u::JB_FXU, 
-        buffer_h_at_d::JB_HD, 
-        buffer_h_at_x::JB_HX
-    ) where {NT<:Real, JB_FUD, JB_FXD, JB_FXU, JB_HD, JB_HX}
-        return new{NT, JB_FUD, JB_FXD, JB_FXU, JB_HD, JB_HX}(
-            x, u, d, 
-            buffer_f_at_u_d, 
-            buffer_f_at_x_d, 
-            buffer_f_at_x_u, 
-            buffer_h_at_d, 
-            buffer_h_at_x
-        )
-    end
-    
-end
+"""
+    get_linearization_func(NT, f!, h!, nu, nx, ny, nd, p, backend) -> linfunc!
 
-Base.show(io::IO, buffer::LinearizationBuffer) = print(io, "LinearizationBuffer object")
-
-function LinearizationBuffer(NT, f!, h!, nu, nx, ny, nd, p)
-    x, u, d, f_at_u_d!, f_at_x_d!, f_at_x_u!, h_at_d!, h_at_x! = get_linearize_funcs(
-        NT, f!, h!, nu, nx, ny, nd, p
-    )
-    xnext, y = Vector{NT}(undef, nx), Vector{NT}(undef, ny) # TODO: to replace ?
-    return LinearizationBuffer(
-        x, u, d, 
-        JacobianBuffer(f_at_u_d!, xnext, x),
-        JacobianBuffer(f_at_x_d!, xnext, u),
-        JacobianBuffer(f_at_x_u!, xnext, d),
-        JacobianBuffer(h_at_d!, y, x),
-        JacobianBuffer(h_at_x!, y, d)
-    )
-end
+Return the `linfunc!` function that computes the Jacobians of `f!` and `h!` functions.
 
-"Get the linearization functions for [`NonLinModel`](@ref) `f!` and `h!` functions."
-function get_linearize_funcs(NT, f!, h!, nu, nx, ny, nd, p)
-    x = Vector{NT}(undef, nx)
-    u = Vector{NT}(undef, nu)
-    d = Vector{NT}(undef, nd)
-    f_at_u_d!(xnext, x) = f!(xnext, x, u, d, p)
-    f_at_x_d!(xnext, u) = f!(xnext, x, u, d, p)
-    f_at_x_u!(xnext, d) = f!(xnext, x, u, d, p)
-    h_at_d!(y, x)       = h!(y, x, d, p)
-    h_at_x!(y, d)       = h!(y, x, d, p)
-    return x, u, d, f_at_u_d!, f_at_x_d!, f_at_x_u!, h_at_d!, h_at_x!
+The function has the following signature: 
+```
+    linfunc!(xnext, y, A, Bu, C, Bd, Dd, backend, x, u, d, cst_x, cst_u, cst_d) -> nothing
+```
+and it should modifies in-place all the arguments before `backend`. The `backend` argument
+is an `AbstractADType` backend from `DifferentiationInterface`. The `cst_x`, `cst_u` and 
+`cst_d` are `DifferentiationInterface.Constant` objects with the linearization points.
+"""
+function get_linearization_func(NT, f!, h!, nu, nx, ny, nd, p, backend)
+    f_x!(xnext, x, u, d) = f!(xnext, x, u, d, p)
+    f_u!(xnext, u, x, d) = f!(xnext, x, u, d, p)
+    f_d!(xnext, d, x, u) = f!(xnext, x, u, d, p)
+    h_x!(y, x, d) = h!(y, x, d, p)
+    h_d!(y, d, x) = h!(y, x, d, p)
+    strict  = Val(true)
+    xnext = zeros(NT, nx)
+    y = zeros(NT, ny)
+    x = zeros(NT, nx)
+    u = zeros(NT, nu)
+    d = zeros(NT, nd)
+    cst_x = Constant(x)
+    cst_u = Constant(u)
+    cst_d = Constant(d)
+    A_prep  = prepare_jacobian(f_x!, xnext, backend, x, cst_u, cst_d; strict)
+    Bu_prep = prepare_jacobian(f_u!, xnext, backend, u, cst_x, cst_d; strict)
+    Bd_prep = prepare_jacobian(f_d!, xnext, backend, d, cst_x, cst_u; strict)
+    C_prep  = prepare_jacobian(h_x!, y,     backend, x, cst_d       ; strict)
+    Dd_prep = prepare_jacobian(h_d!, y,     backend, d, cst_x       ; strict)
+    function linfunc!(xnext, y, A, Bu, C, Bd, Dd, backend, x, u, d, cst_x, cst_u, cst_d)
+        # all the arguments before `x` are mutated in this function
+        jacobian!(f_x!, xnext, A,  A_prep,  backend, x, cst_u, cst_d)
+        jacobian!(f_u!, xnext, Bu, Bu_prep, backend, u, cst_x, cst_d)
+        jacobian!(f_d!, xnext, Bd, Bd_prep, backend, d, cst_x, cst_u)
+        jacobian!(h_x!, y,     C,  C_prep,  backend, x, cst_d)
+        jacobian!(h_d!, y,     Dd, Dd_prep, backend, d, cst_x)
+        return nothing
+    end
+    return linfunc!
 end
 
+
 @doc raw"""
     linearize(model::SimModel; x=model.x0+model.xop, u=model.uop, d=model.dop) -> linmodel
 
@@ -74,8 +51,9 @@ Linearize `model` at the operating points `x`, `u`, `d` and return the [`LinMode
 
 The arguments `x`, `u` and `d` are the linearization points for the state ``\mathbf{x}``,
 manipulated input ``\mathbf{u}`` and measured disturbance ``\mathbf{d}``, respectively (not
-necessarily an equilibrium, details in Extended Help). The Jacobians of ``\mathbf{f}`` and 
-``\mathbf{h}`` functions are automatically computed with [`ForwardDiff.jl`](https://github.com/JuliaDiff/ForwardDiff.jl).
+necessarily an equilibrium, details in Extended Help). By default, [`ForwardDiff`](@extref ForwardDiff)
+automatically computes the Jacobians of ``\mathbf{f}`` and ``\mathbf{h}`` functions. Modify
+the `jacobian` keyword argument at the construction of `model` to swap the backend.
 
 !!! warning
     See Extended Help if you get an error like:    
@@ -131,7 +109,7 @@ julia> linmodel.A
     equations are similar if the nonlinear model has nonzero operating points.
 
     Automatic differentiation (AD) allows exact Jacobians. The [`NonLinModel`](@ref) `f` and
-    `h` functions must be compatible with this feature though. See [Automatic differentiation](https://jump.dev/JuMP.jl/stable/manual/nlp/#Automatic-differentiation)
+    `h` functions must be compatible with this feature though. See [`JuMP` documentation](@extref JuMP Common-mistakes-when-writing-a-user-defined-operator)
     for common mistakes when writing these functions.
 """
 function linearize(model::SimModel{NT}; kwargs...) where NT<:Real
@@ -181,8 +159,7 @@ function linearize!(
     u0 .= u .- nonlinmodel.uop
     d0 .= d .- nonlinmodel.dop
     # --- compute the Jacobians at linearization points ---
-    xnext0::Vector{NT}, y0::Vector{NT} = linmodel.buffer.x, linmodel.buffer.y
-    get_jacobians!(linmodel, xnext0, y0, nonlinmodel, x0, u0, d0)
+    linearize_core!(linmodel, nonlinmodel, x0, u0, d0)
     # --- compute the nonlinear model output at operating points ---
     xnext0, y0 = linmodel.buffer.x, linmodel.buffer.y
     h!(y0, nonlinmodel, x0, d0, model.p)
@@ -203,22 +180,20 @@ function linearize!(
     return linmodel
 end
 
-"Compute the 5 Jacobians of `model` at the linearization point and write them in `linmodel`."
-function get_jacobians!(linmodel::LinModel, xnext0, y0, model::SimModel, x0, u0, d0)
-    linbuffer = model.linbuffer # a LinearizationBuffer object
-    linbuffer.x .= x0
-    linbuffer.u .= u0
-    linbuffer.d .= d0
-    jacobian!(linmodel.A,  linbuffer.buffer_f_at_u_d, xnext0, x0)
-    jacobian!(linmodel.Bu, linbuffer.buffer_f_at_x_d, xnext0, u0)
-    jacobian!(linmodel.Bd, linbuffer.buffer_f_at_x_u, xnext0, d0)
-    jacobian!(linmodel.C,  linbuffer.buffer_h_at_d, y0, x0)
-    jacobian!(linmodel.Dd, linbuffer.buffer_h_at_x, y0, d0)
+"Call `linfunc!` function to compute the Jacobians of `model` at the linearization point."
+function linearize_core!(linmodel::LinModel, model::SimModel, x0, u0, d0)
+    xnext0, y0 = linmodel.buffer.x, linmodel.buffer.y
+    A, Bu, C, Bd, Dd = linmodel.A, linmodel.Bu, linmodel.C, linmodel.Bd, linmodel.Dd
+    cst_x = Constant(x0)
+    cst_u = Constant(u0)
+    cst_d = Constant(d0)
+    backend = model.jacobian
+    model.linfunc!(xnext0, y0, A, Bu, C, Bd, Dd, backend, x0, u0, d0, cst_x, cst_u, cst_d)
     return nothing
 end
 
 "Copy the state-space matrices of `model` to `linmodel` if `model` is already linear."
-function get_jacobians!(linmodel::LinModel, _ , _ , model::LinModel, _ , _ , _)
+function linearize_core!(linmodel::LinModel, model::LinModel, _ , _ , _ )
     linmodel.A  .= model.A
     linmodel.Bu .= model.Bu
     linmodel.C  .= model.C
diff --git a/src/model/linmodel.jl b/src/model/linmodel.jl
index 24f40ba05..041ebeea4 100644
--- a/src/model/linmodel.jl
+++ b/src/model/linmodel.jl
@@ -84,7 +84,7 @@ resamples discrete ones if `Ts ≠ sys.Ts`, computes a new realization if not mi
 separates the ``\mathbf{z}`` terms in two parts (details in Extended Help). The rest of the
 documentation assumes discrete dynamics since all systems end up in this form.
 
-See also [`ss`](https://juliacontrol.github.io/ControlSystems.jl/stable/lib/constructors/#ControlSystemsBase.ss)
+See also [`ss`](@extref ControlSystemsBase.ss)
 
 # Examples
 ```jldoctest
@@ -112,12 +112,12 @@ LinModel with a sample time Ts = 0.1 s and:
         \mathbf{y}(k)   &=  \mathbf{C x}(k) + \mathbf{D z}(k)
     \end{aligned}
     ```
-    Continuous dynamics are internally discretized using [`c2d`](https://juliacontrol.github.io/ControlSystems.jl/stable/lib/constructors/#ControlSystemsBase.c2d)
-    and `:zoh` for manipulated inputs, and `:tustin`, for measured disturbances. Lastly, if 
+    Continuous dynamics are internally discretized using [`c2d`](@extref ControlSystemsBase.c2d)
+    and `:zoh` for manipulated inputs, and `:tustin`, for measured disturbances. Lastly, if
     `sys` is discrete and the provided argument `Ts ≠ sys.Ts`, the system is resampled by
     using the aforementioned discretization methods.
 
-    Note that the constructor transforms the system to its minimal realization using [`minreal`](https://juliacontrol.github.io/ControlSystems.jl/stable/lib/constructors/#ControlSystemsBase.minreal)
+    Note that the constructor transforms the system to its minimal realization using [`minreal`](@extref ControlSystemsBase.minreal)
     for controllability/observability. As a consequence, the final state-space
     representation may be different from the one provided in `sys`. It is also converted 
     into a more practical form (``\mathbf{D_u=0}`` because of the zero-order hold):
@@ -192,7 +192,7 @@ Convert to minimal realization state-space when `sys` is a transfer function.
 `sys` is equal to ``\frac{\mathbf{y}(s)}{\mathbf{z}(s)}`` for continuous-time, and 
 ``\frac{\mathbf{y}(z)}{\mathbf{z}(z)}``, for discrete-time.
 
-See also [`tf`](https://juliacontrol.github.io/ControlSystems.jl/stable/lib/constructors/#ControlSystemsBase.tf)
+See also [`tf`](@extref ControlSystemsBase.tf)
 
 # Examples
 ```jldoctest
diff --git a/src/model/nonlinmodel.jl b/src/model/nonlinmodel.jl
index 96dd64b6b..62e43ea62 100644
--- a/src/model/nonlinmodel.jl
+++ b/src/model/nonlinmodel.jl
@@ -1,5 +1,11 @@
 struct NonLinModel{
-    NT<:Real, F<:Function, H<:Function, PT<:Any, DS<:DiffSolver, LB<:LinearizationBuffer
+    NT<:Real, 
+    F<:Function, 
+    H<:Function, 
+    PT<:Any, 
+    DS<:DiffSolver, 
+    JB<:AbstractADType,
+    LF<:Function
 } <: SimModel{NT}
     x0::Vector{NT}
     f!::F
@@ -21,11 +27,20 @@ struct NonLinModel{
     yname::Vector{String}
     dname::Vector{String}
     xname::Vector{String}
-    linbuffer::LB
+    jacobian::JB
+    linfunc!::LF
     buffer::SimModelBuffer{NT}
     function NonLinModel{NT}(
-        f!::F, h!::H, Ts, nu, nx, ny, nd, p::PT, solver::DS, linbuffer::LB
-    ) where {NT<:Real, F<:Function, H<:Function, PT<:Any, DS<:DiffSolver, LB<:LinearizationBuffer}
+        f!::F, h!::H, Ts, nu, nx, ny, nd, p::PT, solver::DS, jacobian::JB, linfunc!::LF
+    ) where {
+            NT<:Real, 
+            F<:Function, 
+            H<:Function, 
+            PT<:Any, 
+            DS<:DiffSolver, 
+            JB<:AbstractADType,
+            LF<:Function
+        }
         Ts > 0 || error("Sampling time Ts must be positive")
         uop = zeros(NT, nu)
         yop = zeros(NT, ny)
@@ -39,7 +54,7 @@ struct NonLinModel{
         x0 = zeros(NT, nx)
         t  = zeros(NT, 1)
         buffer = SimModelBuffer{NT}(nu, nx, ny, nd)
-        return new{NT, F, H, PT, DS, LB}(
+        return new{NT, F, H, PT, DS, JB, LF}(
             x0, 
             f!, h!,
             p,
@@ -48,15 +63,15 @@ struct NonLinModel{
             nu, nx, ny, nd, 
             uop, yop, dop, xop, fop,
             uname, yname, dname, xname,
-            linbuffer,
+            jacobian, linfunc!,
             buffer
         )
     end
 end
 
 @doc raw"""
-    NonLinModel{NT}(f::Function,  h::Function,  Ts, nu, nx, ny, nd=0; p=[], solver=RungeKutta(4))
-    NonLinModel{NT}(f!::Function, h!::Function, Ts, nu, nx, ny, nd=0; p=[], solver=RungeKutta(4))
+    NonLinModel{NT}(f::Function,  h::Function,  Ts, nu, nx, ny, nd=0; <keyword arguments>)
+    NonLinModel{NT}(f!::Function, h!::Function, Ts, nu, nx, ny, nd=0; <keyword arguments>)
 
 Construct a nonlinear model from state-space functions `f`/`f!` and `h`/`h!`.
 
@@ -71,8 +86,10 @@ functions are defined as:
 ```
 where ``\mathbf{x}``, ``\mathbf{y}``, ``\mathbf{u}``, ``\mathbf{d}`` and ``\mathbf{p}`` are
 respectively the state, output, manipulated input, measured disturbance and parameter
-vectors. If the dynamics is a function of the time, simply add a measured disturbance
-defined as ``d(t) = t``. The functions can be implemented in two possible ways:
+vectors. As a mather of fact, the parameter argument `p` can be any Julia objects but use a
+mutable type if you want to change them later e.g.: a vector. If the dynamics is a function
+of the time, simply add a measured disturbance defined as ``d(t) = t``. The functions can be
+implemented in two possible ways:
 
 1. **Non-mutating functions** (out-of-place): define them as `f(x, u, d, p) -> ẋ` and
    `h(x, d, p) -> y`. This syntax is simple and intuitive but it allocates more memory.
@@ -80,25 +97,34 @@ defined as ``d(t) = t``. The functions can be implemented in two possible ways:
    `h!(y, x, d, p) -> nothing`. This syntax reduces the allocations and potentially the 
    computational burden as well.
 
-`Ts` is the sampling time in second. `nu`, `nx`, `ny` and `nd` are the respective number of 
-manipulated inputs, states, outputs and measured disturbances. The keyword argument `p`
-is the parameters of the model passed to the two functions. It can be any Julia objects but
-use a mutable type if you want to change them later e.g.: a vector.
-
 !!! tip
     Replace the `d` or `p` argument with `_` in your functions if not needed (see Examples below).
     
-A 4th order [`RungeKutta`](@ref) solver discretizes the differential equations by default. 
 The rest of the documentation assumes discrete dynamics since all models end up in this 
 form. The optional parameter `NT` explicitly set the number type of vectors (default to 
 `Float64`).
 
 !!! warning
     The two functions must be in pure Julia to use the model in [`NonLinMPC`](@ref),
-    [`ExtendedKalmanFilter`](@ref), [`MovingHorizonEstimator`](@ref) and [`linearize`](@ref).
+    [`ExtendedKalmanFilter`](@ref), [`MovingHorizonEstimator`](@ref) and [`linearize`](@ref),
+    except if a finite difference backend is used (e.g. [`AutoFiniteDiff`](@extref DifferentiationInterface List).
 
 See also [`LinModel`](@ref).
 
+# Arguments
+- `f::Function` or `f!`: state function.
+- `h::Function` or `h!`: output function.
+- `Ts`: sampling time of in second.
+- `nu`: number of manipulated inputs.
+- `nx`: number of states.
+- `ny`: number of outputs.
+- `nd=0`: number of measured disturbances.
+- `p=[]`: parameters of the model (any type).
+- `solver=RungeKutta(4)`: a [`DiffSolver`](@ref) object for the discretization of continuous
+  dynamics, use `nothing` for discrete-time models (default to 4th order [`RungeKutta`](@ref)).
+- `jacobian=AutoForwardDiff()`: an `AbstractADType` backend when [`linearize`](@ref) is
+   called, see [`DifferentiationInterface` doc](@extref DifferentiationInterface List).
+
 # Examples
 ```jldoctest
 julia> f!(ẋ, x, u, _ , p) = (ẋ .= p*x .+ u; nothing);
@@ -142,20 +168,20 @@ NonLinModel with a sample time Ts = 2.0 s, empty solver and:
 """
 function NonLinModel{NT}(
     f::Function, h::Function, Ts::Real, nu::Int, nx::Int, ny::Int, nd::Int=0;
-    p=NT[], solver=RungeKutta(4)
+    p=NT[], solver=RungeKutta(4), jacobian=AutoForwardDiff()
 ) where {NT<:Real}
     isnothing(solver) && (solver=EmptySolver())
     f!, h! = get_mutating_functions(NT, f, h)
     f!, h! = get_solver_functions(NT, solver, f!, h!, Ts, nu, nx, ny, nd)
-    linbuffer = LinearizationBuffer(NT, f!, h!, nu, nx, ny, nd, p)
-    return NonLinModel{NT}(f!, h!, Ts, nu, nx, ny, nd, p, solver, linbuffer)
+    linfunc! = get_linearization_func(NT, f!, h!, nu, nx, ny, nd, p, jacobian)
+    return NonLinModel{NT}(f!, h!, Ts, nu, nx, ny, nd, p, solver, jacobian, linfunc!)
 end
 
 function NonLinModel(
     f::Function, h::Function, Ts::Real, nu::Int, nx::Int, ny::Int, nd::Int=0;
-    p=Float64[], solver=RungeKutta(4)
+    p=Float64[], solver=RungeKutta(4), jacobian=AutoForwardDiff()
 )
-    return NonLinModel{Float64}(f, h, Ts, nu, nx, ny, nd; p, solver)
+    return NonLinModel{Float64}(f, h, Ts, nu, nx, ny, nd; p, solver, jacobian)
 end
 
 "Get the mutating functions `f!` and `h!` from the provided functions in argument."
diff --git a/src/precompile.jl b/src/precompile.jl
index 6968678ef..9649c053c 100644
--- a/src/precompile.jl
+++ b/src/precompile.jl
@@ -11,42 +11,42 @@ initstate!(mpc_im, model.uop, y)
 preparestate!(mpc_im, [55, 30])
 mpc_im.estim()
 u = mpc_im([55, 30])
-sim!(mpc_im, 3)
+sim!(mpc_im, 2)
 
 mpc_kf = setconstraint!(LinMPC(KalmanFilter(model)), ymin=[45, -Inf])
 initstate!(mpc_kf, model.uop, model())
 preparestate!(mpc_kf, [55, 30])
 mpc_kf.estim()
 u = mpc_kf([55, 30])
-sim!(mpc_kf, 3, [55, 30])
+sim!(mpc_kf, 2, [55, 30])
 
 mpc_lo = setconstraint!(LinMPC(Luenberger(model)), ymin=[45, -Inf])
 initstate!(mpc_lo, model.uop, model())
 preparestate!(mpc_lo, [55, 30])
 mpc_lo.estim()
 u = mpc_lo([55, 30])
-sim!(mpc_lo, 3, [55, 30])
+sim!(mpc_lo, 2, [55, 30])
 
 mpc_ukf = setconstraint!(LinMPC(UnscentedKalmanFilter(model)), ymin=[45, -Inf])
 initstate!(mpc_ukf, model.uop, model())
 preparestate!(mpc_ukf, [55, 30])
 mpc_ukf.estim()
 u = mpc_ukf([55, 3])
-sim!(mpc_ukf, 3, [55, 30])
+sim!(mpc_ukf, 2, [55, 30])
 
 mpc_ekf = setconstraint!(LinMPC(ExtendedKalmanFilter(model)), ymin=[45, -Inf])
 initstate!(mpc_ekf, model.uop, model())
 preparestate!(mpc_ekf, [55, 30])
 mpc_ekf.estim()
 u = mpc_ekf([55, 30])
-sim!(mpc_ekf, 3, [55, 30])
+sim!(mpc_ekf, 2, [55, 30])
 
 mpc_skf = setconstraint!(LinMPC(SteadyKalmanFilter(model)), ymin=[45, -Inf])
 initstate!(mpc_skf, model.uop, model())
 preparestate!(mpc_skf, [55, 30])
 mpc_skf.estim()
 u = mpc_skf([55, 30])
-sim!(mpc_skf, 3, [55, 30])
+sim!(mpc_skf, 2, [55, 30])
 
 mpc_mhe = setconstraint!(LinMPC(MovingHorizonEstimator(model, He=2)), ymin=[45, -Inf])
 setconstraint!(mpc_mhe.estim, x̂min=[-50,-50,-50,-50], x̂max=[50,50,50,50])
@@ -54,16 +54,16 @@ initstate!(mpc_mhe, model.uop, model())
 preparestate!(mpc_mhe, [55, 30])
 mpc_mhe.estim()
 u = mpc_mhe([55, 30])
-sim!(mpc_mhe, 3, [55, 30])
+sim!(mpc_mhe, 2, [55, 30])
 
 nmpc_skf = setconstraint!(NonLinMPC(SteadyKalmanFilter(model), Cwt=Inf), ymin=[45, -Inf])
 initstate!(nmpc_skf, model.uop, model())
 preparestate!(nmpc_skf, [55, 30])
 nmpc_skf.estim()
 u = nmpc_skf([55, 30])
-sim!(nmpc_skf, 3, [55, 30])
+sim!(nmpc_skf, 2, [55, 30])
 
-res = sim!(model, 3)
+res = sim!(model, 2)
 
 res_man = SimResult(model, res.U_data, res.Y_data; X_data=res.X_data)
 
@@ -72,7 +72,7 @@ initstate!(exmpc, model.uop, model())
 preparestate!(exmpc, [55, 30])
 exmpc.estim()
 u = exmpc([55, 30])
-sim!(exmpc, 3, [55, 30])
+sim!(exmpc, 2, [55, 30])
 
 f(x,u,_,model) = model.A*x + model.Bu*u
 h(x,_,model) = model.C*x
@@ -87,7 +87,7 @@ initstate!(nmpc_im, nlmodel.uop, y)
 preparestate!(nmpc_im, [55, 30])
 nmpc_im.estim()
 u = nmpc_im([55, 30])
-sim!(nmpc_im, 3, [55, 30])
+sim!(nmpc_im, 2, [55, 30])
 
 nmpc_ukf = setconstraint!(
     NonLinMPC(UnscentedKalmanFilter(nlmodel), Hp=10, Cwt=1e3), ymin=[45, -Inf]
@@ -95,13 +95,13 @@ nmpc_ukf = setconstraint!(
 initstate!(nmpc_ukf, nlmodel.uop, y)
 preparestate!(nmpc_ukf, [55, 30])
 u = nmpc_ukf([55, 30])
-sim!(nmpc_ukf, 3, [55, 30])
+sim!(nmpc_ukf, 2, [55, 30])
 
 nmpc_ekf = setconstraint!(NonLinMPC(ExtendedKalmanFilter(model), Cwt=Inf), ymin=[45, -Inf])
 initstate!(nmpc_ekf, model.uop, model())
 preparestate!(nmpc_ekf, [55, 30])
 u = nmpc_ekf([55, 30])
-sim!(nmpc_ekf, 3, [55, 30])
+sim!(nmpc_ekf, 2, [55, 30])
 
 nmpc_mhe = setconstraint!(
     NonLinMPC(MovingHorizonEstimator(nlmodel, He=2), Hp=10, Cwt=Inf), ymin=[45, -Inf]
@@ -110,7 +110,7 @@ setconstraint!(nmpc_mhe.estim, x̂min=[-50,-50,-50,-50], x̂max=[50,50,50,50])
 initstate!(nmpc_mhe, nlmodel.uop, y)
 preparestate!(nmpc_mhe, [55, 30])
 u = nmpc_mhe([55, 30])
-sim!(nmpc_mhe, 3, [55, 30])
+sim!(nmpc_mhe, 2, [55, 30])
 
 function JE( _ , Ŷe, _ , R̂y)
     Ŷ = Ŷe[3:end]
@@ -123,4 +123,7 @@ empc = setconstraint!(
 )
 preparestate!(empc, [55, 30])
 u = empc()
-sim!(empc, 3)
\ No newline at end of file
+sim!(empc, 2)
+
+linearizemodel = linearize(nlmodel)
+setmodel!(mpc_kf, linearizemodel)
\ No newline at end of file
diff --git a/src/sim_model.jl b/src/sim_model.jl
index aaad33f8f..d169745cd 100644
--- a/src/sim_model.jl
+++ b/src/sim_model.jl
@@ -301,10 +301,10 @@ end
 
 Sleep for `model.Ts` s minus the time elapsed since the last call to [`savetime!`](@ref).
 
-It calls [`sleep`](https://docs.julialang.org/en/v1/base/parallel/#Base.sleep) if `busywait`
-is `false`. Else, a simple `while` loop implements busy-waiting. As a rule-of-thumb,
-busy-waiting should be used if `model.Ts < 0.1` s, since the accuracy of `sleep` is around 1
-ms. Can be used to implement simple soft real-time simulations, see the example below.
+It calls [`sleep`](@extref Julia Base.sleep) if `busywait` is `false`. Else, a simple 
+`while` loop implements busy-waiting. As a rule-of-thumb, busy-waiting should be used if 
+`model.Ts < 0.1` s, since the accuracy of `sleep` is around 1 ms. Can be used to implement
+simple soft real-time simulations, see the example below.
 
 !!! warning
     The allocations in Julia are garbage-collected (GC) automatically. This can affect the 
diff --git a/test/1_test_sim_model.jl b/test/1_test_sim_model.jl
index 5d5a77a56..9ffbd1794 100644
--- a/test/1_test_sim_model.jl
+++ b/test/1_test_sim_model.jl
@@ -152,6 +152,8 @@ end
 
 @testitem "NonLinModel construction" setup=[SetupMPCtests] begin
     using .SetupMPCtests, ControlSystemsBase, LinearAlgebra
+    using DifferentiationInterface
+    import FiniteDiff
     linmodel1 = LinModel(sys,Ts,i_u=[1,2])
     f1(x,u,_,model) = model.A*x + model.Bu*u
     h1(x,_,model)   = model.C*x
@@ -243,8 +245,9 @@ end
     @test xnext ≈ zeros(2)
     nonlinemodel7.h!(y, [0; 0], [0], nonlinemodel7.p)
     @test y ≈ zeros(1)
+    nonlinemodel8 = NonLinModel(f2!, h2!, 1.0, 1, 2, 1, 1, p=p, jacobian=AutoFiniteDiff())
+    @test nonlinemodel8.jacobian == AutoFiniteDiff()
 
-    
     @test_throws ErrorException NonLinModel(
         (x,u)->linmodel1.A*x + linmodel1.Bu*u,
         (x,_,_)->linmodel1.C*x, Ts, 2, 4, 2, 1, solver=nothing)
@@ -280,7 +283,9 @@ end
 end
 
 @testitem "NonLinModel linearization" setup=[SetupMPCtests] begin
-    using .SetupMPCtests, ControlSystemsBase, LinearAlgebra, ForwardDiff
+    using .SetupMPCtests, ControlSystemsBase, LinearAlgebra
+    using DifferentiationInterface
+    import ForwardDiff, FiniteDiff
     Ts = 1.0
     f1(x,u,d,_) = x.^5 .+ u.^4 .+ d.^3
     h1(x,d,_)   = x.^2 .+ d
@@ -292,14 +297,20 @@ end
     @test linmodel1.Bd ≈ 3*d.^2
     @test linmodel1.C  ≈ 2*x.^1
     @test linmodel1.Dd ≈ 1*d.^0
-    linmodel2 = LinModel(nonlinmodel1; x, u, d)
-    @test linmodel1.A  ≈ linmodel2.A
-    @test linmodel1.Bu ≈ linmodel2.Bu
-    @test linmodel1.Bd ≈ linmodel2.Bd
-    @test linmodel1.C  ≈ linmodel2.C
-    @test linmodel1.Dd ≈ linmodel2.Dd 
-    @test repr(nonlinmodel1.linbuffer) == "LinearizationBuffer object"
-    @test repr(nonlinmodel1.linbuffer.buffer_f_at_u_d) == "DifferentiationBuffer with a JacobianConfig"
+    linmodel1b = LinModel(nonlinmodel1; x, u, d)
+    @test linmodel1.A  ≈ linmodel1b.A
+    @test linmodel1.Bu ≈ linmodel1b.Bu
+    @test linmodel1.Bd ≈ linmodel1b.Bd
+    @test linmodel1.C  ≈ linmodel1b.C
+    @test linmodel1.Dd ≈ linmodel1b.Dd
+
+    nonlinmodel2 = NonLinModel(f1,h1,Ts,1,1,1,1,solver=nothing, jacobian=AutoFiniteDiff()) 
+    linmodel2 = linearize(nonlinmodel2; x, u, d)
+    @test linmodel2.A  ≈ 5*x.^4 atol=1e-3
+    @test linmodel2.Bu ≈ 4*u.^3 atol=1e-3
+    @test linmodel2.Bd ≈ 3*d.^2 atol=1e-3
+    @test linmodel2.C  ≈ 2*x.^1 atol=1e-3
+    @test linmodel2.Dd ≈ 1*d.^0 atol=1e-3
 
     f1!(ẋ, x, u, d, _) = (ẋ .= x.^5 .+ u.^4 .+ d.^3; nothing)
     h1!(y, x, d, _) = (y .= x.^2 .+ d; nothing)
diff --git a/test/2_test_state_estim.jl b/test/2_test_state_estim.jl
index fa2eb408c..5a807ad81 100644
--- a/test/2_test_state_estim.jl
+++ b/test/2_test_state_estim.jl
@@ -781,11 +781,13 @@ end
 end
 
 @testitem "MovingHorizonEstimator construction" setup=[SetupMPCtests] begin
-    using .SetupMPCtests, ControlSystemsBase, LinearAlgebra, JuMP, Ipopt
+    using .SetupMPCtests, ControlSystemsBase, LinearAlgebra
+    using JuMP, Ipopt, DifferentiationInterface
+    import FiniteDiff
     linmodel1 = LinModel(sys,Ts,i_d=[3])
-    f(x,u,d,_) = linmodel1.A*x + linmodel1.Bu*u + linmodel1.Bd*d
-    h(x,d,_)   = linmodel1.C*x + linmodel1.Du*d
-    nonlinmodel = NonLinModel(f, h, Ts, 2, 4, 2, 1, solver=nothing)
+    f(x,u,d,model) = model.A*x + model.Bu*u + model.Bd*d
+    h(x,d,model)   = model.C*x + model.Dd*d
+    nonlinmodel = NonLinModel(f, h, Ts, 2, 4, 2, 1, solver=nothing, p=linmodel1)
 
     mhe1 = MovingHorizonEstimator(linmodel1, He=5)
     @test mhe1.nym == 2
@@ -857,6 +859,12 @@ end
     mhe13 = MovingHorizonEstimator(linmodel2, He=5)
     @test isa(mhe13, MovingHorizonEstimator{Float32})
 
+    mhe14 = MovingHorizonEstimator(
+        nonlinmodel, He=5, gradient=AutoFiniteDiff(), jacobian=AutoFiniteDiff()
+    )
+    @test mhe14.gradient == AutoFiniteDiff()
+    @test mhe14.jacobian == AutoFiniteDiff()
+
     @test_throws ArgumentError MovingHorizonEstimator(linmodel1)
     @test_throws ArgumentError MovingHorizonEstimator(linmodel1, He=0)
     @test_throws ArgumentError MovingHorizonEstimator(linmodel1, Cwt=-1)
@@ -864,10 +872,12 @@ end
 
 @testitem "MovingHorizonEstimator estimation and getinfo" setup=[SetupMPCtests] begin
     using .SetupMPCtests, ControlSystemsBase, LinearAlgebra, JuMP, Ipopt, ForwardDiff
-    linmodel1 = setop!(LinModel(sys,Ts,i_u=[1,2], i_d=[3]), uop=[10,50], yop=[50,30], dop=[5])
-    f(x,u,d,_) = linmodel1.A*x + linmodel1.Bu*u + linmodel1.Bd*d
-    h(x,d,_)   = linmodel1.C*x + linmodel1.Dd*d
-    nonlinmodel = setop!(NonLinModel(f, h, Ts, 2, 4, 2, 1, solver=nothing), uop=[10,50], yop=[50,30], dop=[5])
+    linmodel1 = LinModel(sys,Ts,i_u=[1,2], i_d=[3])
+    linmodel1 = setop!(linmodel1, uop=[10,50], yop=[50,30], dop=[5])
+    f(x,u,d,model) = model.A*x + model.Bu*u + model.Bd*d
+    h(x,d,model)   = model.C*x + model.Dd*d
+    nonlinmodel = NonLinModel(f, h, Ts, 2, 4, 2, 1, solver=nothing, p=linmodel1)
+    nonlinmodel = setop!(nonlinmodel, uop=[10,50], yop=[50,30], dop=[5])
     
     mhe1 = MovingHorizonEstimator(nonlinmodel, He=2)
     preparestate!(mhe1, [50, 30], [5])
@@ -968,13 +978,10 @@ end
     x̂ = updatestate!(mhe3, [0], [0])
     @test x̂ ≈ [0, 0] atol=1e-3
     @test isa(x̂, Vector{Float32})
-    
     mhe4 = setconstraint!(MovingHorizonEstimator(nonlinmodel, He=1, nint_ym=0), v̂max=[50,50])
     g_V̂max_end = mhe4.optim[:g_V̂max_2].func
-     # test gfunc_i(i,::NTuple{N, Float64})
-    @test g_V̂max_end(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) ≤ 0.0 
-    # test gfunc_i(i,::NTuple{N, ForwardDiff.Dual}) : 
-    @test ForwardDiff.gradient(vec->g_V̂max_end(vec...), zeros(8)) ≈ zeros(8)
+    # execute update_predictions! branch in `gfunc_i` for coverage:
+    @test_nowarn g_V̂max_end(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) ≤ 0.0 
 
     Q̂ = diagm([1/4, 1/4, 1/4, 1/4].^2) 
     R̂ = diagm([1, 1].^2)
diff --git a/test/3_test_predictive_control.jl b/test/3_test_predictive_control.jl
index d099cb6ba..5dc8e7458 100644
--- a/test/3_test_predictive_control.jl
+++ b/test/3_test_predictive_control.jl
@@ -555,7 +555,9 @@ end
 end
 
 @testitem "NonLinMPC construction" setup=[SetupMPCtests] begin
-    using .SetupMPCtests, ControlSystemsBase, LinearAlgebra, JuMP, Ipopt
+    using .SetupMPCtests, ControlSystemsBase, LinearAlgebra
+    using JuMP, Ipopt, DifferentiationInterface
+    import FiniteDiff
     linmodel1 = LinModel(sys,Ts,i_d=[3])
     nmpc0 = NonLinMPC(linmodel1, Hp=15)
     @test isa(nmpc0.estim, SteadyKalmanFilter)
@@ -612,6 +614,12 @@ end
     @test nmpc17.transcription == MultipleShooting()
     @test length(nmpc17.Z̃) == linmodel1.nu*nmpc17.Hc + nmpc17.estim.nx̂*nmpc17.Hp + nmpc17.nϵ
     @test size(nmpc17.con.Aeq, 1) == nmpc17.estim.nx̂*nmpc17.Hp
+    nmpc18 = NonLinMPC(nonlinmodel, Hp=10, 
+        gradient=AutoFiniteDiff(), 
+        jacobian=AutoFiniteDiff()
+    )
+    @test nmpc18.gradient == AutoFiniteDiff()
+    @test nmpc18.jacobian == AutoFiniteDiff()
 
     nonlinmodel2 = NonLinModel{Float32}(f, h, Ts, 2, 4, 2, 1, solver=nothing)
     nmpc15  = NonLinMPC(nonlinmodel2, Hp=15)
@@ -629,7 +637,9 @@ end
 end
 
 @testitem "NonLinMPC moves and getinfo" setup=[SetupMPCtests] begin
-    using .SetupMPCtests, ControlSystemsBase, LinearAlgebra, ForwardDiff
+    using .SetupMPCtests, ControlSystemsBase, LinearAlgebra
+    using DifferentiationInterface
+    import FiniteDiff
     linmodel = setop!(LinModel(tf(5, [2000, 1]), 3000.0), yop=[10])
     Hp = 100
     nmpc_lin = NonLinMPC(linmodel, Nwt=[0], Hp=Hp, Hc=1)
@@ -661,9 +671,9 @@ end
     u = moveinput!(nmpc)
     @test u ≈ [4] atol=5e-2
     linmodel2 = LinModel([tf(5, [2000, 1]) tf(7, [8000,1])], 3000.0, i_d=[2])
-    f = (x,u,d,_) -> linmodel2.A*x + linmodel2.Bu*u + linmodel2.Bd*d
-    h = (x,d,_)   -> linmodel2.C*x + linmodel2.Dd*d
-    nonlinmodel = NonLinModel(f, h, 3000.0, 1, 2, 1, 1, solver=nothing)
+    f = (x,u,d,model) -> model.A*x + model.Bu*u + model.Bd*d
+    h = (x,d,model)   -> model.C*x + model.Dd*d
+    nonlinmodel = NonLinModel(f, h, 3000.0, 1, 2, 1, 1, solver=nothing, p=linmodel2)
     nmpc2 = NonLinMPC(nonlinmodel, Nwt=[0], Hp=100, Hc=1)
     preparestate!(nmpc2, [0], [0])
     # if d=[0.1], the output will eventually reach 7*0.1=0.7, no action needed (u=0):
@@ -683,20 +693,23 @@ end
     preparestate!(nmpc4, [0], [0])
     u = moveinput!(nmpc4, [0], d, R̂u=fill(12, nmpc4.Hp))
     @test u ≈ [12] atol=5e-2
-    nmpc5 = setconstraint!(NonLinMPC(nonlinmodel, Hp=15, Cwt=Inf), ymin=[1])
-    g_Y0min_end = nmpc5.optim[:g_Y0min_15].func
-    # test gfunc_i(i,::NTuple{N, Float64}):
-    @test g_Y0min_end(20.0, 10.0) ≤ 0.0 
-    # test gfunc_i(i,::NTuple{N, ForwardDiff.Dual}) : 
-    @test ForwardDiff.gradient(vec->g_Y0min_end(vec...), [20.0, 10.0]) ≈ [-5, -5] atol=1e-3
     linmodel3 = LinModel{Float32}(0.5*ones(1,1), ones(1,1), ones(1,1), 0, 0, 3000.0)
+    nmpc5 = NonLinMPC(nonlinmodel, Hp=1, Hc=1, Cwt=Inf, transcription=MultipleShooting())
+    nmpc5 = setconstraint!(nmpc5, ymin=[1])
+    # execute update_predictions! branch in `gfunc_i` for coverage:
+    g_Y0min_end = nmpc5.optim[:g_Y0min_1].func
+    println(nmpc5.Z̃)
+    @test_nowarn g_Y0min_end(10.0, 9.0, 8.0, 7.0)
+    # execute update_predictions! branch in `geqfunc_i` for coverage:
+    geq_end = nmpc5.optim[:geq_2].func
+    @test_nowarn geq_end(5.0, 4.0, 3.0, 2.0)
     nmpc6  = NonLinMPC(linmodel3, Hp=10)
     preparestate!(nmpc6, [0])
     @test moveinput!(nmpc6, [0]) ≈ [0.0]
-    nonlinmodel2 = NonLinModel{Float32}(f, h, 3000.0, 1, 2, 1, 1, solver=nothing)
+    nonlinmodel2 = NonLinModel{Float32}(f, h, 3000.0, 1, 2, 1, 1, solver=nothing, p=linmodel2)
     nmpc7  = NonLinMPC(nonlinmodel2, Hp=10)
     y = similar(nonlinmodel2.yop)
-    nonlinmodel2.h!(y, Float32[0,0], Float32[0], Float32[])
+    nonlinmodel2.h!(y, Float32[0,0], Float32[0], nonlinmodel2.p)
     preparestate!(nmpc7, [0], [0])
     @test moveinput!(nmpc7, [0], [0]) ≈ [0.0]
     nmpc8 = NonLinMPC(nonlinmodel, Nwt=[0], Hp=100, Hc=1, transcription=MultipleShooting())
@@ -713,6 +726,19 @@ end
     info = getinfo(nmpc9)
     @test info[:u] ≈ u
     @test info[:Ŷ][end] ≈ 20 atol=5e-2
+    nmpc10 = setconstraint!(NonLinMPC(
+        nonlinmodel, Nwt=[0], Hp=100, Hc=1, 
+        gradient=AutoFiniteDiff(),
+        jacobian=AutoFiniteDiff()), 
+        ymax=[100], ymin=[-100]
+    )
+    preparestate!(nmpc10, [0], [0])
+    u = moveinput!(nmpc10, [10], [0])
+    @test u ≈ [2] atol=5e-2
+    info = getinfo(nmpc10)
+    @test info[:u] ≈ u
+    @test info[:Ŷ][end] ≈ 10 atol=5e-2
+
     @test_nowarn ModelPredictiveControl.info2debugstr(info)
 end