@@ -326,7 +326,7 @@ It implements the time-varying Kalman Filter in its predictor (observer) form :
326
326
\b egin{aligned}
327
327
\m athbf{M̂}(k) &= \m athbf{P̂}_{k-1}(k)\m athbf{Ĉ^m}'
328
328
[\m athbf{Ĉ^m P̂}_{k-1}(k)\m athbf{Ĉ^m}' + \m athbf{R̂}]^{-1} \\
329
- \m athbf{K̂}(k) &= \m athbf{Â M̂(k)} \\
329
+ \m athbf{K̂}(k) &= \m athbf{Â M̂} (k) \\
330
330
\m athbf{ŷ^m}(k) &= \m athbf{Ĉ^m x̂}_{k-1}(k) + \m athbf{D̂_d^m d}(k) \\
331
331
\m athbf{x̂}_{k}(k+1) &= \m athbf{Â x̂}_{k-1}(k) + \m athbf{B̂_u u}(k) + \m athbf{B̂_d d}(k)
332
332
+ \m athbf{K̂}(k)[\m athbf{y^m}(k) - \m athbf{ŷ^m}(k)] \\
@@ -339,7 +339,7 @@ based on the process model described in [`SteadyKalmanFilter`](@ref). The notati
339
339
control period ``k-1``. See [^2] for details.
340
340
341
341
[^2]: Boyd S., "Lecture 8 : The Kalman Filter" (Winter 2008-09) [course slides], *EE363:
342
- Linear Dynamical Systems*, https://web.stanford.edu/class/ee363/lectures/kf.pdf.
342
+ Linear Dynamical Systems*, < https://web.stanford.edu/class/ee363/lectures/kf.pdf> .
343
343
"""
344
344
function update_estimate! (estim:: KalmanFilter , u, ym, d)
345
345
return update_estimate_kf! (estim, u, ym, d, estim. Â, estim. Ĉm, estim. P̂, estim. x̂)
@@ -559,7 +559,7 @@ to compute ``\sqrt{\mathbf{P̂}_{k-1}(k)}`` and ``\sqrt{\mathbf{P̂}_{k}(k)}``.
559
559
noise, respectively.
560
560
561
561
[^3]: Simon, D. 2006, "Chapter 14: The unscented Kalman filter" in "Optimal State Estimation:
562
- Kalman, H∞, and Nonlinear Approaches", John Wiley & Sons, p. 433–459, https://doi.org/10.1002/0470045345.ch14,
562
+ Kalman, H∞, and Nonlinear Approaches", John Wiley & Sons, p. 433–459, < https://doi.org/10.1002/0470045345.ch14> ,
563
563
ISBN9780470045343.
564
564
"""
565
565
function update_estimate! (estim:: UnscentedKalmanFilter{NT} , u, ym, d) where NT<: Real
0 commit comments